59 #ifndef INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H 60 #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H 66 #ifdef LV_HAVE_GENERIC 70 const unsigned int num_bytes = num_points*8;
72 float * res = (
float*) result;
73 float * in = (
float*) input;
74 float * tp = (
float*) taps;
75 unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
76 unsigned int isodd = (num_bytes >> 3) &1;
78 float sum0[2] = {0,0};
79 float sum1[2] = {0,0};
82 for(i = 0; i < n_2_ccomplex_blocks; ++
i) {
83 sum0[0] += in[0] * tp[0] + in[1] * tp[1];
84 sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
85 sum1[0] += in[2] * tp[2] + in[3] * tp[3];
86 sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
92 res[0] = sum0[0] + sum1[0];
93 res[1] = sum0[1] + sum1[1];
95 for(i = 0; i < isodd; ++
i) {
96 *result += input[(num_bytes >> 3) - 1] *
lv_conj(taps[(num_bytes >> 3) - 1]);
104 #include <immintrin.h> 110 __m256 sum_a_mult_b_real = _mm256_setzero_ps();
111 __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
113 for (
long unsigned i = 0;
i < (num_points & ~3u);
i += 4) {
125 __m256 a = _mm256_loadu_ps((
const float *) &input[i]);
126 __m256 b = _mm256_loadu_ps((
const float *) &taps[i]);
127 __m256 b_real = _mm256_moveldup_ps(b);
128 __m256 b_imag = _mm256_movehdup_ps(b);
131 sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
133 sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
137 sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
139 __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
143 sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
145 sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
147 __m128 lower = _mm256_extractf128_ps(sum, 0);
148 _mm_storel_pi((__m64 *) result, lower);
151 for (
long unsigned i = num_points & ~3u; i < num_points; ++
i) {
162 #include <xmmintrin.h> 163 #include <pmmintrin.h> 169 __m128 sum_a_mult_b_real = _mm_setzero_ps();
170 __m128 sum_a_mult_b_imag = _mm_setzero_ps();
172 for (
long unsigned i = 0;
i < (num_points & ~1u);
i += 2) {
184 __m128 a = _mm_loadu_ps((
const float *) &input[i]);
185 __m128 b = _mm_loadu_ps((
const float *) &taps[i]);
186 __m128 b_real = _mm_moveldup_ps(b);
187 __m128 b_imag = _mm_movehdup_ps(b);
190 sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
192 sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
196 sum_a_mult_b_imag = _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag,
197 _MM_SHUFFLE(2, 3, 0, 1));
199 __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
201 sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
203 _mm_storel_pi((__m64 *) result, sum);
206 if (num_points & 1u) {
218 #include <arm_neon.h> 221 unsigned int quarter_points = num_points / 4;
228 float32x4x2_t a_val, b_val, accumulator;
229 float32x4x2_t tmp_imag;
230 accumulator.val[0] = vdupq_n_f32(0);
231 accumulator.val[1] = vdupq_n_f32(0);
233 for(number = 0; number < quarter_points; ++number) {
234 a_val = vld2q_f32((
float*)a_ptr);
235 b_val = vld2q_f32((
float*)b_ptr);
240 tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
241 tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
244 tmp_imag.val[1] = vmlsq_f32(tmp_imag.val[1], a_val.val[0], b_val.val[1]);
245 tmp_imag.val[0] = vmlaq_f32(tmp_imag.val[0], a_val.val[1], b_val.val[1]);
247 accumulator.val[0] = vaddq_f32(accumulator.val[0], tmp_imag.val[0]);
248 accumulator.val[1] = vaddq_f32(accumulator.val[1], tmp_imag.val[1]);
255 vst2q_f32((
float*)accum_result, accumulator);
256 *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
259 for(number = quarter_points*4; number < num_points; ++number) {
260 *result += (*a_ptr++) *
lv_conj(*b_ptr++);
269 #ifndef INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H 270 #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H 278 #include <immintrin.h> 284 __m256 sum_a_mult_b_real = _mm256_setzero_ps();
285 __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
287 for (
long unsigned i = 0;
i < (num_points & ~3u);
i += 4) {
299 __m256 a = _mm256_load_ps((
const float *) &input[i]);
300 __m256 b = _mm256_load_ps((
const float *) &taps[i]);
301 __m256 b_real = _mm256_moveldup_ps(b);
302 __m256 b_imag = _mm256_movehdup_ps(b);
305 sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
307 sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
311 sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
313 __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
317 sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
319 sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
321 __m128 lower = _mm256_extractf128_ps(sum, 0);
322 _mm_storel_pi((__m64 *) result, lower);
325 for (
long unsigned i = num_points & ~3u; i < num_points; ++
i) {
335 #include <xmmintrin.h> 336 #include <pmmintrin.h> 342 __m128 sum_a_mult_b_real = _mm_setzero_ps();
343 __m128 sum_a_mult_b_imag = _mm_setzero_ps();
345 for (
long unsigned i = 0;
i < (num_points & ~1u);
i += 2) {
357 __m128 a = _mm_load_ps((
const float *) &input[i]);
358 __m128 b = _mm_load_ps((
const float *) &taps[i]);
359 __m128 b_real = _mm_moveldup_ps(b);
360 __m128 b_imag = _mm_movehdup_ps(b);
363 sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
365 sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
369 sum_a_mult_b_imag = _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag,
370 _MM_SHUFFLE(2, 3, 0, 1));
372 __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
374 sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
376 _mm_storel_pi((__m64 *) result, sum);
379 if (num_points & 1u) {
391 #ifdef LV_HAVE_GENERIC 396 const unsigned int num_bytes = num_points*8;
398 float * res = (
float*) result;
399 float * in = (
float*) input;
400 float * tp = (
float*) taps;
401 unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
402 unsigned int isodd = (num_bytes >> 3) &1;
404 float sum0[2] = {0,0};
405 float sum1[2] = {0,0};
408 for(i = 0; i < n_2_ccomplex_blocks; ++
i) {
409 sum0[0] += in[0] * tp[0] + in[1] * tp[1];
410 sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
411 sum1[0] += in[2] * tp[2] + in[3] * tp[3];
412 sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
418 res[0] = sum0[0] + sum1[0];
419 res[1] = sum0[1] + sum1[1];
421 for(i = 0; i < isodd; ++
i) {
422 *result += input[(num_bytes >> 3) - 1] *
lv_conj(taps[(num_bytes >> 3) - 1]);
429 #if LV_HAVE_SSE && LV_HAVE_64 431 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse(
lv_32fc_t* result,
const lv_32fc_t* input,
const lv_32fc_t* taps,
unsigned int num_points) {
433 const unsigned int num_bytes = num_points*8;
435 __VOLK_ATTR_ALIGNED(16)
static const uint32_t conjugator[4]= {0x00000000, 0x80000000, 0x00000000, 0x80000000};
439 "# ccomplex_conjugate_dotprod_generic (float* result, const float *input,\n\t" 440 "# const float *taps, unsigned num_bytes)\n\t" 441 "# float sum0 = 0;\n\t" 442 "# float sum1 = 0;\n\t" 443 "# float sum2 = 0;\n\t" 444 "# float sum3 = 0;\n\t" 446 "# sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t" 447 "# sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t" 448 "# sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t" 449 "# sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t" 452 "# } while (--n_2_ccomplex_blocks != 0);\n\t" 453 "# result[0] = sum0 + sum2;\n\t" 454 "# result[1] = sum1 + sum3;\n\t" 455 "# TODO: prefetch and better scheduling\n\t" 456 " xor %%r9, %%r9\n\t" 457 " xor %%r10, %%r10\n\t" 458 " movq %[conjugator], %%r9\n\t" 459 " movq %%rcx, %%rax\n\t" 460 " movaps 0(%%r9), %%xmm8\n\t" 461 " movq %%rcx, %%r8\n\t" 462 " movq %[rsi], %%r9\n\t" 463 " movq %[rdx], %%r10\n\t" 464 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t" 465 " movaps 0(%%r9), %%xmm0\n\t" 466 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t" 467 " movups 0(%%r10), %%xmm2\n\t" 468 " shr $5, %%rax # rax = n_2_ccomplex_blocks / 2\n\t" 470 " xorps %%xmm8, %%xmm2\n\t" 471 " jmp .%=L1_test\n\t" 472 " # 4 taps / loop\n\t" 473 " # something like ?? cycles / loop\n\t" 475 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t" 476 "# movaps (%%r9), %%xmmA\n\t" 477 "# movaps (%%r10), %%xmmB\n\t" 478 "# movaps %%xmmA, %%xmmZ\n\t" 479 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t" 480 "# mulps %%xmmB, %%xmmA\n\t" 481 "# mulps %%xmmZ, %%xmmB\n\t" 482 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t" 483 "# xorps %%xmmPN, %%xmmA\n\t" 484 "# movaps %%xmmA, %%xmmZ\n\t" 485 "# unpcklps %%xmmB, %%xmmA\n\t" 486 "# unpckhps %%xmmB, %%xmmZ\n\t" 487 "# movaps %%xmmZ, %%xmmY\n\t" 488 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t" 489 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t" 490 "# addps %%xmmZ, %%xmmA\n\t" 491 "# addps %%xmmA, %%xmmC\n\t" 492 "# A=xmm0, B=xmm2, Z=xmm4\n\t" 493 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t" 494 " movaps 16(%%r9), %%xmm1\n\t" 495 " movaps %%xmm0, %%xmm4\n\t" 496 " mulps %%xmm2, %%xmm0\n\t" 497 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 498 " movaps 16(%%r10), %%xmm3\n\t" 499 " movaps %%xmm1, %%xmm5\n\t" 500 " xorps %%xmm8, %%xmm3\n\t" 501 " addps %%xmm0, %%xmm6\n\t" 502 " mulps %%xmm3, %%xmm1\n\t" 503 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t" 504 " addps %%xmm1, %%xmm6\n\t" 505 " mulps %%xmm4, %%xmm2\n\t" 506 " movaps 32(%%r9), %%xmm0\n\t" 507 " addps %%xmm2, %%xmm7\n\t" 508 " mulps %%xmm5, %%xmm3\n\t" 510 " movaps 32(%%r10), %%xmm2\n\t" 511 " addps %%xmm3, %%xmm7\n\t" 512 " add $32, %%r10\n\t" 513 " xorps %%xmm8, %%xmm2\n\t" 517 " # We've handled the bulk of multiplies up to here.\n\t" 518 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t" 519 " # If so, we've got 2 more taps to do.\n\t" 522 " # The count was odd, do 2 more taps.\n\t" 523 " # Note that we've already got mm0/mm2 preloaded\n\t" 524 " # from the main loop.\n\t" 525 " movaps %%xmm0, %%xmm4\n\t" 526 " mulps %%xmm2, %%xmm0\n\t" 527 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 528 " addps %%xmm0, %%xmm6\n\t" 529 " mulps %%xmm4, %%xmm2\n\t" 530 " addps %%xmm2, %%xmm7\n\t" 532 " # neg inversor\n\t" 533 " xorps %%xmm1, %%xmm1\n\t" 534 " mov $0x80000000, %%r9\n\t" 535 " movd %%r9, %%xmm1\n\t" 536 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t" 538 " xorps %%xmm1, %%xmm6\n\t" 539 " movaps %%xmm6, %%xmm2\n\t" 540 " unpcklps %%xmm7, %%xmm6\n\t" 541 " unpckhps %%xmm7, %%xmm2\n\t" 542 " movaps %%xmm2, %%xmm3\n\t" 543 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t" 544 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t" 545 " addps %%xmm2, %%xmm6\n\t" 546 " # xmm6 = r1 i2 r3 i4\n\t" 547 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t" 548 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t" 549 " movlps %%xmm6, (%[rdi]) # store low 2x32 bits (complex) to memory\n\t" 551 :[rsi]
"r" (input), [rdx]
"r" (taps),
"c" (num_bytes), [rdi]
"r" (result), [conjugator]
"r" (conjugator)
552 :
"rax",
"r8",
"r9",
"r10" 555 int getem = num_bytes % 16;
557 for(; getem > 0; getem -= 8) {
558 *result += (input[(num_bytes >> 3) - 1] *
lv_conj(taps[(num_bytes >> 3) - 1]));
563 #if LV_HAVE_SSE && LV_HAVE_32 564 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse_32(
lv_32fc_t* result,
const lv_32fc_t* input,
const lv_32fc_t* taps,
unsigned int num_points) {
566 const unsigned int num_bytes = num_points*8;
568 __VOLK_ATTR_ALIGNED(16)
static const uint32_t conjugator[4]= {0x00000000, 0x80000000, 0x00000000, 0x80000000};
570 int bound = num_bytes >> 4;
571 int leftovers = num_bytes % 16;
576 " #movl %%esp, %%ebp\n\t" 577 " #movl 12(%%ebp), %%eax # input\n\t" 578 " #movl 16(%%ebp), %%edx # taps\n\t" 579 " #movl 20(%%ebp), %%ecx # n_bytes\n\t" 580 " movaps 0(%[conjugator]), %%xmm1\n\t" 581 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t" 582 " movaps 0(%[eax]), %%xmm0\n\t" 583 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t" 584 " movaps 0(%[edx]), %%xmm2\n\t" 585 " movl %[ecx], (%[out])\n\t" 586 " shrl $5, %[ecx] # ecx = n_2_ccomplex_blocks / 2\n\t" 588 " xorps %%xmm1, %%xmm2\n\t" 589 " jmp .%=L1_test\n\t" 590 " # 4 taps / loop\n\t" 591 " # something like ?? cycles / loop\n\t" 593 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t" 594 "# movaps (%[eax]), %%xmmA\n\t" 595 "# movaps (%[edx]), %%xmmB\n\t" 596 "# movaps %%xmmA, %%xmmZ\n\t" 597 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t" 598 "# mulps %%xmmB, %%xmmA\n\t" 599 "# mulps %%xmmZ, %%xmmB\n\t" 600 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t" 601 "# xorps %%xmmPN, %%xmmA\n\t" 602 "# movaps %%xmmA, %%xmmZ\n\t" 603 "# unpcklps %%xmmB, %%xmmA\n\t" 604 "# unpckhps %%xmmB, %%xmmZ\n\t" 605 "# movaps %%xmmZ, %%xmmY\n\t" 606 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t" 607 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t" 608 "# addps %%xmmZ, %%xmmA\n\t" 609 "# addps %%xmmA, %%xmmC\n\t" 610 "# A=xmm0, B=xmm2, Z=xmm4\n\t" 611 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t" 612 " movaps 16(%[edx]), %%xmm3\n\t" 613 " movaps %%xmm0, %%xmm4\n\t" 614 " xorps %%xmm1, %%xmm3\n\t" 615 " mulps %%xmm2, %%xmm0\n\t" 616 " movaps 16(%[eax]), %%xmm1\n\t" 617 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 618 " movaps %%xmm1, %%xmm5\n\t" 619 " addps %%xmm0, %%xmm6\n\t" 620 " mulps %%xmm3, %%xmm1\n\t" 621 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t" 622 " addps %%xmm1, %%xmm6\n\t" 623 " movaps 0(%[conjugator]), %%xmm1\n\t" 624 " mulps %%xmm4, %%xmm2\n\t" 625 " movaps 32(%[eax]), %%xmm0\n\t" 626 " addps %%xmm2, %%xmm7\n\t" 627 " mulps %%xmm5, %%xmm3\n\t" 628 " addl $32, %[eax]\n\t" 629 " movaps 32(%[edx]), %%xmm2\n\t" 630 " addps %%xmm3, %%xmm7\n\t" 631 " xorps %%xmm1, %%xmm2\n\t" 632 " addl $32, %[edx]\n\t" 636 " # We've handled the bulk of multiplies up to here.\n\t" 637 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t" 638 " # If so, we've got 2 more taps to do.\n\t" 639 " movl 0(%[out]), %[ecx] # n_2_ccomplex_blocks\n\t" 640 " shrl $4, %[ecx]\n\t" 641 " andl $1, %[ecx]\n\t" 643 " # The count was odd, do 2 more taps.\n\t" 644 " # Note that we've already got mm0/mm2 preloaded\n\t" 645 " # from the main loop.\n\t" 646 " movaps %%xmm0, %%xmm4\n\t" 647 " mulps %%xmm2, %%xmm0\n\t" 648 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 649 " addps %%xmm0, %%xmm6\n\t" 650 " mulps %%xmm4, %%xmm2\n\t" 651 " addps %%xmm2, %%xmm7\n\t" 653 " # neg inversor\n\t" 654 " #movl 8(%%ebp), %[eax] \n\t" 655 " xorps %%xmm1, %%xmm1\n\t" 656 " movl $0x80000000, (%[out])\n\t" 657 " movss (%[out]), %%xmm1\n\t" 658 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t" 660 " xorps %%xmm1, %%xmm6\n\t" 661 " movaps %%xmm6, %%xmm2\n\t" 662 " unpcklps %%xmm7, %%xmm6\n\t" 663 " unpckhps %%xmm7, %%xmm2\n\t" 664 " movaps %%xmm2, %%xmm3\n\t" 665 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t" 666 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t" 667 " addps %%xmm2, %%xmm6\n\t" 668 " # xmm6 = r1 i2 r3 i4\n\t" 669 " #movl 8(%%ebp), %[eax] # @result\n\t" 670 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t" 671 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t" 672 " movlps %%xmm6, (%[out]) # store low 2x32 bits (complex) to memory\n\t" 675 : [eax]
"r" (input), [edx]
"r" (taps), [ecx]
"r" (num_bytes), [out]
"r" (result), [conjugator]
"r" (conjugator)
678 for(; leftovers > 0; leftovers -= 8) {
679 *result += (input[(bound << 1)] *
lv_conj(taps[(bound << 1)]));
#define __VOLK_ASM
Definition: volk_common.h:40
#define __VOLK_VOLATILE
Definition: volk_common.h:41
static void volk_32fc_x2_conjugate_dot_prod_32fc_neon(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:219
#define lv_conj(x)
Definition: volk_complex.h:87
static void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse3(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:338
#define lv_cmake(r, i)
Definition: volk_complex.h:64
static void volk_32fc_x2_conjugate_dot_prod_32fc_a_avx(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:280
static void volk_32fc_x2_conjugate_dot_prod_32fc_generic(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:68
#define __VOLK_PREFETCH(addr)
Definition: volk_common.h:39
static void volk_32fc_x2_conjugate_dot_prod_32fc_a_generic(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:394
for i
Definition: volk_config_fixed.tmpl.h:25
#define __VOLK_ATTR_ALIGNED(x)
Definition: volk_common.h:33
float complex lv_32fc_t
Definition: volk_complex.h:61
static void volk_32fc_x2_conjugate_dot_prod_32fc_u_avx(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:106
static void volk_32fc_x2_conjugate_dot_prod_32fc_u_sse3(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:165
#define lv_creal(x)
Definition: volk_complex.h:83
#define lv_cimag(x)
Definition: volk_complex.h:85