

vFeed & vFeed API
The open source cross-linked local

vulnerability database

A quick-and-dirty user guide
 Version beta

May 2013

NJ OUCHN

@toolswatch
www.toolswatch.org

vFeed & vFeed API
user guide – beta release

1

http://www.toolswatch.org/vfeed

Target Audience

vFeed is appropriate for:

- Penetration testers who want to analyze CVEs and gather extra information to help shape
avenues to exploit vulnerabilities.

- Security auditors who want to report accurate information about findings. vFeed could be the
best way to describe a CVE with attributes based on standards and 3rd party references as
vendors or companies involved into standarization efforts.

- Security tools vendors / security open source developers who need to implement libraries to
enumerate useful information about CVEs without wasting time to correlate and to create a
proprietary database. vFeed is by far the best solution. Methods can be invoked from programs
or scripts with a simple call.

- Any security hacker who is conducting researches and need a very fast and accurate way to
enumerate available exploits or techniques to check a vulnerability

vFeed & vFeed API
user guide – beta release

2

http://www.toolswatch.org/vfeed

Concept introduction

vFeed is an open source naming scheme concept that provides extra structured detailed 3rd parties
references for a CVE entry.

While the emergence of the Open Standards helped undeniably to shape a new way to communicate about
vulnerabilities1, the new vFeed is adding an intelligent structured xml feed that provides effective level of
information (meta-data) related to vulnerability.

The following schema depicts how the vFeed Database is generated. Indeed, the database is the main asset
of this project.

1 http://measurablesecurity.mitre.org/

vFeed & vFeed API
user guide – beta release

3

http://www.toolswatch.org/vfeed

Internally, vFeedCore (not published yet) collects the basis xml feeds which are generated by reliable
references and correlates it across multiple information sources. Here are examples of 3rd parties sources (just
to name a few):

• Security standards
o CVE (http://cve.mitre.org)
o CWE (http://cwe.mitre.org)
o CPE (http://cpe.mitre.org)
o OVAL (http://oval.mitre.org)
o CAPEC (http://capec.mitre.org)
o CVSS (http://www.first.org/cvss)

• Vulnerability Assessment & Exploitation IDs (Metasploit, Saint Corporation, Nessus Scripts, ZDI, Exploit-DB,
milw0rm)

• Vendors Security Alerts
o Microsoft MS
o Mandriva
o Redhat
o Cisco
o Sun
o Gentoo
o Apple
o …

Key features
• Built using open source technologies
• Fully downloadable SQLite local vulnerability database
• Structured new XML format to describe vulnerabilities
• Based on major open standards CVE, CPE, CWE, CVSS..
• Support correlation with 3rd party security references (CVSS, OSVDB, OVAL…)
• Extended to support correlation with security assessment and patch vendors (Nessus, Exploit-DB, Redhat,

Microsoft..)
• Simple & ready to use Python module with more than 15 methods

What is published with vFeed open source package?

• vFeed.db : full correlated and aggregated SQLlite vulnerability database.
• vFeedApi.py : python library contains methods to generate the vFeed xml format or to be used

separately. Sample scripts are attached to help users understanding how it works.
• vFeedAPI_calls_1.py: sample python to demonstrate how to call methods from your programs
• vFeedAPI_calls_2.py : sample python to demonstrate the usage of vFeed API : calling methods from

command line.

vFeed & vFeed API
user guide – beta release

4

http://www.toolswatch.org/vfeed

What is NOT published (yet)?

• vFeedCore.py : python script to extract CVEs and their attributes from NVD and to populate the SQLite
database.

• Library of mappers: different python script mappers to download, extract, correlate and update
accordingly the Sqlite tables with the appropriate references IDs (Microsoft, exploit db, Nessus, OSVDB,
OVAL, Redhat, Suse, AIXAPAR ..)

Project dependencies

• vFeedCore (not published)
o openCVSS.py >> https://github.com/9b/openCVSS library developed by Brandon Dixon
o Sqlite3
o Beautifulsoup
o xml.dom.minidom
o urllib2

• vFeedApi
o xml.etree
o Sqlite3
o xml.dom.minidom

Project page
http://www.toolswatch.org/vfeed

Project concept idea & author
@toolswatch (http://www.toolswatch.org)

vFeed & vFeed API
user guide – beta release

5

http://www.toolswatch.org/vfeed

The usage
vFeed project consists of a python library to either use as a module, called from your software, or directly from
command line. In addition to the library, an SQLite database that stores different mapping tables is also
provided.

Bear in mind that it is always possible to develop your own API in another language. At the time of this writing,
the only available library is in python. The reasons for this choice are various:

1. Python is a quite easy to learn and I count on skilled developers and contributors to optimize and to
extend the functionalities.

2. Numerous security tools are developed in python or can import adds-on in python. So it will be easy for
them to implement the various methods that come with vFeedApi.

3. I’m not a programmer and always hated to write a single line of code. Besides, I always seek for the
simplest way to do things with less effort. And python was a great help to make it this way.

The following sample scripts will highlight the way you should use vFeedApi library. For more information about
the available methods and what results they return, please refer to “vFeed API Methods” chapter. It discusses
the requirements in detail.

Note: For this first beta release, the only parameter provided is the CVE ID that facilitates the usage of the API.

API methods calls
The vFeedAPI_calls_1.py demonstrates the ability to call a method, which will be querying the data from your
own programs by importing the appropriate library. Let’s see how it operates through some examples.

Ex 1: Checking for CVSS v2 scores

(1) import vFeedApi

(2) CVE_from_A_SCAN= "CVE-2007-6439"

(3) cvssBase,cvssImpact,cvssExploit = vFeedApi.checkCVSS(CVE_from_A_SCAN)

print '\t [cvss_base]:', cvssBase
print '\t [cvss_impact]:',cvssImpact
print '\t [cvss_exploit]:',cvssExploit

(1) Import the library vFeedApi to load the appropriate methods.

(2) This is the CVE you need to check CVSS scores for

(3) Checking CVSS is mapped in vFeedApi to checkCVSS() method call. This returns 3 values: cvssBase,
cvssImpact and cvssExploit. Therefore, you can use these values henceforth in your script.

The values should be as following:

cvssBase = 6.1

cvssImpact = 6.9

cvssExploit = 6.5

vFeed & vFeed API
user guide – beta release

6

http://www.toolswatch.org/vfeed

Ex 2: Checking for Exploit-DB IDs.

Let’s say we want to enumerate the PoC that we can leverage to exploit « SQL injection vulnerability in
forums.php in CMScout 1.23 a ». Any decent scanner will probably flag this vulnerability as CVE-2007-3812

(1) import vFeedApi

(2) CVE_Report_from_a_VAT= "CVE-2007-3812"

(3) cveEDB_id,cveEDB_file = vFeedApi.checkEDB(CVE_Report_from_a_VAT)

(4) for i in range(0,len(cveEDB_id)):
 print '[edb_id]:', cveEDB_id[i]
 print '[edb_exploit]:', cveEDB_file[i]

(1) Import the library vFeedApi to load the appropriate methods.

(2) This is a random CVE. Let’s assume it has been reported by any vulnerability scanner (or found during an
assessment)

(3) Invoke the method CheckEDB which returns 2 values: cveEDB_id and cveEDB_file . They are the
Exploit-DB ID and the URL link to download the exploit.

(4) This method may return a tuple containing one or multiple values. Therefore, cveEDB_id and
cveEDB_file are lists. So, you have to loop until you extract all values.

The result may look like

[edb_id]: 4182

[edb_exploit]: http://www.exploit-db.com/exploits/4182

vFeed & vFeed API
user guide – beta release

7

http://www.toolswatch.org/vfeed

Call from command line

vFeedAPI_calls_2.py lists and tests the available methods. It could be used as command line to check for CVE
attributes and meta-data or to export information into the vFeed XML format (refer to the next chapter)

[ver] vFeed Beta 1.0

[info] usage: vFeedAPI_calls_2.py <API Method> <CVE id>

[info] available API methods:

checkCVE | checkCPE | checkCVSS | checkCWE | checkReferences | checkRISK

checkOVAL | checkNESSUS | checkEDB

checkMS | checkKB | checkAIXAPAR | checkREDHAT | checkSUSE

exportXML (for exporting the vFeed XML file)

The script is very easy to use. 2 parameters are mandatory: the method and the CVE ID you want to analyze.

To enumerate the numerous methods already implemented, just type the script name without parameters as
shown in the syntax listing above. For now, I have implemented 15 methods. The following example will help
you to better understand how it works.

Ex 1: Let’s check information for CVE-2007-5200 and then grab the more attributes (CPE, CVSS, risks …) as
possible. For this, we will leverage different methods.

(1) $ python vFeedAPI_calls_2.py checkCVE CVE-2007-5200

(2)[cve_description]: hugin, as used on various operating systems including SUSE openSUSE
10.2 and 10.3, allows local users to overwrite arbitrary files via a symlink attack on
the hugin_debug_optim_results.txt temporary file.

[cve_published]: 2007-10-14T14:17:00.000-04:00

[cve_modified]: 2008-11-15T00:00:00.000-05:00

(1) We call the script with the valid syntax. In this case: the checkCVE method and the CVE CVE-2007-
5200

(2) Returned values are Description, Published and modified date. In fact, this method returns 3 values.
Refer to chapter “vFeed API Methods” for more information about the methods.

vFeed & vFeed API
user guide – beta release

8

http://www.toolswatch.org/vfeed

As you may notice, the method shows a description about SUSE vulnerability by using checkCVE. Let’s verify the
vulnerable targets. For this, we will use checkCPE method.

$ python vFeedAPI_calls_2.py checkCPE CVE-2007-5200

[cpe_id]: cpe:/o:novell:opensuse:10.3

[cpe_id]: cpe:/o:novell:opensuse:10.2

[stats] CVE-2007-5200 has 2 CPE

It’s confirmed, 2 OpenSuse targets are prone to this vulnerability. Let’s go deeper and see how we can test the
validity of this CVE. We will leverage the checkNESSUS to enumerate the appropriate Nessus scripts (if any).
Thus can further be used to automate the scan of a large network.

$ python vFeedAPI_calls_2.py checkNESSUS CVE-2007-5200

[nessus_id]: 27807
[nessus_file]: fedora_2007-2807.nasl
[nessus_name]: Fedora 8 : hugin-0.6.1-11.fc8 (2007-2807)
[nessus_family]: Fedora Local Security Checks
[nessus_id]: 28154
[nessus_file]: fedora_2007-2989.nasl
[nessus_name]: Fedora 7 : hugin-0.6.1-11.fc7 (2007-2989)
[nessus_family]: Fedora Local Security Checks
[nessus_id]: 29231
[nessus_file]: gentoo_GLSA-200712-01.nasl
[nessus_name]: GLSA-200712-01 : Hugin: Insecure temporary file creation
[nessus_family]: Gentoo Local Security Checks
[nessus_id]: 27268
[nessus_file]: suse_hugin-4518.nasl
[nessus_name]: SuSE Security Update: hugin creates fixed-name file in /tmp (hugin-4518)
[nessus_family]: SuSE Local Security Checks

[stats] CVE-2007-5200 has 4 Nessus testing script(s)

Bingo, the method returns 4 Nessus scripts alongside with ids, files, names and families. You have everything to
tune your scanner.

[nessus_id]: 27268
[nessus_file]: suse_hugin-4518.nasl
[nessus_name]: SuSE Security Update: hugin creates fixed-name file in /tmp (hugin-4518)
[nessus_family]: SuSE Local Security Checks

The customers need to understand how their systems are breakable (or not) but also the best
recommendations regardless how to fix the weaknesses. Good news, vFeed comes with a set of methods to
extract and correlate the patches from different sources. Let’s verify this with our example.

vFeed & vFeed API
user guide – beta release

9

http://www.toolswatch.org/vfeed

For now, the patch methods are 5 checkMS | checkKB | checkAIXAPAR | checkREDHAT | checkSUSE

We will leverage checkSUSE and see what it says.

$ python vFeedAPI_calls_2.py checkSUSE CVE-2007-5200

[SUSE_id]: SUSE-SR:2007:020

[stats] CVE-2007-5200 has 1 SUSE id(s)

Great, Suse has issued a patch to fix CVE-2007-5200 “SUSE-SR:2007:020”

More methods to get information about the vulnerability are listed below.

$ python vFeedAPI_calls_2.py checkCWE CVE-2007-5200

[cwe_id]: CWE-59

[stats] CVE-2007-5200 has 1 CWE

$ python vFeedAPI_calls_2.py checkCVSS CVE-2007-5200

[cvss_base]: 3.3
[cvss_impact]: 4.9
[cvss_exploit]: 3.4

$ python vFeedAPI_calls_2.py checkRISK CVE-2007-5200
[cve_severity]: Low
[cve_isTopVulnerable]: False
[cve_pcistatus]: Passed

vFeed & vFeed API
user guide – beta release

10

http://www.toolswatch.org/vfeed

vFeed xml sample
The XML format is the flagship feature of the vFeed concept. In fact, it’s the “raison d’être” of the project.
Once you invoke the exportXML method, the library will gather automatically every piece of information
regarding the submitted CVE id.

In fact, you have 2 ways to do so. Either invokes the method from your program as explained previously by
using the following code

import vFeedApi

Your_CVE= "CVE-2007-3091"
vFeedApi.exportXML(You_CVE)

or from the command line (using the example program vFeedAPI_calls_2.py) by issuing the syntax

$ python vFeedAPI_calls_2.py exportXML CVE-2007-3091

[info] vFeed xml file CVE_2007_3091.xml exported for CVE-2007-3091

Here you are. The file has been generated as CVE_2007_3091.xml

Browse it. It’s self-explanatory.

<?xml version="1.0" ?>
<vFeed xmlns="http://vfeed.toolswatch.org/0.1" xmlns:meta="http://vfeed.toolswatch.org/0.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://vfeed.toolswatch.org/0.1 http://vfeed.toolswatch.org/vfeed.xsd">
 <!--#####################################-->
 <!--Generated by vFeedApi.py-->
 <release>
 <name>
 vFeed XML for CVE-2007-3091
 </name>
 <version>
 vFeed Beta 1.0
 </version>
 <author>
 NJ OUCHN
 </author>
 <url>
 http://www.toolswatch.org/vfeed
 </url>
 <date_generated>
 Thu, 16 May 2013 20:28:54
 </date_generated>
 </release>
 <!--#####################################-->
 <!--Entry ID-->
 <entry exported="CVE_2007_3091.xml" id="vFeed-2007-3091">
 <date modified="2012-10-30T22:37:14.983-04:00" published="2007-06-06T17:30:00.000-04:00"/>
 <summary>
 Race condition in Microsoft Internet Explorer 6 SP1; 6 and 7 for Windows XP SP2 and SP3; 6
and 7 for Server 2003 SP2; 7 for Vista Gold, SP1, and SP2; and 7 for Server 2008 SP2 allows remote
attackers to execute arbitrary code or perform other actions upon a page transition, with the
permissions of the old page and the content of the new page, as demonstrated by setInterval
functions that set location.href within a try/catch expression, aka the "bait & switch
vulnerability" or "Race Condition Cross-Domain Information Disclosure
Vulnerability."
 </summary>
 <cve_ref>

vFeed & vFeed API
user guide – beta release

11

http://www.toolswatch.org/vfeed

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3091
 </cve_ref>
 <!--#####################################-->
 <!--The Vulnerability References-->
 <references>
 <source id="CERT" reference="http://www.us-cert.gov/cas/techalerts/TA09-160A.html"/>
 <source id="CERT-VN" reference="http://www.kb.cert.org/vuls/id/471361"/>
 <source id="VUPEN" reference="http://www.vupen.com/english/advisories/2009/1538"/>
 <source id="BID" reference="http://www.securityfocus.com/bid/24283"/>
 <source id="MS" reference="http://www.microsoft.com/technet/security/Bulletin/MS09-
019.mspx"/>
 <source id="XF" reference="http://xforce.iss.net/xforce/xfdb/34696"/>
 <source id="VUPEN" reference="http://www.vupen.com/english/advisories/2007/2064"/>
 <source id="BUGTRAQ"
reference="http://www.securityfocus.com/archive/1/archive/1/470446/100/0/threaded"/>
 <source id="SECTRACK" reference="http://securitytracker.com/id?1018192"/>
 <source id="SREASON" reference="http://securityreason.com/securityalert/2781"/>
 <source id="SECUNIA" reference="http://secunia.com/advisories/25564"/>
 <source id="OSVDB" reference="http://osvdb.org/54944"/>
 <source id="OSVDB" reference="http://osvdb.org/38497"/>
 <source id="MISC" reference="http://lcamtuf.coredump.cx/ierace/"/>
 <source id="FULLDISC" reference="http://archives.neohapsis.com/archives/fulldisclosure/2007-
06/0026.html"/>
 </references>
 <!--#####################################-->
 <!--Vulnerable Targets according to CPE-->
 <vulnerableTargets>
 <cpe id="cpe:/a:microsoft:ie:6"/>
 <cpe id="cpe:/o:microsoft:windows_2003_server:sp2::itanium"/>
 <cpe id="cpe:/a:microsoft:ie:6:sp1"/>
 <cpe id="cpe:/o:microsoft:windows_2003_server:sp1::itanium"/>
 <cpe id="cpe:/o:microsoft:windows_vista:-:-:x64"/>
 <cpe id="cpe:/o:microsoft:windows_vista::sp1:x64"/>
 <cpe id="cpe:/o:microsoft:windows_server_2008:-:sp2:x64"/>
 <cpe id="cpe:/o:microsoft:windows_server_2008:-:-:x32"/>
 <cpe id="cpe:/o:microsoft:windows_vista:-:sp2"/>
 <cpe id="cpe:/o:microsoft:windows_server_2008:-:-:x64"/>
 <cpe id="cpe:/o:microsoft:windows_vista"/>
 <cpe id="cpe:/a:microsoft:ie:7.0"/>
 <cpe id="cpe:/o:microsoft:windows_server_2008:-:sp2:x32"/>
 <cpe id="cpe:/o:microsoft:windows_2003_server:sp2::x64"/>
 <cpe id="cpe:/o:microsoft:windows_xp::sp2"/>
 <cpe id="cpe:/o:microsoft:windows_2003_server:sp2"/>
 <cpe id="cpe:/o:microsoft:windows_vista:-:sp1"/>
 <cpe id="cpe:/o:microsoft:windows_xp::sp2:professional_x64"/>
 <cpe id="cpe:/o:microsoft:windows_server_2008:-:sp2:itanium"/>
 <cpe id="cpe:/o:microsoft:windows_2000::sp4"/>
 <cpe id="cpe:/o:microsoft:windows_xp::sp2:professional"/>
 <cpe id="cpe:/o:microsoft:windows_2003_server:sp1::x64"/>
 <cpe id="cpe:/o:microsoft:windows_2003_server:sp1"/>
 </vulnerableTargets>
 <!--#####################################-->
 <!--Risk Scoring Evaluation-->
 <riskScoring>
 <severityLevel status="High"/>
 <cvss base="7.1" cvssvector="not_defined_yet" exploit="8.6" impact="6.9"/>
 <topVulnerable status="False"/>
 <topAlert status="not_defined_yet"/>
 <pciCompliance status="Failed"/>
 </riskScoring>
 <!--#####################################-->
 <!--Patch Management-->
 <patchManagement>

vFeed & vFeed API
user guide – beta release

12

http://www.toolswatch.org/vfeed

 <patch id="MS09-019" reference="microsoft"/>
 </patchManagement>
 <!--#####################################-->
 <!--Attack and Weaknesses Categories. Useful when performing classification of threats-->
 <attackPattern>
 <source id="CWE-362" standard="CWE - Common Weakness Enumeration"
title="not_implemented_yet"/>
 </attackPattern>
 <!--#####################################-->
 <!--Assessment and security Tests. The IDs and source could be leveraged to test the
vulnerability-->
 <assessment>
 <check file="http://oval.mitre.org/repository/data/getDef?id=oval:org.mitre.oval:def:6041"
id="oval:org.mitre.oval:def:6041" type="Local Security Testing" utility="OVAL Interpreter"/>
 <check family="Windows : Microsoft Bulletins" file="smb_nt_ms09-019.nasl" id="39341"
name="MS09-019: Cumulative Security Update for Internet Explorer (969897)" type="Remote Security
Testing" utility="Nessus Vulnerability Scanner"/>
 </assessment>
 </entry>
</vFeed>

vFeed & vFeed API
user guide – beta release

13

http://www.toolswatch.org/vfeed

vFeed API methods
The methods, except those for exporting meta-data to files, begin with “check” then followed by a more
explicit name (CVE, CPE, CVSS and so on). checkCWE, you got it, will be leveraged to enumerate the CWE ids.

vFeedApi available methods are

- checkCVE

- checkCVSS

- checkReferences

- checkCWE

- checkCPE

- checkRISK

- checkMS

- checkKB

- checkREDHAT

- checkSUSE

- checkAIXAPAR

- checkOVAL

- checkNESSUS

- checkEDB

- exportXML

vFeed & vFeed API
user guide – beta release

14

http://www.toolswatch.org/vfeed

All the following methods accept the CVE id as the ONLY argument.

Method Purpose Returned values

checkCVE() Checks for the CVE id validity 3 values
PublishedDate: Publication date

ModifiedDate: Modification date

vulnDescription: CVE summary (source NVD)

checkCVSS() Retrieved the pre-computed CVSS v2.0
scores

3 values
cvssBase: CVSS v2.0 base score

cvssImpact: CVSS v2.0 impact score

cvssExploit: CVSS v2.0 exploit score

Note: scores were calculated using
openCVSS.py2 library

CheckReferences() Gather the references that come with a
CVE (OSVDB, secunia ….)

2 values
cveRef_id: The reference name

cveRef_Link: the reference link

checkCWE() Gather the CWE (Common Weaknesses
Enumeration) related to the CVE.

List of values

cveCWE_id: List of CWE values

checkCPE() Gather the CPE (Common Platform
Enumeration) regarding a CVE

List of values

cveCPE_id: List of CPE values

checkRISK() Evaluate security risk about a CVE. Risk
is the severity level (high, moderate or
low), checks either the vulnerability is
not at the highest level (which means
all CVSS scores at 10) and just for fun
trigger a PCI metric (according to PCI
CVSS calculation)

3 values

levelSeverity: high,moderate or low

isTopVulnerable: True or False

PCIstatus: Passed or Failed

checkMS() Lists all the MS Patches issued by
Microsoft to fix the current checked
CVE

List of values

cveMS_id: the MS Microsoft ID (ex: MS09-019)

checkKB() Lists all the MS Bulletin KB released by
Microsoft to describe the issue
regarding a CVE

List of values

cveKB_id: the KB Microsoft ID

checkREDHAT() Lists all the security bulletins or patches
references issued by Redhat to fix the
current checked CVE

List of values

cveREDHAT_i: the Redhat ID (ex: RHSA-

2 https://github.com/9b/openCVSS

vFeed & vFeed API
user guide – beta release

15

http://www.toolswatch.org/vfeed

2013:0710)

checkSUSE() Lists all the security bulletins or patches
references issued by Suse to fix the
current checked CVE

List of values

cveSUSE_id: the SUSE ID (ex: openSUSE-SU-
2013:0374)

checkAIXAPAR() Lists all the security bulletins or patches
references issued by IBM to fix the
current checked CVE

List of values

cveAIXAPAR_id: the AIX APAR ID (ex: IX80470)

checkOVAL() Gather the OVAL ids that could be
leveraged to check the state of the
CVE. (refer to oval.mitre.org)

2 Lists of values

cveOVAL_id:The OVAL id (ex.
oval:org.mitre.oval:def:14287)

cveOVAL_file: the link to download the file

checkNESSUS() Gather the Nessus IDs and NASL files
that could be leveraged to assess the
CVE in the perspective of security
testing

4 Lists of values

cveNESSUS_id: the Nessus Plugin ID

cveNESSUS_file: the Nessus Plugin NASL file

cveNESSUS_name: The plugin name

cveNESSUS_family; the family name

checkEDB() Gather the Exploit-DB PoC that could
be used to exploit the vulnerability
reported with the current checked CVE

2 lists of values

cveEDB_id: the EDB id

cveEDB_file: The link for downloading the
exploit

exportXML Generate the vFeed XML format file as
described previously. This is the core
feature of the vFeed concept. The XML
contains all available data related to
the current CVE. It’s somehow the
results of exporting all the previous
methods.

Export an XML file basd on this format
CVE_2007_3091.xml

vFeed & vFeed API
user guide – beta release

16

http://www.toolswatch.org/vfeed

License

vFeed concept & vFeed API are released under the BSD License.

Copyright 2013, vFeed/vFeedApi, the open source correlated & cross-linked local
vulnerability database by NJ OUCHN, Toolswatch.org

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
 * Neither the name of vFeed/vFeedApi nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The vFeed Concept & vFeed API is provided under the 3-clause BSD license above.

This license does not apply to the following components:

- openCVSS.py library used to calculate the scores within vFeedCore (not distributed yet)

Last but not least, feel free to do whatever you like with vFeed/vFeedApi as long as you
give credit for the author. As reward, you still can offer me a book or just a kind word
thanking me for spending my nights and weekends doing this while you were enjoying
barbecues & fresh beers.

