WFMath  1.0.2
const.h
1 // const.h (Defined constants for the WFMath library)
2 //
3 // The WorldForge Project
4 // Copyright (C) 2001, 2002 The WorldForge Project
5 //
6 // This program is free software; you can redistribute it and/or modify
7 // it under the terms of the GNU General Public License as published by
8 // the Free Software Foundation; either version 2 of the License, or
9 // (at your option) any later version.
10 //
11 // This program is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 //
16 // You should have received a copy of the GNU General Public License
17 // along with this program; if not, write to the Free Software
18 // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 //
20 // For information about WorldForge and its authors, please contact
21 // the Worldforge Web Site at http://www.worldforge.org.
22 
23 // Author: Ron Steinke
24 // Created: 2001-12-7
25 
26 #ifndef WFMATH_CONST_H
27 #define WFMATH_CONST_H
28 
29 #include <limits>
30 
31 #ifdef _MSC_VER
32  #if _MSC_VER < 1500
33  #error "You are using an older version of MSVC++ with extremely poor"
34  #error "template support. Please use at least version 2008,"
35  #error "or try a different compiler."
36  #endif
37 #endif
38 
40 namespace WFMath {
41 
42 // WFMath::Foo::toAtlas() has to return a definite type,
43 // we deal with supporting both 0.4 and 0.6 by forward declaring
44 // types which we define in the AtlasConv header
45 class AtlasInType;
46 class AtlasOutType;
47 
48 template<int dim> class AxisBox;
49 template<int dim> class Ball;
50 template<int dim> class Point;
51 template<int dim> class Polygon;
52 template<int dim> class RotBox;
53 template<int dim> class RotMatrix;
54 template<int dim> class Segment;
55 template<int dim> class Vector;
56 class Quaternion;
57 
58 // Constants
59 
61 #define WFMATH_PRECISION_FUDGE_FACTOR 30
62 
63 template<typename FloatType>
64 struct numeric_constants
65 {
67  static FloatType pi();
69  static FloatType sqrt_pi();
71  static FloatType log_pi();
73  static FloatType sqrt2();
75  static FloatType sqrt3();
77  static FloatType log2();
79  static FloatType epsilon();
80 };
81 
82 template<>
83 struct numeric_constants<float>
84 {
85  static float pi() {
86  return 3.14159265358979323846264338327950288419716939937508F;
87  }
88  static float sqrt_pi() {
89  return 1.77245385090551602729816748334114518279754945612237F;
90  }
91  static float log_pi() {
92  return 1.14472988584940017414342735135305871164729481291530F;
93  }
94  static float sqrt2() {
95  return 1.41421356237309504880168872420969807856967187537693F;
96  }
97  static float sqrt3() {
98  return 1.73205080756887729352744634150587236694280525381037F;
99  }
100  static float log2() {
101  return 0.69314718055994530941723212145817656807550013436025F;
102  }
103  static float epsilon() {
104  return (WFMATH_PRECISION_FUDGE_FACTOR *
105  std::numeric_limits<float>::epsilon());
106  }
107 };
108 
109 template<>
110 struct numeric_constants<double>
111 {
112  static double pi() {
113  return 3.14159265358979323846264338327950288419716939937508;
114  }
115  static double sqrt_pi() {
116  return 1.77245385090551602729816748334114518279754945612237;
117  }
118  static double log_pi() {
119  return 1.14472988584940017414342735135305871164729481291530;
120  }
121  static double sqrt2() {
122  return 1.41421356237309504880168872420969807856967187537693;
123  }
124  static double sqrt3() {
125  return 1.73205080756887729352744634150587236694280525381037;
126  }
127  static double log2() {
128  return 0.69314718055994530941723212145817656807550013436025;
129  }
130  static double epsilon() {
131  return (WFMATH_PRECISION_FUDGE_FACTOR *
132  std::numeric_limits<double>::epsilon());
133  }
134 };
135 
137 #define WFMATH_MAX_NORM_AGE ((WFMATH_PRECISION_FUDGE_FACTOR * 2) / 3)
138 
140 typedef float CoordType;
141 
142 // Basic comparisons
143 
144 double _ScaleEpsilon(double x1, double x2, double epsilon);
145 float _ScaleEpsilon(float x1, float x2, float epsilon);
146 CoordType _ScaleEpsilon(const CoordType* x1, const CoordType* x2,
147  int length, CoordType epsilon = numeric_constants<CoordType>::epsilon());
148 
150 
157 template<class C>
158 inline bool Equal(const C& c1, const C& c2, CoordType epsilon = numeric_constants<CoordType>::epsilon())
159  {return c1.isEqualTo(c2, epsilon);}
160 
161 bool Equal(double x1, double x2, double epsilon = numeric_constants<double>::epsilon());
162 // Avoid template and expensive casts from float to doubles.
163 bool Equal(float x1, float x2, float epsilon = numeric_constants<float>::epsilon());
164 
165 // These let us avoid including <algorithm> for the sake of
166 // std::max() and std::min().
167 
168 inline CoordType FloatMax(CoordType a, CoordType b)
169  {return (a > b) ? a : b;}
170 inline CoordType FloatMin(CoordType a, CoordType b)
171  {return (a < b) ? a : b;}
172 inline CoordType FloatClamp(CoordType val, CoordType min, CoordType max)
173  {return (min >= val) ? min : (max <= val ? max : val);}
174 
175 inline double DoubleMax(double a, double b)
176  {return (a > b) ? a : b;}
177 inline double DoubleMin(double a, double b)
178  {return (a < b) ? a : b;}
179 inline double DoubleClamp(double val, double min, double max)
180  {return (min >= val) ? min : (max <= val ? max : val);}
181 
182 } // namespace WFMath
183 
184 #endif // WFMATH_CONST_H
bool Equal(const C &c1, const C &c2, CoordType epsilon=numeric_constants< CoordType >::epsilon())
Test for equality up to precision epsilon.
Definition: const.h:158
Generic library namespace.
Definition: atlasconv.h:45
A dim dimensional rotation matrix. Technically, a member of the group O(dim).
Definition: const.h:53
A dim dimensional box, lying at an arbitrary angle.
Definition: const.h:52
A polygon, all of whose points lie in a plane, embedded in dim dimensions.
Definition: const.h:51
A dim dimensional vector.
Definition: const.h:55
float CoordType
Basic floating point type.
Definition: const.h:140
A line segment embedded in dim dimensions.
Definition: const.h:54
A normalized quaterion.
Definition: quaternion.h:35
A dim dimensional point.
Definition: const.h:50