103 #define DEBUG_COND (isSelected())
105 #define DEBUG_COND2(obj) (obj->isSelected())
109 #define STOPPING_PLACE_OFFSET 0.5
111 #define CRLL_LOOK_AHEAD 5
113 #define JUNCTION_BLOCKAGE_TIME 5
116 #define DIST_TO_STOPLINE_EXPECT_PRIORITY 1.0
118 #define NUMERICAL_EPS_SPEED (0.1 * NUMERICAL_EPS * TS)
156 return (myPos != state.
myPos ||
166 myPos(pos), mySpeed(speed), myPosLat(posLat), myBackPos(backPos), myPreviousSpeed(speed), myLastCoveredDist(
SPEED2DIST(speed)) {}
178 assert(memorySpan <= myMemorySize);
179 if (memorySpan == -1) {
180 memorySpan = myMemorySize;
183 for (
const auto& interval : myWaitingIntervals) {
184 if (interval.second >= memorySpan) {
185 if (interval.first >= memorySpan) {
188 totalWaitingTime += memorySpan - interval.first;
191 totalWaitingTime += interval.second - interval.first;
194 return totalWaitingTime;
200 auto i = myWaitingIntervals.begin();
201 const auto end = myWaitingIntervals.end();
202 const bool startNewInterval = i == end || (i->first != 0);
205 if (i->first >= myMemorySize) {
213 auto d = std::distance(i, end);
215 myWaitingIntervals.pop_back();
221 }
else if (!startNewInterval) {
222 myWaitingIntervals.begin()->first = 0;
224 myWaitingIntervals.push_front(std::make_pair(0, dt));
232 std::ostringstream state;
233 state << myMemorySize <<
" " << myWaitingIntervals.size();
234 for (
const auto& interval : myWaitingIntervals) {
235 state <<
" " << interval.first <<
" " << interval.second;
243 std::istringstream is(state);
246 is >> myMemorySize >> numIntervals;
247 while (numIntervals-- > 0) {
249 myWaitingIntervals.emplace_back(begin, end);
268 if (GapControlState::refVehMap.find(msVeh) != end(GapControlState::refVehMap)) {
270 GapControlState::refVehMap[msVeh]->deactivate();
280 std::map<const MSVehicle*, MSVehicle::Influencer::GapControlState*>
287 tauOriginal(-1), tauCurrent(-1), tauTarget(-1), addGapCurrent(-1), addGapTarget(-1),
288 remainingDuration(-1), changeRate(-1), maxDecel(-1), referenceVeh(nullptr), active(false), gapAttained(false), prevLeader(nullptr),
289 lastUpdate(-1), timeHeadwayIncrement(0.0), spaceHeadwayIncrement(0.0) {}
303 WRITE_ERROR(
"MSVehicle::Influencer::GapControlState::init(): No MSNet instance found!")
320 tauOriginal = tauOrig;
321 tauCurrent = tauOrig;
324 addGapTarget = additionalGap;
325 remainingDuration = dur;
328 referenceVeh = refVeh;
331 prevLeader =
nullptr;
333 timeHeadwayIncrement = changeRate *
TS * (tauTarget - tauOriginal);
334 spaceHeadwayIncrement = changeRate *
TS * addGapTarget;
336 if (referenceVeh !=
nullptr) {
346 if (referenceVeh !=
nullptr) {
349 referenceVeh =
nullptr;
383 GapControlState::init();
388 GapControlState::cleanup();
393 mySpeedAdaptationStarted =
true;
394 mySpeedTimeLine = speedTimeLine;
399 if (myGapControlState ==
nullptr) {
400 myGapControlState = std::make_shared<GapControlState>();
402 myGapControlState->activate(originalTau, newTimeHeadway, newSpaceHeadway, duration, changeRate, maxDecel, refVeh);
407 if (myGapControlState !=
nullptr && myGapControlState->active) {
408 myGapControlState->deactivate();
414 myLaneTimeLine = laneTimeLine;
420 for (
auto& item : myLaneTimeLine) {
421 item.second += indexShift;
433 return (1 * myConsiderSafeVelocity +
434 2 * myConsiderMaxAcceleration +
435 4 * myConsiderMaxDeceleration +
436 8 * myRespectJunctionPriority +
437 16 * myEmergencyBrakeRedLight +
438 32 * !myRespectJunctionLeaderPriority
445 return (1 * myStrategicLC +
446 4 * myCooperativeLC +
448 64 * myRightDriveLC +
449 256 * myTraciLaneChangePriority +
456 for (std::vector<std::pair<SUMOTime, int>>::iterator i = myLaneTimeLine.begin(); i != myLaneTimeLine.end(); ++i) {
460 duration -= i->first;
468 if (!myLaneTimeLine.empty()) {
469 return myLaneTimeLine.back().first;
479 while (mySpeedTimeLine.size() == 1 || (mySpeedTimeLine.size() > 1 && currentTime > mySpeedTimeLine[1].first)) {
480 mySpeedTimeLine.erase(mySpeedTimeLine.begin());
483 if (!(mySpeedTimeLine.size() < 2 || currentTime < mySpeedTimeLine[0].first)) {
485 if (!mySpeedAdaptationStarted) {
486 mySpeedTimeLine[0].second = speed;
487 mySpeedAdaptationStarted =
true;
490 const double td =
STEPS2TIME(currentTime - mySpeedTimeLine[0].first) /
STEPS2TIME(mySpeedTimeLine[1].first +
DELTA_T - mySpeedTimeLine[0].first);
491 speed = mySpeedTimeLine[0].second - (mySpeedTimeLine[0].second - mySpeedTimeLine[1].second) * td;
492 if (myConsiderSafeVelocity) {
493 speed =
MIN2(speed, vSafe);
495 if (myConsiderMaxAcceleration) {
496 speed =
MIN2(speed, vMax);
498 if (myConsiderMaxDeceleration) {
499 speed =
MAX2(speed, vMin);
509 std::cout << currentTime <<
" Influencer::gapControlSpeed(): speed=" << speed
510 <<
", vSafe=" << vSafe
516 double gapControlSpeed = speed;
517 if (myGapControlState !=
nullptr && myGapControlState->active) {
519 const double currentSpeed = veh->
getSpeed();
521 assert(msVeh !=
nullptr);
522 const double desiredTargetTimeSpacing = myGapControlState->tauTarget * currentSpeed;
523 std::pair<const MSVehicle*, double> leaderInfo;
524 if (myGapControlState->referenceVeh ==
nullptr) {
526 leaderInfo = msVeh->
getLeader(
MAX2(desiredTargetTimeSpacing, myGapControlState->addGapCurrent) + 20.);
529 const MSVehicle* leader = myGapControlState->referenceVeh;
537 if (dist < -100000) {
539 std::cout <<
" Ego and reference vehicle are not in CF relation..." << std::endl;
541 std::cout <<
" Reference vehicle is behind ego..." << std::endl;
548 const double fakeDist =
MAX2(0.0, leaderInfo.second - myGapControlState->addGapCurrent);
551 const double desiredCurrentSpacing = myGapControlState->tauCurrent * currentSpeed;
552 std::cout <<
" Gap control active:"
553 <<
" currentSpeed=" << currentSpeed
554 <<
", desiredTargetTimeSpacing=" << desiredTargetTimeSpacing
555 <<
", desiredCurrentSpacing=" << desiredCurrentSpacing
556 <<
", leader=" << (leaderInfo.first ==
nullptr ?
"NULL" : leaderInfo.first->getID())
557 <<
", dist=" << leaderInfo.second
558 <<
", fakeDist=" << fakeDist
559 <<
",\n tauOriginal=" << myGapControlState->tauOriginal
560 <<
", tauTarget=" << myGapControlState->tauTarget
561 <<
", tauCurrent=" << myGapControlState->tauCurrent
565 if (leaderInfo.first !=
nullptr) {
566 if (myGapControlState->prevLeader !=
nullptr && myGapControlState->prevLeader != leaderInfo.first) {
570 myGapControlState->prevLeader = leaderInfo.first;
576 gapControlSpeed =
MIN2(gapControlSpeed,
577 cfm->
followSpeed(msVeh, currentSpeed, fakeDist, leaderInfo.first->
getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first));
581 std::cout <<
" -> gapControlSpeed=" << gapControlSpeed;
582 if (myGapControlState->maxDecel > 0) {
583 std::cout <<
", with maxDecel bound: " <<
MAX2(gapControlSpeed, currentSpeed -
TS * myGapControlState->maxDecel);
585 std::cout << std::endl;
588 if (myGapControlState->maxDecel > 0) {
589 gapControlSpeed =
MAX2(gapControlSpeed, currentSpeed -
TS * myGapControlState->maxDecel);
596 if (myGapControlState->lastUpdate < currentTime) {
599 std::cout <<
" Updating GapControlState." << std::endl;
602 if (myGapControlState->tauCurrent == myGapControlState->tauTarget && myGapControlState->addGapCurrent == myGapControlState->addGapTarget) {
603 if (!myGapControlState->gapAttained) {
605 myGapControlState->gapAttained = leaderInfo.first ==
nullptr || leaderInfo.second >
MAX2(desiredTargetTimeSpacing, myGapControlState->addGapTarget) - POSITION_EPS;
608 if (myGapControlState->gapAttained) {
609 std::cout <<
" Target gap was established." << std::endl;
615 myGapControlState->remainingDuration -=
TS;
618 std::cout <<
" Gap control remaining duration: " << myGapControlState->remainingDuration << std::endl;
621 if (myGapControlState->remainingDuration <= 0) {
624 std::cout <<
" Gap control duration expired, deactivating control." << std::endl;
628 myGapControlState->deactivate();
633 myGapControlState->tauCurrent =
MIN2(myGapControlState->tauCurrent + myGapControlState->timeHeadwayIncrement, myGapControlState->tauTarget);
634 myGapControlState->addGapCurrent =
MIN2(myGapControlState->addGapCurrent + myGapControlState->spaceHeadwayIncrement, myGapControlState->addGapTarget);
637 if (myConsiderSafeVelocity) {
638 gapControlSpeed =
MIN2(gapControlSpeed, vSafe);
640 if (myConsiderMaxAcceleration) {
641 gapControlSpeed =
MIN2(gapControlSpeed, vMax);
643 if (myConsiderMaxDeceleration) {
644 gapControlSpeed =
MAX2(gapControlSpeed, vMin);
646 return MIN2(speed, gapControlSpeed);
654 return myOriginalSpeed;
659 myOriginalSpeed = speed;
666 while (myLaneTimeLine.size() == 1 || (myLaneTimeLine.size() > 1 && currentTime > myLaneTimeLine[1].first)) {
667 myLaneTimeLine.erase(myLaneTimeLine.begin());
671 if (myLaneTimeLine.size() >= 2 && currentTime >= myLaneTimeLine[0].first) {
672 const int destinationLaneIndex = myLaneTimeLine[1].second;
673 if (destinationLaneIndex < (
int)currentEdge.
getLanes().size()) {
674 if (currentLaneIndex > destinationLaneIndex) {
676 }
else if (currentLaneIndex < destinationLaneIndex) {
681 }
else if (currentEdge.
getLanes().back()->getOpposite() !=
nullptr) {
690 if ((state &
LCA_TRACI) != 0 && myLatDist != 0) {
699 mode = myStrategicLC;
701 mode = myCooperativeLC;
703 mode = mySpeedGainLC;
705 mode = myRightDriveLC;
744 switch (changeRequest) {
760 assert(myLaneTimeLine.size() >= 2);
761 assert(currentTime >= myLaneTimeLine[0].first);
762 return STEPS2TIME(myLaneTimeLine[1].first - currentTime);
768 myConsiderSafeVelocity = ((speedMode & 1) != 0);
769 myConsiderMaxAcceleration = ((speedMode & 2) != 0);
770 myConsiderMaxDeceleration = ((speedMode & 4) != 0);
771 myRespectJunctionPriority = ((speedMode & 8) != 0);
772 myEmergencyBrakeRedLight = ((speedMode & 16) != 0);
773 myRespectJunctionLeaderPriority = ((speedMode & 32) == 0);
790 myRemoteXYPos = xyPos;
793 myRemotePosLat = posLat;
794 myRemoteAngle = angle;
795 myRemoteEdgeOffset = edgeOffset;
796 myRemoteRoute = route;
797 myLastRemoteAccess = t;
809 return myLastRemoteAccess >= t -
TIME2STEPS(10);
814 const bool wasOnRoad = v->
isOnRoad();
815 const bool withinLane = myRemoteLane !=
nullptr && fabs(myRemotePosLat) < 0.5 * (myRemoteLane->getWidth() + v->
getVehicleType().
getWidth());
816 const bool keepLane = wasOnRoad && v->
getLane() == myRemoteLane;
817 if (v->
isOnRoad() && !(keepLane && withinLane)) {
818 if (myRemoteLane !=
nullptr && &v->
getLane()->
getEdge() == &myRemoteLane->getEdge()) {
825 if (myRemoteRoute.size() != 0) {
829 if (myRemoteLane !=
nullptr && myRemotePos > myRemoteLane->getLength()) {
830 myRemotePos = myRemoteLane->getLength();
832 if (myRemoteLane !=
nullptr && withinLane) {
840 myRemoteLane->forceVehicleInsertion(v, myRemotePos, notify, myRemotePosLat);
874 if (myRemoteLane !=
nullptr) {
880 if (distAlongRoute != std::numeric_limits<double>::max()) {
881 dist = distAlongRoute;
885 const double minSpeed = myConsiderMaxDeceleration ?
887 const double maxSpeed = (myRemoteLane !=
nullptr
888 ? myRemoteLane->getVehicleMaxSpeed(veh)
898 if (myRemoteLane ==
nullptr) {
942 myStopDist(std::numeric_limits<double>::max()),
956 (*i)->resetPartialOccupation(
this);
979 #ifdef DEBUG_ACTIONSTEPS
981 std::cout <<
SIMTIME <<
" Removing vehicle '" <<
getID() <<
"' (reason: " <<
toString(reason) <<
")" << std::endl;
1002 if (!(*myCurrEdge)->isTazConnector()) {
1004 if ((*myCurrEdge)->getDepartLane(*
this) ==
nullptr) {
1005 msg =
"Invalid departlane definition for vehicle '" +
getID() +
"'.";
1014 if ((*myCurrEdge)->allowedLanes(
getVClass()) ==
nullptr) {
1015 msg =
"Vehicle '" +
getID() +
"' is not allowed to depart on any lane of edge '" + (*myCurrEdge)->getID() +
"'.";
1021 msg =
"Departure speed for vehicle '" +
getID() +
"' is too high for the vehicle type '" +
myType->
getID() +
"'.";
1052 updateBestLanes(
true, onInit ? (*myCurrEdge)->getLanes().front() : 0);
1070 if (!rem->first->notifyMove(*
this, oldPos + rem->second, newPos + rem->second,
MAX2(0., newSpeed))) {
1072 if (myTraceMoveReminders) {
1073 traceMoveReminder(
"notifyMove", rem->first, rem->second,
false);
1079 if (myTraceMoveReminders) {
1080 traceMoveReminder(
"notifyMove", rem->first, rem->second,
true);
1094 rem->first->notifyIdle(*
this);
1100 rem->notifyIdle(*
this);
1111 rem->second += oldLaneLength;
1115 if (myTraceMoveReminders) {
1116 traceMoveReminder(
"adaptedPos", rem->first, rem->second,
true);
1130 return getStops().begin()->parkingarea->getVehicleSlope(*
this);
1152 if (
myStops.begin()->parkingarea !=
nullptr) {
1153 return myStops.begin()->parkingarea->getVehiclePosition(*
this);
1163 if (offset == 0. && !changingLanes) {
1181 auto nextBestLane = bestLanes.begin();
1186 bool success =
true;
1188 while (offset > 0) {
1193 lane = lane->
getLinkCont()[0]->getViaLaneOrLane();
1195 if (lane ==
nullptr) {
1205 while (nextBestLane != bestLanes.end() && *nextBestLane ==
nullptr) {
1210 assert(lane == *nextBestLane);
1214 assert(nextBestLane == bestLanes.end() || *nextBestLane != 0);
1215 if (nextBestLane == bestLanes.end()) {
1220 assert(link !=
nullptr);
1251 int furtherIndex = 0;
1260 offset += lastLength;
1285 #ifdef DEBUG_FURTHER
1287 std::cout <<
SIMTIME <<
" veh '" <<
getID() <<
" setAngle(" << angle <<
") straightenFurther=" << straightenFurther << std::endl;
1295 if (further->
getLinkTo(next) !=
nullptr) {
1310 const bool newActionStepLength = actionStepLengthMillisecs != previousActionStepLength;
1311 if (newActionStepLength) {
1341 if (
myStops.begin()->parkingarea !=
nullptr) {
1342 return myStops.begin()->parkingarea->getVehicleAngle(*
this);
1367 double result = (p1 != p2 ? p2.
angleTo2D(p1) :
1372 #ifdef DEBUG_FURTHER
1390 #ifdef DEBUG_FURTHER
1397 #ifdef DEBUG_FURTHER
1413 if (parkingArea == 0) {
1414 errorMsg =
"new parkingArea is NULL";
1418 errorMsg =
"vehicle has no stops";
1421 if (
myStops.front().parkingarea == 0) {
1422 errorMsg =
"first stop is not at parkingArea";
1428 for (std::list<MSStop>::iterator iter = ++
myStops.begin(); iter !=
myStops.end();) {
1429 if (iter->parkingarea == parkingArea) {
1430 stopPar.
duration += iter->duration;
1457 return nextParkingArea;
1465 currentParkingArea =
myStops.begin()->parkingarea;
1467 return currentParkingArea;
1496 return myStops.front().duration;
1518 return currentVelocity;
1523 std::cout <<
"\nPROCESS_NEXT_STOP\n" <<
SIMTIME <<
" vehicle '" <<
getID() <<
"'" << std::endl;
1534 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' reached stop.\n"
1555 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' resumes from stopping." << std::endl;
1573 dev->notifyParking();
1580 WRITE_WARNING(
"Vehicle '" +
getID() +
"' ignores triggered stop on lane '" + stop.
lane->
getID() +
"' due to capacity constraints.");
1590 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' registers as waiting for person." << std::endl;
1596 WRITE_WARNING(
"Vehicle '" +
getID() +
"' ignores container triggered stop on lane '" + stop.
lane->
getID() +
"' due to capacity constraints.");
1606 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' registers as waiting for container." << std::endl;
1616 return currentVelocity;
1632 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' hasn't reached next stop." << std::endl;
1640 bool fitsOnStoppingPlace =
true;
1641 if (stop.
busstop !=
nullptr) {
1651 fitsOnStoppingPlace =
false;
1658 if (
myStops.empty() ||
myStops.front().parkingarea != oldParkingArea) {
1660 return currentVelocity;
1663 fitsOnStoppingPlace =
false;
1665 fitsOnStoppingPlace =
false;
1672 std::cout <<
" pos=" <<
myState.
pos() <<
" speed=" << currentVelocity <<
" targetPos=" << targetPos <<
" fits=" << fitsOnStoppingPlace
1673 <<
" reachedThresh=" << reachedThreshold
1688 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' reached next stop." << std::endl;
1717 if (stop.
busstop !=
nullptr) {
1743 if (splitVeh ==
nullptr) {
1762 return currentVelocity;
1782 bool unregister =
false;
1813 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' unregisters as waiting for transportable." << std::endl;
1828 myStops.begin()->joinTriggered =
false;
1866 myStops.begin()->joinTriggered =
false;
1875 if (stop ==
nullptr) {
1879 if (s.busstop == stop
1880 || s.containerstop == stop
1881 || s.parkingarea == stop
1882 || s.chargingStation == stop) {
1892 if (&s.lane->getEdge() == edge) {
1925 if (timeSinceLastAction == 0) {
1927 timeSinceLastAction = oldActionStepLength;
1929 if (timeSinceLastAction >= newActionStepLength) {
1933 SUMOTime timeUntilNextAction = newActionStepLength - timeSinceLastAction;
1942 #ifdef DEBUG_PLAN_MOVE
1948 <<
" veh=" <<
getID()
1963 #ifdef DEBUG_ACTIONSTEPS
1965 std::cout <<
STEPS2TIME(t) <<
" vehicle '" <<
getID() <<
"' skips action." << std::endl;
1973 #ifdef DEBUG_ACTIONSTEPS
1975 std::cout <<
STEPS2TIME(t) <<
" vehicle = '" <<
getID() <<
"' takes action." << std::endl;
1980 #ifdef DEBUG_PLAN_MOVE
1982 DriveItemVector::iterator i;
1985 <<
" vPass=" << (*i).myVLinkPass
1986 <<
" vWait=" << (*i).myVLinkWait
1987 <<
" linkLane=" << ((*i).myLink == 0 ?
"NULL" : (*i).myLink->getViaLaneOrLane()->getID())
1988 <<
" request=" << (*i).mySetRequest
2009 newStopDist = std::numeric_limits<double>::max();
2017 double lateralShift = 0;
2021 laneMaxV =
MIN2(laneMaxV, l->getVehicleMaxSpeed(
this));
2022 #ifdef DEBUG_PLAN_MOVE
2024 std::cout <<
" laneMaxV=" << laneMaxV <<
" lane=" << l->getID() <<
"\n";
2030 laneMaxV =
MAX2(laneMaxV, vMinComfortable);
2032 laneMaxV = std::numeric_limits<double>::max();
2046 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" speedBeforeTraci=" << v;
2052 std::cout <<
" influencedSpeed=" << v;
2058 std::cout <<
" gapControlSpeed=" << v <<
"\n";
2066 #ifdef DEBUG_PLAN_MOVE
2068 std::cout <<
" dist=" << dist <<
" bestLaneConts=" <<
toString(bestLaneConts)
2069 <<
"\n maxV=" << maxV <<
" laneMaxV=" << laneMaxV <<
" v=" << v <<
"\n";
2072 assert(bestLaneConts.size() > 0);
2073 bool hadNonInternal =
false;
2076 nextTurn.first = seen;
2079 double seenNonInternal = 0;
2084 bool slowedDownForMinor =
false;
2085 double mustSeeBeforeReversal = 0;
2091 #ifdef PARALLEL_STOPWATCH
2095 #pragma warning(push)
2096 #pragma warning(disable: 4127)
2100 #pragma warning(pop)
2111 const double gapOffset = leaderLane ==
myLane ? 0 : seen - leaderLane->
getLength();
2117 if (cand.first != 0) {
2118 if ((cand.first->myLaneChangeModel->isOpposite() && cand.first->getLane() == leaderLane)
2119 || (!cand.first->myLaneChangeModel->isOpposite() && cand.first->getLaneChangeModel().getShadowLane() == leaderLane)) {
2121 oppositeLeaders.
addLeader(cand.first, cand.second + gapOffset -
getVehicleType().getMinGap() + cand.first->getVehicleType().
getMinGap() - cand.first->getVehicleType().getLength());
2122 }
else if (cand.second >= 0 && cand.second - (v + cand.first->getSpeed()) * minTimeToLeaveLane < 0) {
2127 #ifdef DEBUG_PLAN_MOVE
2129 std::cout <<
" leaderLane=" << leaderLane->
getID() <<
" gapOffset=" << gapOffset <<
" minTimeToLeaveLane=" << minTimeToLeaveLane
2130 <<
" cands=" << cands.
toString() <<
" oppositeLeaders=" << oppositeLeaders.
toString() <<
"\n";
2135 adaptToLeaders(ahead, lateralShift, seen, lastLink, leaderLane, v, vLinkPass);
2137 if (lastLink !=
nullptr) {
2140 #ifdef DEBUG_PLAN_MOVE
2142 std::cout <<
"\nv = " << v <<
"\n";
2150 if (shadowLane !=
nullptr
2164 #ifdef DEBUG_PLAN_MOVE
2166 std::cout <<
SIMTIME <<
" opposite veh=" <<
getID() <<
" shadowLane=" << shadowLane->
getID() <<
" latOffset=" << latOffset <<
" shadowLeaders=" << shadowLeaders.
toString() <<
"\n";
2173 adaptToLeaders(shadowLeaders, latOffset, seen, lastLink, shadowLane, v, vLinkPass);
2178 const double latOffset = 0;
2179 #ifdef DEBUG_PLAN_MOVE
2181 std::cout <<
SIMTIME <<
" opposite shadows veh=" <<
getID() <<
" shadowLane=" << shadowLane->
getID()
2182 <<
" latOffset=" << latOffset <<
" shadowLeaders=" << shadowLeaders.
toString() <<
"\n";
2186 #ifdef DEBUG_PLAN_MOVE
2188 std::cout <<
" shadowLeadersFixed=" << shadowLeaders.
toString() <<
"\n";
2197 const double relativePos = lane->
getLength() - seen;
2198 #ifdef DEBUG_PLAN_MOVE
2200 std::cout <<
SIMTIME <<
" adapt to pedestrians on lane=" << lane->
getID() <<
" relPos=" << relativePos <<
"\n";
2205 if (leader.first != 0) {
2207 v =
MIN2(v, stopSpeed);
2208 #ifdef DEBUG_PLAN_MOVE
2210 std::cout <<
SIMTIME <<
" pedLeader=" << leader.first->getID() <<
" dist=" << leader.second <<
" v=" << v <<
"\n";
2219 || (
myStops.begin()->isOpposite &&
myStops.begin()->lane->getEdge().getOppositeEdge() == &lane->
getEdge()))
2226 double endPos = stop.
getEndPos(*
this) + NUMERICAL_EPS;
2231 }
else if (isWaypoint && !stop.
reached) {
2234 newStopDist = seen + endPos - lane->
getLength();
2237 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" newStopDist=" << newStopDist <<
" stopLane=" << stop.
lane->
getID() <<
" stopEndPos=" << endPos <<
"\n";
2241 double stopSpeed = laneMaxV;
2243 bool waypointWithStop =
false;
2258 double distToEnd = newStopDist;
2263 waypointWithStop =
true;
2269 newStopDist = std::numeric_limits<double>::max();
2276 if (lastLink !=
nullptr) {
2282 if (lastLink !=
nullptr) {
2286 v =
MIN2(v, stopSpeed);
2288 std::vector<MSLink*>::const_iterator exitLink =
MSLane::succLinkSec(*
this, view + 1, *lane, bestLaneConts);
2290 bool dummySetRequest;
2291 double dummyVLinkWait;
2295 #ifdef DEBUG_PLAN_MOVE
2297 std::cout <<
"\n" <<
SIMTIME <<
" next stop: distance = " << newStopDist <<
" requires stopSpeed = " << stopSpeed <<
"\n";
2302 lfLinks.emplace_back(v, newStopDist);
2309 std::vector<MSLink*>::const_iterator link =
MSLane::succLinkSec(*
this, view + 1, *lane, bestLaneConts);
2312 if (!encounteredTurn) {
2320 nextTurn.first = seen;
2321 nextTurn.second = linkDir;
2322 encounteredTurn =
true;
2323 #ifdef DEBUG_NEXT_TURN
2326 <<
" at " << nextTurn.first <<
"m." << std::endl;
2341 const double va =
MAX2(NUMERICAL_EPS, cfModel.
freeSpeed(
this,
getSpeed(), distToArrival, arrivalSpeed));
2343 if (lastLink !=
nullptr) {
2351 || ((*link)->getViaLane() ==
nullptr
2363 || (opposite && (*link)->getViaLaneOrLane()->getParallelOpposite() ==
nullptr
2366 if (lastLink !=
nullptr) {
2374 #ifdef DEBUG_PLAN_MOVE
2376 std::cout <<
" braking for link end lane=" << lane->
getID() <<
" seen=" << seen
2382 lfLinks.emplace_back(v, seen);
2386 lateralShift += (*link)->getLateralShift();
2387 const bool yellowOrRed = (*link)->haveRed() || (*link)->haveYellow();
2398 double laneStopOffset;
2404 const bool canBrakeBeforeLaneEnd = seen >= brakeDist;
2408 laneStopOffset = majorStopOffset;
2409 }
else if ((*link)->havePriority()) {
2411 laneStopOffset =
MIN2((*link)->getFoeVisibilityDistance() - POSITION_EPS, majorStopOffset);
2414 laneStopOffset =
MIN2((*link)->getFoeVisibilityDistance() - POSITION_EPS, minorStopOffset);
2416 if (canBrakeBeforeLaneEnd) {
2418 laneStopOffset =
MIN2(laneStopOffset, seen - brakeDist);
2420 laneStopOffset =
MAX2(POSITION_EPS, laneStopOffset);
2421 double stopDist =
MAX2(0., seen - laneStopOffset);
2422 if (newStopDist != std::numeric_limits<double>::max()) {
2423 stopDist =
MAX2(stopDist, newStopDist);
2425 #ifdef DEBUG_PLAN_MOVE
2427 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" effective stopOffset on lane '" << lane->
getID()
2428 <<
"' is " << laneStopOffset <<
" (-> stopDist=" << stopDist <<
")" << std::endl;
2438 mustSeeBeforeReversal = 2 * seen +
getLength();
2440 v =
MIN2(v, vMustReverse);
2443 foundRailSignal |= ((*link)->getTLLogic() !=
nullptr
2448 bool canReverseEventually =
false;
2449 const double vReverse =
checkReversal(canReverseEventually, laneMaxV, seen);
2450 v =
MIN2(v, vReverse);
2451 #ifdef DEBUG_PLAN_MOVE
2453 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" canReverseEventually=" << canReverseEventually <<
" v=" << v <<
"\n";
2466 assert(timeRemaining != 0);
2469 (seen - POSITION_EPS) / timeRemaining);
2470 #ifdef DEBUG_PLAN_MOVE
2472 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" slowing down to finish continuous change before"
2473 <<
" link=" << (*link)->getViaLaneOrLane()->getID()
2474 <<
" timeRemaining=" << timeRemaining
2487 const bool abortRequestAfterMinor = slowedDownForMinor && (*link)->getInternalLaneBefore() ==
nullptr;
2489 bool setRequest = (v >
NUMERICAL_EPS_SPEED && !abortRequestAfterMinor) || (leavingCurrentIntersection);
2492 double vLinkWait =
MIN2(v, stopSpeed);
2493 #ifdef DEBUG_PLAN_MOVE
2496 <<
" stopDist=" << stopDist
2497 <<
" stopDecel=" << stopDecel
2498 <<
" vLinkWait=" << vLinkWait
2499 <<
" brakeDist=" << brakeDist
2501 <<
" leaveIntersection=" << leavingCurrentIntersection
2502 <<
" setRequest=" << setRequest
2511 if (yellowOrRed && canBrakeBeforeStopLine && !
ignoreRed(*link, canBrakeBeforeStopLine) && seen >= mustSeeBeforeReversal) {
2518 lfLinks.push_back(
DriveProcessItem(*link, v, vLinkWait,
false, arrivalTime, vLinkWait, arrivalTime +
TIME2STEPS(30), 0, seen));
2523 if (
ignoreRed(*link, canBrakeBeforeStopLine) &&
STEPS2TIME(t - (*link)->getLastStateChange()) > 2) {
2528 #ifdef DEBUG_PLAN_MOVE
2530 <<
" ignoreRed spent=" <<
STEPS2TIME(t - (*link)->getLastStateChange())
2531 <<
" redSpeed=" << redSpeed
2541 if (lastLink !=
nullptr) {
2544 double arrivalSpeed = vLinkPass;
2550 const double visibilityDistance = (*link)->getFoeVisibilityDistance();
2551 const double determinedFoePresence = seen <= visibilityDistance;
2556 #ifdef DEBUG_PLAN_MOVE
2558 std::cout <<
" approaching link=" << (*link)->getViaLaneOrLane()->getID() <<
" prio=" << (*link)->havePriority() <<
" seen=" << seen <<
" visibilityDistance=" << visibilityDistance <<
" brakeDist=" << brakeDist <<
"\n";
2562 const bool couldBrakeForMinor = !(*link)->havePriority() && brakeDist < seen && !(*link)->lastWasContMajor();
2563 if (couldBrakeForMinor && !determinedFoePresence) {
2568 arrivalSpeed =
MIN2(vLinkPass, maxArrivalSpeed);
2569 slowedDownForMinor =
true;
2570 #ifdef DEBUG_PLAN_MOVE
2572 std::cout <<
" slowedDownForMinor maxSpeedAtVisDist=" << maxSpeedAtVisibilityDist <<
" maxArrivalSpeed=" << maxArrivalSpeed <<
" arrivalSpeed=" << arrivalSpeed <<
"\n";
2578 std::pair<const SUMOVehicle*, const MSLink*> blocker = (*link)->getFirstApproachingFoe(*link);
2581 while (blocker.second !=
nullptr && blocker.second != *link && n > 0) {
2582 blocker = blocker.second->getFirstApproachingFoe(*link);
2590 if (blocker.second == *link) {
2598 if (couldBrakeForMinor && (*link)->getLane()->getEdge().isRoundabout()) {
2599 slowedDownForMinor =
true;
2600 #ifdef DEBUG_PLAN_MOVE
2602 std::cout <<
" slowedDownForMinor at roundabout\n";
2611 double arrivalSpeedBraking = 0;
2618 arrivalSpeedBraking =
MIN2(arrivalSpeedBraking, arrivalSpeed);
2622 if (v + arrivalSpeedBraking <= 0.) {
2623 arrivalTimeBraking = std::numeric_limits<long long int>::max();
2625 arrivalTimeBraking =
MAX2(arrivalTime, t +
TIME2STEPS(seen / ((v + arrivalSpeedBraking) * 0.5)));
2631 const double estimatedLeaveSpeed =
MIN2((*link)->getViaLaneOrLane()->getVehicleMaxSpeed(
this),
2634 arrivalTime, arrivalSpeed,
2635 arrivalTimeBraking, arrivalSpeedBraking,
2636 seen, estimatedLeaveSpeed));
2637 if ((*link)->getViaLane() ==
nullptr) {
2638 hadNonInternal =
true;
2641 #ifdef DEBUG_PLAN_MOVE
2643 std::cout <<
" checkAbort setRequest=" << setRequest <<
" v=" << v <<
" seen=" << seen <<
" dist=" << dist
2644 <<
" seenNonInternal=" << seenNonInternal
2645 <<
" seenInternal=" << seenInternal <<
" length=" << vehicleLength <<
"\n";
2649 if ((!setRequest || v <= 0 || seen > dist) && hadNonInternal && seenNonInternal >
MAX2(vehicleLength *
CRLL_LOOK_AHEAD, vehicleLength + seenInternal) && foundRailSignal) {
2653 lane = (*link)->getViaLaneOrLane();
2656 laneMaxV = std::numeric_limits<double>::max();
2671 if (leaderLane ==
nullptr) {
2678 lastLink = &lfLinks.back();
2687 #ifdef PARALLEL_STOPWATCH
2715 const MSLane*
const lane,
double& v,
double& vLinkPass)
const {
2718 ahead.
getSubLanes(
this, latOffset, rightmost, leftmost);
2719 #ifdef DEBUG_PLAN_MOVE
2721 <<
"\nADAPT_TO_LEADERS\nveh=" <<
getID()
2722 <<
" lane=" << lane->
getID()
2723 <<
" latOffset=" << latOffset
2724 <<
" rm=" << rightmost
2725 <<
" lm=" << leftmost
2739 for (
int sublane = rightmost; sublane <= leftmost; ++sublane) {
2741 if (pred !=
nullptr && pred !=
this) {
2744 double gap = (lastLink ==
nullptr
2759 #ifdef DEBUG_PLAN_MOVE
2761 std::cout <<
" pred=" << pred->
getID() <<
" predLane=" << pred->
getLane()->
getID() <<
" predPos=" << pred->
getPositionOnLane() <<
" gap=" << gap <<
" predBack=" << predBack <<
" seen=" << seen <<
" lane=" << lane->
getID() <<
" myLane=" <<
myLane->
getID() <<
"\n";
2764 adaptToLeader(std::make_pair(pred, gap), seen, lastLink, lane, v, vLinkPass);
2772 const MSLane*
const lane,
double& v,
double& vLinkPass)
const {
2775 ahead.
getSubLanes(
this, latOffset, rightmost, leftmost);
2776 #ifdef DEBUG_PLAN_MOVE
2778 <<
"\nADAPT_TO_LEADERS_DISTANCE\nveh=" <<
getID()
2779 <<
" lane=" << lane->
getID()
2780 <<
" latOffset=" << latOffset
2781 <<
" rm=" << rightmost
2782 <<
" lm=" << leftmost
2786 for (
int sublane = rightmost; sublane <= leftmost; ++sublane) {
2789 if (pred !=
nullptr && pred !=
this) {
2790 #ifdef DEBUG_PLAN_MOVE
2792 std::cout <<
" pred=" << pred->
getID() <<
" predLane=" << pred->
getLane()->
getID() <<
" predPos=" << pred->
getPositionOnLane() <<
" gap=" << predDist.second <<
"\n";
2795 adaptToLeader(predDist, seen, lastLink, lane, v, vLinkPass);
2804 const MSLane*
const lane,
double& v,
double& vLinkPass,
2805 double distToCrossing)
const {
2806 if (leaderInfo.first != 0) {
2807 const double vsafeLeader =
getSafeFollowSpeed(leaderInfo, seen, lane, distToCrossing);
2808 if (lastLink !=
nullptr) {
2811 v =
MIN2(v, vsafeLeader);
2812 vLinkPass =
MIN2(vLinkPass, vsafeLeader);
2814 #ifdef DEBUG_PLAN_MOVE
2818 <<
" veh=" <<
getID()
2819 <<
" lead=" << leaderInfo.first->getID()
2820 <<
" leadSpeed=" << leaderInfo.first->getSpeed()
2821 <<
" gap=" << leaderInfo.second
2822 <<
" leadLane=" << leaderInfo.first->getLane()->getID()
2823 <<
" predPos=" << leaderInfo.first->getPositionOnLane()
2825 <<
" lane=" << lane->
getID()
2827 <<
" dTC=" << distToCrossing
2829 <<
" vSafeLeader=" << vsafeLeader
2830 <<
" vLinkPass=" << vLinkPass
2839 DriveProcessItem*
const lastLink,
double& v,
double& vLinkPass,
double& vLinkWait,
bool& setRequest)
const {
2842 checkLinkLeader(link, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest);
2845 if (parallelLink !=
nullptr) {
2846 checkLinkLeader(parallelLink, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest,
true);
2855 DriveProcessItem*
const lastLink,
double& v,
double& vLinkPass,
double& vLinkWait,
bool& setRequest,
2856 bool isShadowLink)
const {
2857 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
2863 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
2868 for (MSLink::LinkLeaders::const_iterator it = linkLeaders.begin(); it != linkLeaders.end(); ++it) {
2870 const MSVehicle* leader = (*it).vehAndGap.first;
2871 if (leader ==
nullptr) {
2873 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
2875 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" is blocked on link to " << link->
getViaLaneOrLane()->
getID() <<
" by pedestrian. dist=" << it->distToCrossing <<
"\n";
2880 #ifdef DEBUG_PLAN_MOVE
2882 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" is ignoring pedestrian (jmIgnoreJunctionFoeProb)\n";
2887 adaptToLeader(std::make_pair(
this, -1), seen, lastLink, lane, v, vLinkPass, it->distToCrossing);
2888 }
else if (
isLeader(link, leader) || (*it).inTheWay) {
2891 #ifdef DEBUG_PLAN_MOVE
2893 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" is ignoring linkLeader=" << leader->
getID() <<
" (jmIgnoreJunctionFoeProb)\n";
2904 linkLeadersAhead.
addLeader(leader,
false, 0);
2908 #ifdef DEBUG_PLAN_MOVE
2912 <<
" isShadowLink=" << isShadowLink
2913 <<
" lane=" << lane->
getID()
2914 <<
" foe=" << leader->
getID()
2916 <<
" latOffset=" << latOffset
2918 <<
" linkLeadersAhead=" << linkLeadersAhead.
toString()
2923 #ifdef DEBUG_PLAN_MOVE
2932 adaptToLeader(it->vehAndGap, seen, lastLink, lane, v, vLinkPass, it->distToCrossing);
2934 if (lastLink !=
nullptr) {
2948 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
2950 std::cout <<
" aborting request\n";
2957 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
2959 std::cout <<
" aborting previous request\n";
2965 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
2968 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" ignoring leader " << leader->
getID()
2978 vLinkWait =
MIN2(vLinkWait, v);
2984 const double seen,
const MSLane*
const lane,
double distToCrossing)
const {
2985 assert(leaderInfo.first != 0);
2987 double vsafeLeader = 0;
2989 vsafeLeader = -std::numeric_limits<double>::max();
2991 if (leaderInfo.second >= 0) {
2992 vsafeLeader = cfModel.
followSpeed(
this,
getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
2997 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
2999 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" stopping before junction: lane=" << lane->
getID() <<
" seen=" << seen
3001 <<
" stopDist=" << seen - lane->
getLength() - POSITION_EPS
3002 <<
" vsafeLeader=" << vsafeLeader
3003 <<
" distToCrossing=" << distToCrossing
3008 if (distToCrossing >= 0) {
3011 if (leaderInfo.first ==
this) {
3013 vsafeLeader = vStop;
3014 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
3016 std::cout <<
" breaking for pedestrian distToCrossing=" << distToCrossing <<
" vStop=" << vStop <<
"\n";
3019 }
else if (leaderInfo.second == -std::numeric_limits<double>::max()) {
3021 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
3023 std::cout <<
" stop at crossing point for critical leader\n";
3026 vsafeLeader =
MAX2(vsafeLeader, vStop);
3028 const double leaderDistToCrossing = distToCrossing - leaderInfo.second;
3036 vsafeLeader =
MAX2(vsafeLeader,
MIN2(v2, vStop));
3037 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
3039 std::cout <<
" driving up to the crossing point (distToCrossing=" << distToCrossing <<
")"
3040 <<
" leaderPastCPTime=" << leaderPastCPTime
3041 <<
" vFinal=" << vFinal
3043 <<
" vStop=" << vStop
3044 <<
" vsafeLeader=" << vsafeLeader <<
"\n";
3078 double vSafeZipper = std::numeric_limits<double>::max();
3081 bool canBrakeVSafeMin =
false;
3086 MSLink*
const link = dpi.myLink;
3088 #ifdef DEBUG_EXEC_MOVE
3092 <<
" veh=" <<
getID()
3094 <<
" req=" << dpi.mySetRequest
3095 <<
" vP=" << dpi.myVLinkPass
3096 <<
" vW=" << dpi.myVLinkWait
3097 <<
" d=" << dpi.myDistance
3104 if (link !=
nullptr && dpi.mySetRequest) {
3113 const bool ignoreRedLink =
ignoreRed(link, canBrake) || beyondStopLine;
3114 if (yellow && canBrake && !ignoreRedLink) {
3115 vSafe = dpi.myVLinkWait;
3117 #ifdef DEBUG_CHECKREWINDLINKLANES
3119 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (yellow)\n";
3126 bool opened = (yellow || influencerPrio
3127 || link->
opened(dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
3133 ignoreRedLink,
this));
3136 if (parallelLink !=
nullptr) {
3139 opened = yellow || influencerPrio || (opened && parallelLink->
opened(dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
3143 ignoreRedLink,
this));
3144 #ifdef DEBUG_EXEC_MOVE
3147 <<
" veh=" <<
getID()
3151 <<
" opened=" << opened
3158 #ifdef DEBUG_EXEC_MOVE
3161 <<
" opened=" << opened
3162 <<
" influencerPrio=" << influencerPrio
3165 <<
" isCont=" << link->
isCont()
3166 <<
" ignoreRed=" << ignoreRedLink
3172 double determinedFoePresence = dpi.myDistance <= visibilityDistance;
3173 if (!determinedFoePresence && (canBrake || !yellow)) {
3174 vSafe = dpi.myVLinkWait;
3176 #ifdef DEBUG_CHECKREWINDLINKLANES
3178 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (minor)\n";
3194 vSafeMinDist = dpi.myDistance;
3196 vSafeMin =
MIN2((
double)
DIST2SPEED(vSafeMinDist + POSITION_EPS), dpi.myVLinkPass);
3200 canBrakeVSafeMin = canBrake;
3201 #ifdef DEBUG_EXEC_MOVE
3203 std::cout <<
" vSafeMin=" << vSafeMin <<
" vSafeMinDist=" << vSafeMinDist <<
" canBrake=" << canBrake <<
"\n";
3210 vSafe = dpi.myVLinkPass;
3214 #ifdef DEBUG_CHECKREWINDLINKLANES
3216 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (very slow)\n";
3221 vSafeZipper =
MIN2(vSafeZipper,
3222 link->
getZipperSpeed(
this, dpi.myDistance, dpi.myVLinkPass, dpi.myArrivalTime, &collectFoes));
3224 vSafe = dpi.myVLinkWait;
3226 #ifdef DEBUG_CHECKREWINDLINKLANES
3228 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (closed)\n";
3231 #ifdef DEBUG_EXEC_MOVE
3242 #ifdef DEBUG_EXEC_MOVE
3244 std::cout <<
SIMTIME <<
" reseting junctionEntryTime at junction '" << link->
getJunction()->
getID() <<
"' beause of non-request exitLink\n";
3251 vSafe = dpi.myVLinkWait;
3254 #ifdef DEBUG_CHECKREWINDLINKLANES
3256 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (no request, braking)\n";
3261 #ifdef DEBUG_CHECKREWINDLINKLANES
3263 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (no request, stopping)\n";
3298 #ifdef DEBUG_EXEC_MOVE
3300 std::cout <<
"vSafeMin Problem? vSafe=" << vSafe <<
" vSafeMin=" << vSafeMin <<
" vSafeMinDist=" << vSafeMinDist << std::endl;
3303 if (canBrakeVSafeMin && vSafe <
getSpeed()) {
3308 #ifdef DEBUG_CHECKREWINDLINKLANES
3310 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (vSafe=" << vSafe <<
" < vSafeMin=" << vSafeMin <<
")\n";
3328 vSafe =
MIN2(vSafe, vSafeZipper);
3338 std::cout <<
SIMTIME <<
" MSVehicle::processTraCISpeedControl() for vehicle '" <<
getID() <<
"'"
3339 <<
" vSafe=" << vSafe <<
" (init)vNext=" << vNext;
3348 vMin =
MAX2(0., vMin);
3353 std::cout <<
" (processed)vNext=" << vNext << std::endl;
3363 #ifdef DEBUG_ACTIONSTEPS
3365 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" removePassedDriveItems()\n"
3366 <<
" Current items: ";
3368 if (j.myLink == 0) {
3369 std::cout <<
"\n Stop at distance " << j.myDistance;
3371 const MSLane* to = j.myLink->getViaLaneOrLane();
3372 const MSLane* from = j.myLink->getLaneBefore();
3373 std::cout <<
"\n Link at distance " << j.myDistance <<
": '"
3374 << (from == 0 ?
"NONE" : from->
getID()) <<
"' -> '" << (to == 0 ?
"NONE" : to->
getID()) <<
"'";
3377 std::cout <<
"\n myNextDriveItem: ";
3384 std::cout <<
"\n Link at distance " <<
myNextDriveItem->myDistance <<
": '"
3385 << (from == 0 ?
"NONE" : from->
getID()) <<
"' -> '" << (to == 0 ?
"NONE" : to->
getID()) <<
"'";
3388 std::cout << std::endl;
3392 #ifdef DEBUG_ACTIONSTEPS
3394 std::cout <<
" Removing item: ";
3395 if (j->myLink == 0) {
3396 std::cout <<
"Stop at distance " << j->myDistance;
3398 const MSLane* to = j->myLink->getViaLaneOrLane();
3399 const MSLane* from = j->myLink->getLaneBefore();
3400 std::cout <<
"Link at distance " << j->myDistance <<
": '"
3401 << (from == 0 ?
"NONE" : from->
getID()) <<
"' -> '" << (to == 0 ?
"NONE" : to->
getID()) <<
"'";
3403 std::cout << std::endl;
3406 if (j->myLink !=
nullptr) {
3407 j->myLink->removeApproaching(
this);
3417 #ifdef DEBUG_ACTIONSTEPS
3419 std::cout <<
SIMTIME <<
" updateDriveItems(), veh='" <<
getID() <<
"' (lane: '" <<
getLane()->
getID() <<
"')\nCurrent drive items:" << std::endl;
3422 <<
" vPass=" << dpi.myVLinkPass
3423 <<
" vWait=" << dpi.myVLinkWait
3424 <<
" linkLane=" << (dpi.myLink == 0 ?
"NULL" : dpi.myLink->getViaLaneOrLane()->getID())
3425 <<
" request=" << dpi.mySetRequest
3428 std::cout <<
" myNextDriveItem's linked lane: " << (
myNextDriveItem->myLink == 0 ?
"NULL" :
myNextDriveItem->myLink->getViaLaneOrLane()->getID()) << std::endl;
3435 const MSLink* nextPlannedLink =
nullptr;
3438 while (i !=
myLFLinkLanes.end() && nextPlannedLink ==
nullptr) {
3439 nextPlannedLink = i->myLink;
3443 if (nextPlannedLink ==
nullptr) {
3445 #ifdef DEBUG_ACTIONSTEPS
3447 std::cout <<
"Found no link-related drive item." << std::endl;
3455 #ifdef DEBUG_ACTIONSTEPS
3457 std::cout <<
"Continuing on planned lane sequence, no update required." << std::endl;
3479 #ifdef DEBUG_ACTIONSTEPS
3481 std::cout <<
"Changed lane. Drive items will be updated along the current lane continuation." << std::endl;
3493 MSLink* newLink =
nullptr;
3495 if (driveItemIt->myLink ==
nullptr) {
3505 #ifdef DEBUG_ACTIONSTEPS
3507 std::cout <<
"Reached end of the new continuation sequence. Erasing leftover link-items." << std::endl;
3511 if (driveItemIt->myLink ==
nullptr) {
3522 const MSLane*
const target = *bestLaneIt;
3526 if (link->getLane() == target) {
3532 if (newLink == driveItemIt->myLink) {
3534 #ifdef DEBUG_ACTIONSTEPS
3536 std::cout <<
"Old and new continuation sequences merge at link\n"
3538 <<
"\nNo update beyond merge required." << std::endl;
3544 #ifdef DEBUG_ACTIONSTEPS
3546 std::cout <<
"lane=" << lane->
getID() <<
"\nUpdating link\n '" << driveItemIt->myLink->getLaneBefore()->getID() <<
"'->'" << driveItemIt->myLink->getViaLaneOrLane()->getID() <<
"'"
3550 newLink->
setApproaching(
this, driveItemIt->myLink->getApproaching(
this));
3551 driveItemIt->myLink->removeApproaching(
this);
3552 driveItemIt->myLink = newLink;
3559 #ifdef DEBUG_ACTIONSTEPS
3561 std::cout <<
"Updated drive items:" << std::endl;
3564 <<
" vPass=" << dpi.myVLinkPass
3565 <<
" vWait=" << dpi.myVLinkWait
3566 <<
" linkLane=" << (dpi.myLink == 0 ?
"NULL" : dpi.myLink->getViaLaneOrLane()->getID())
3567 <<
" request=" << dpi.mySetRequest
3584 brakelightsOn =
true;
3620 #ifdef DEBUG_REVERSE_BIDI
3624 <<
" speedThreshold=" << speedThreshold
3651 if (remainingRoute < neededFutureRoute) {
3652 #ifdef DEBUG_REVERSE_BIDI
3664 #ifdef DEBUG_REVERSE_BIDI
3675 const double stopPos =
myStops.front().getEndPos(*
this);
3678 if (newPos > stopPos) {
3679 #ifdef DEBUG_REVERSE_BIDI
3684 if (seen >
MAX2(brakeDist, 1.0)) {
3687 #ifdef DEBUG_REVERSE_BIDI
3689 std::cout <<
" train is too long, skipping stop at " << stopPos <<
" cannot be avoided\n";
3700 if (!further->getEdge().isInternal()) {
3701 if (further->getEdge().getBidiEdge() != *(
myCurrEdge + view)) {
3702 #ifdef DEBUG_REVERSE_BIDI
3704 std::cout <<
" noBidi view=" << view <<
" further=" << further->getID() <<
" furtherBidi=" <<
Named::getIDSecure(further->getEdge().getBidiEdge()) <<
" future=" << (*(
myCurrEdge + view))->getID() <<
"\n";
3711 const double stopPos =
myStops.front().getEndPos(*
this);
3713 if (newPos > stopPos) {
3714 #ifdef DEBUG_REVERSE_BIDI
3716 std::cout <<
" reversal would go past stop on further-opposite lane " << further->getBidiLane()->getID() <<
"\n";
3719 if (seen >
MAX2(brakeDist, 1.0)) {
3723 #ifdef DEBUG_REVERSE_BIDI
3725 std::cout <<
" train is too long, skipping stop at " << stopPos <<
" cannot be avoided\n";
3736 #ifdef DEBUG_REVERSE_BIDI
3738 std::cout <<
SIMTIME <<
" seen=" << seen <<
" vReverseOK=" << vMinComfortable <<
"\n";
3742 return vMinComfortable;
3751 passedLanes.push_back(*i);
3753 if (passedLanes.size() == 0 || passedLanes.back() !=
myLane) {
3754 passedLanes.push_back(
myLane);
3757 bool reverseTrain =
false;
3763 #ifdef DEBUG_REVERSE_BIDI
3788 if (link !=
nullptr) {
3794 emergencyReason =
" because it must reverse direction";
3795 approachedLane =
nullptr;
3811 if (link->
haveRed() && !
ignoreRed(link,
false) && !beyondStopLine && !reverseTrain) {
3812 emergencyReason =
" because of a red traffic light";
3816 if (reverseTrain && approachedLane->
isInternal()) {
3824 }
else if (reverseTrain) {
3825 approachedLane = (*(
myCurrEdge + 1))->getLanes()[0];
3833 emergencyReason =
" because there is no connection to the next edge";
3834 approachedLane =
nullptr;
3837 if (approachedLane !=
myLane && approachedLane !=
nullptr) {
3855 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
3871 WRITE_WARNING(
"Vehicle '" +
getID() +
"' could not finish continuous lane change (turn lane) time=" +
3880 passedLanes.push_back(approachedLane);
3885 #ifdef DEBUG_ACTIONSTEPS
3887 std::cout <<
"Updated drive items:" << std::endl;
3890 <<
" vPass=" << (*i).myVLinkPass
3891 <<
" vWait=" << (*i).myVLinkWait
3892 <<
" linkLane=" << ((*i).myLink == 0 ?
"NULL" : (*i).myLink->getViaLaneOrLane()->getID())
3893 <<
" request=" << (*i).mySetRequest
3910 #ifdef DEBUG_EXEC_MOVE
3912 std::cout <<
"\nEXECUTE_MOVE\n"
3914 <<
" veh=" <<
getID()
3922 double vSafe = std::numeric_limits<double>::max();
3924 double vSafeMin = -std::numeric_limits<double>::max();
3927 double vSafeMinDist = 0;
3932 #ifdef DEBUG_ACTIONSTEPS
3934 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"'\n"
3935 " vsafe from processLinkApproaches(): vsafe " << vSafe << std::endl;
3941 #ifdef DEBUG_ACTIONSTEPS
3943 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' skips processLinkApproaches()\n"
3945 <<
"speed: " <<
getSpeed() <<
" -> " << vSafe << std::endl;
3959 double vNext = vSafe;
3963 vNext =
MAX2(vNext, vSafeMin);
3971 #ifdef DEBUG_EXEC_MOVE
3973 std::cout <<
SIMTIME <<
" finalizeSpeed vSafe=" << vSafe <<
" vSafeMin=" << (vSafeMin == -std::numeric_limits<double>::max() ?
"-Inf" :
toString(vSafeMin))
3974 <<
" vNext=" << vNext <<
" (i.e. accel=" <<
SPEED2ACCEL(vNext -
getSpeed()) <<
")" << std::endl;
3991 vNext =
MAX2(vNext, 0.);
4001 if (elecHybridOfVehicle !=
nullptr) {
4003 elecHybridOfVehicle->
setConsum(elecHybridOfVehicle->
consumption(*
this, (vNext - this->getSpeed()) /
TS, vNext));
4007 if (elecHybridOfVehicle->
getConsum() /
TS > maxPower) {
4012 vNext =
MAX2(vNext, 0.);
4014 elecHybridOfVehicle->
setConsum(elecHybridOfVehicle->
consumption(*
this, (vNext - this->getSpeed()) /
TS, vNext));
4032 std::vector<MSLane*> passedLanes;
4036 std::string emergencyReason =
" for unknown reasons";
4045 +
"'" + emergencyReason
4057 passedLanes.clear();
4059 #ifdef DEBUG_ACTIONSTEPS
4061 std::cout <<
SIMTIME <<
" veh '" <<
getID() <<
"' updates further lanes." << std::endl;
4088 #ifdef DEBUG_ACTIONSTEPS
4090 std::cout <<
SIMTIME <<
" veh '" <<
getID() <<
"' skips LCM->prepareStep()." << std::endl;
4097 #ifdef DEBUG_EXEC_MOVE
4105 MSLane* newOpposite =
nullptr;
4107 if (newOppositeEdge !=
nullptr && oldLaneIndex < newOppositeEdge->getNumLanes()) {
4108 newOpposite = newOppositeEdge->
getLanes()[oldLaneIndex];
4110 if (newOpposite ==
nullptr) {
4120 if (oldOpposite !=
nullptr) {
4128 #pragma warning(push)
4129 #pragma warning(disable: 4127)
4133 #pragma warning(pop)
4140 oldLane = oldLaneMaybeOpposite;
4148 return myLane != oldLane;
4160 for (
int i = 0; i < (int)lanes.size(); i++) {
4162 if (i + 1 < (
int)lanes.size()) {
4163 const MSLane*
const to = lanes[i + 1];
4165 for (
MSLink*
const l : lanes[i]->getLinkCont()) {
4166 if ((
internal && l->getViaLane() == to) || (!
internal && l->getLane() == to)) {
4175 std::vector<MSLane*> passedLanes;
4177 std::string emergencyReason =
" for unknown reasons";
4178 if (lanes.size() > 1) {
4183 if (lanes.size() > 1) {
4205 #ifdef DEBUG_EXEC_MOVE
4207 std::cout <<
SIMTIME <<
" updateState() for veh '" <<
getID() <<
"': deltaPos=" << deltaPos
4212 if (decelPlus > 0) {
4216 decelPlus += 2 * NUMERICAL_EPS;
4222 +
" severity=" +
toString(emergencyFraction)
4278 const std::vector<MSLane*>& passedLanes) {
4279 #ifdef DEBUG_SETFURTHER
4281 <<
" updateFurtherLanes oldFurther=" <<
toString(furtherLanes)
4282 <<
" oldFurtherPosLat=" <<
toString(furtherLanesPosLat)
4283 <<
" passed=" <<
toString(passedLanes)
4286 for (std::vector<MSLane*>::iterator i = furtherLanes.begin(); i != furtherLanes.end(); ++i) {
4287 (*i)->resetPartialOccupation(
this);
4290 std::vector<MSLane*> newFurther;
4291 std::vector<double> newFurtherPosLat;
4294 if (passedLanes.size() > 1) {
4296 std::vector<MSLane*>::const_iterator fi = furtherLanes.begin();
4297 std::vector<double>::const_iterator fpi = furtherLanesPosLat.begin();
4298 for (
auto pi = passedLanes.rbegin() + 1; pi != passedLanes.rend() && backPosOnPreviousLane < 0; ++pi) {
4300 newFurther.push_back(*pi);
4301 backPosOnPreviousLane += (*pi)->setPartialOccupation(
this);
4302 if (fi != furtherLanes.end() && *pi == *fi) {
4304 newFurtherPosLat.push_back(*fpi);
4312 if (newFurtherPosLat.size() == 0) {
4319 newFurtherPosLat.push_back(newFurtherPosLat.back());
4322 #ifdef DEBUG_SETFURTHER
4324 std::cout <<
SIMTIME <<
" updateFurtherLanes \n"
4325 <<
" further lane '" << (*pi)->getID() <<
"' backPosOnPreviousLane=" << backPosOnPreviousLane
4330 furtherLanes = newFurther;
4331 furtherLanesPosLat = newFurtherPosLat;
4333 furtherLanes.clear();
4334 furtherLanesPosLat.clear();
4336 #ifdef DEBUG_SETFURTHER
4338 <<
" newFurther=" <<
toString(furtherLanes)
4339 <<
" newFurtherPosLat=" <<
toString(furtherLanesPosLat)
4340 <<
" newBackPos=" << backPosOnPreviousLane
4343 return backPosOnPreviousLane;
4349 #ifdef DEBUG_FURTHER
4352 <<
" getBackPositionOnLane veh=" <<
getID()
4411 leftLength -= (*i)->getLength();
4422 leftLength -= (*i)->getLength();
4433 auto j = furtherTargetLanes.begin();
4434 while (leftLength > 0 && j != furtherTargetLanes.end()) {
4435 leftLength -= (*i)->getLength();
4446 #pragma warning(push)
4447 #pragma warning(disable: 4127)
4451 #pragma warning(pop)
4473 double seenSpace = -lengthsInFront;
4474 #ifdef DEBUG_CHECKREWINDLINKLANES
4476 std::cout <<
"\nCHECK_REWIND_LINKLANES\n" <<
" veh=" <<
getID() <<
" lengthsInFront=" << lengthsInFront <<
"\n";
4479 bool foundStopped =
false;
4482 for (
int i = 0; i < (int)lfLinks.size(); ++i) {
4485 #ifdef DEBUG_CHECKREWINDLINKLANES
4488 <<
" foundStopped=" << foundStopped;
4490 if (item.
myLink ==
nullptr || foundStopped) {
4491 if (!foundStopped) {
4496 #ifdef DEBUG_CHECKREWINDLINKLANES
4505 if (approachedLane !=
nullptr) {
4508 if (approachedLane ==
myLane) {
4515 #ifdef DEBUG_CHECKREWINDLINKLANES
4517 <<
" approached=" << approachedLane->
getID()
4520 <<
" seenSpace=" << seenSpace
4522 <<
" lengthsInFront=" << lengthsInFront
4529 if (last ==
nullptr || last ==
this) {
4532 seenSpace += approachedLane->
getLength();
4535 #ifdef DEBUG_CHECKREWINDLINKLANES
4541 bool foundStopped2 =
false;
4543 seenSpace += spaceTillLastStanding;
4544 if (foundStopped2) {
4545 foundStopped =
true;
4550 foundStopped =
true;
4553 #ifdef DEBUG_CHECKREWINDLINKLANES
4555 <<
" approached=" << approachedLane->
getID()
4556 <<
" last=" << last->
getID()
4563 <<
" stls=" << spaceTillLastStanding
4565 <<
" seenSpace=" << seenSpace
4566 <<
" foundStopped=" << foundStopped
4567 <<
" foundStopped2=" << foundStopped2
4574 for (
int i = ((
int)lfLinks.size() - 1); i > 0; --i) {
4578 const bool opened = (item.
myLink !=
nullptr
4579 && (canLeaveJunction || (
4590 #ifdef DEBUG_CHECKREWINDLINKLANES
4593 <<
" canLeave=" << canLeaveJunction
4594 <<
" opened=" << opened
4595 <<
" allowsContinuation=" << allowsContinuation
4596 <<
" foundStopped=" << foundStopped
4599 if (!opened && item.
myLink !=
nullptr) {
4600 foundStopped =
true;
4604 allowsContinuation =
true;
4608 if (allowsContinuation) {
4610 #ifdef DEBUG_CHECKREWINDLINKLANES
4620 int removalBegin = -1;
4621 for (
int i = 0; foundStopped && i < (int)lfLinks.size() && removalBegin < 0; ++i) {
4624 if (item.
myLink ==
nullptr) {
4635 #ifdef DEBUG_CHECKREWINDLINKLANES
4638 <<
" veh=" <<
getID()
4641 <<
" leftSpace=" << leftSpace
4644 if (leftSpace < 0/* && item.myLink->willHaveBlockedFoe()*/) {
4645 double impatienceCorrection = 0;
4652 if (leftSpace < -impatienceCorrection / 10. &&
keepClear(item.
myLink)) {
4661 while (removalBegin < (
int)(lfLinks.size())) {
4663 if (dpi.
myLink ==
nullptr) {
4667 #ifdef DEBUG_CHECKREWINDLINKLANES
4672 if (dpi.
myDistance >= brakeGap + POSITION_EPS) {
4674 if (!dpi.
myLink->
isExitLink() || !lfLinks[removalBegin - 1].mySetRequest) {
4692 if (dpi.myLink !=
nullptr) {
4696 dpi.myLink->setApproaching(
this, dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
4703 if (dpi.myLink !=
nullptr) {
4709 if (parallelLink !=
nullptr) {
4711 parallelLink->
setApproaching(
this, dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
4712 dpi.mySetRequest, dpi.myArrivalTimeBraking, dpi.myArrivalSpeedBraking,
getWaitingTime(), dpi.myDistance,
4719 #ifdef DEBUG_PLAN_MOVE
4722 <<
" veh=" <<
getID()
4723 <<
" after checkRewindLinkLanes\n";
4726 <<
" vPass=" << dpi.myVLinkPass
4727 <<
" vWait=" << dpi.myVLinkWait
4728 <<
" linkLane=" << (dpi.myLink == 0 ?
"NULL" : dpi.myLink->getViaLaneOrLane()->getID())
4729 <<
" request=" << dpi.mySetRequest
4730 <<
" atime=" << dpi.myArrivalTime
4731 <<
" atimeB=" << dpi.myArrivalTimeBraking
4742 if (rem->first->getLane() !=
nullptr && rem->second > 0.) {
4744 if (myTraceMoveReminders) {
4745 traceMoveReminder(
"notifyEnter_skipped", rem->first, rem->second,
true);
4750 if (rem->first->notifyEnter(*
this, reason, enteredLane)) {
4752 if (myTraceMoveReminders) {
4753 traceMoveReminder(
"notifyEnter", rem->first, rem->second,
true);
4759 if (myTraceMoveReminders) {
4760 traceMoveReminder(
"notifyEnter", rem->first, rem->second,
false);
4797 if (!onTeleporting) {
4801 assert(oldLane !=
nullptr);
4803 if (link !=
nullptr) {
4839 if (lane !=
nullptr) {
4842 if (lane !=
nullptr) {
4843 #ifdef DEBUG_SETFURTHER
4845 std::cout <<
SIMTIME <<
" enterLaneAtLaneChange \n";
4851 #ifdef DEBUG_SETFURTHER
4853 std::cout <<
SIMTIME <<
" enterLaneAtLaneChange \n";
4856 leftLength -= (lane)->setPartialOccupation(
this);
4865 #ifdef DEBUG_SETFURTHER
4880 MSLane* clane = enteredLane;
4882 while (leftLength > 0) {
4890 if (ili.lane->getEdge().getNormalBefore() == fromRouteEdge) {
4915 #ifdef DEBUG_FURTHER
4917 std::cout <<
SIMTIME <<
" enterLaneAtInsertion \n";
4920 (*i)->resetPartialOccupation(
this);
4967 if (rem->first->notifyLeave(*
this,
myState.
myPos + rem->second, reason, approachedLane)) {
4969 if (myTraceMoveReminders) {
4970 traceMoveReminder(
"notifyLeave", rem->first, rem->second,
true);
4976 if (myTraceMoveReminders) {
4977 traceMoveReminder(
"notifyLeave", rem->first, rem->second,
false);
4990 #ifdef DEBUG_FURTHER
4992 std::cout <<
SIMTIME <<
" leaveLane \n";
4995 (*i)->resetPartialOccupation(
this);
5005 myStopDist = std::numeric_limits<double>::max();
5012 if (
myStops.front().pars.speed <= 0) {
5025 if (stop.
busstop !=
nullptr) {
5044 myStopDist = std::numeric_limits<double>::max();
5062 const std::vector<MSVehicle::LaneQ>&
5070 #ifdef DEBUG_BESTLANES
5075 if (startLane ==
nullptr) {
5078 assert(startLane != 0);
5083 bool startLaneIsOpposite = (startLane->
isInternal()
5086 if (startLaneIsOpposite) {
5089 assert(startLane != 0);
5098 #ifdef DEBUG_BESTLANES
5100 std::cout <<
" only updateOccupancyAndCurrentBestLane\n";
5111 #ifdef DEBUG_BESTLANES
5113 std::cout <<
" nothing to do on internal\n";
5123 std::vector<LaneQ>& lanes = *it;
5124 assert(lanes.size() > 0);
5125 if (&(lanes[0].lane->getEdge()) == nextEdge) {
5127 std::vector<LaneQ> oldLanes = lanes;
5129 const std::vector<MSLane*>& sourceLanes = startLane->
getEdge().
getLanes();
5130 for (std::vector<MSLane*>::const_iterator it_source = sourceLanes.begin(); it_source != sourceLanes.end(); ++it_source) {
5131 for (std::vector<LaneQ>::iterator it_lane = oldLanes.begin(); it_lane != oldLanes.end(); ++it_lane) {
5132 if ((*it_source)->getLinkCont()[0]->getLane() == (*it_lane).lane) {
5133 lanes.push_back(*it_lane);
5140 for (
int i = 0; i < (int)lanes.size(); ++i) {
5141 if (i + lanes[i].bestLaneOffset < 0) {
5142 lanes[i].bestLaneOffset = -i;
5144 if (i + lanes[i].bestLaneOffset >= (
int)lanes.size()) {
5145 lanes[i].bestLaneOffset = (int)lanes.size() - i - 1;
5147 assert(i + lanes[i].bestLaneOffset >= 0);
5148 assert(i + lanes[i].bestLaneOffset < (
int)lanes.size());
5149 if (lanes[i].bestContinuations[0] != 0) {
5151 lanes[i].bestContinuations.insert(lanes[i].bestContinuations.begin(), (
MSLane*)
nullptr);
5153 if (startLane->
getLinkCont()[0]->getLane() == lanes[i].lane) {
5156 assert(&(lanes[i].lane->getEdge()) == nextEdge);
5160 #ifdef DEBUG_BESTLANES
5162 std::cout <<
" updated for internal\n";
5179 const MSLane* nextStopLane =
nullptr;
5180 double nextStopPos = 0;
5181 bool nextStopIsWaypoint =
false;
5184 nextStopLane = nextStop.
lane;
5189 nextStopEdge = nextStop.
edge;
5191 nextStopIsWaypoint = nextStop.
pars.
speed > 0;
5201 nextStopPos =
MAX2(POSITION_EPS,
MIN2((
double)nextStopPos, (
double)(nextStopLane->
getLength() - 2 * POSITION_EPS)));
5204 nextStopPos = (*nextStopEdge)->getLength();
5213 double seenLength = 0;
5214 bool progress =
true;
5218 std::vector<LaneQ> currentLanes;
5219 const std::vector<MSLane*>* allowed =
nullptr;
5220 const MSEdge* nextEdge =
nullptr;
5222 nextEdge = *(ce + 1);
5225 const std::vector<MSLane*>& lanes = (*ce)->getLanes();
5226 for (std::vector<MSLane*>::const_iterator i = lanes.begin(); i != lanes.end(); ++i) {
5234 q.
allowsContinuation = allowed ==
nullptr || std::find(allowed->begin(), allowed->end(), cl) != allowed->end();
5237 currentLanes.push_back(q);
5240 if (nextStopEdge == ce
5243 if (!nextStopLane->
isInternal() && !continueAfterStop) {
5247 for (std::vector<LaneQ>::iterator q = currentLanes.begin(); q != currentLanes.end(); ++q) {
5248 if (nextStopLane !=
nullptr && normalStopLane != (*q).lane) {
5249 (*q).allowsContinuation =
false;
5250 (*q).length = nextStopPos;
5251 (*q).currentLength = (*q).length;
5258 seenLength += currentLanes[0].lane->getLength();
5260 progress &= (seen <= 4 || seenLength <
MAX2(maxBrakeDist, 3000.0));
5272 double bestLength = -1;
5273 int bestThisIndex = 0;
5276 for (std::vector<LaneQ>::iterator j = last.begin(); j != last.end(); ++j, ++index) {
5277 if ((*j).length > bestLength) {
5278 bestLength = (*j).length;
5279 bestThisIndex = index;
5283 bool requiredChangeRightForbidden =
false;
5284 int requireChangeToLeftForbidden = -1;
5285 for (std::vector<LaneQ>::iterator j = last.begin(); j != last.end(); ++j, ++index) {
5286 if ((*j).length < bestLength) {
5287 (*j).bestLaneOffset = bestThisIndex - index;
5289 if ((*j).bestLaneOffset < 0 && (!(*j).lane->allowsChangingRight(
getVClass()) || requiredChangeRightForbidden)) {
5291 requiredChangeRightForbidden =
true;
5292 (*j).length -= (*j).currentLength;
5293 }
else if ((*j).bestLaneOffset > 0 && !(*j).lane->allowsChangingLeft(
getVClass())) {
5295 requireChangeToLeftForbidden = (*j).lane->getIndex();
5299 for (
int i = requireChangeToLeftForbidden; i >= 0; i--) {
5300 last[i].length -= last[i].currentLength;
5303 #ifdef DEBUG_BESTLANES
5305 std::cout <<
" last edge:\n";
5307 for (std::vector<LaneQ>::iterator j = laneQs.begin(); j != laneQs.end(); ++j) {
5308 std::cout <<
" lane=" << (*j).lane->getID() <<
" length=" << (*j).length <<
" bestOffset=" << (*j).bestLaneOffset <<
"\n";
5314 for (std::vector<std::vector<LaneQ> >::reverse_iterator i =
myBestLanes.rbegin() + 1; i !=
myBestLanes.rend(); ++i) {
5315 std::vector<LaneQ>& nextLanes = (*(i - 1));
5316 std::vector<LaneQ>& clanes = (*i);
5317 MSEdge& cE = clanes[0].lane->getEdge();
5319 double bestConnectedLength = -1;
5320 double bestLength = -1;
5321 for (std::vector<LaneQ>::iterator j = nextLanes.begin(); j != nextLanes.end(); ++j, ++index) {
5322 if ((*j).lane->isApproachedFrom(&cE) && bestConnectedLength < (*j).length) {
5323 bestConnectedLength = (*j).length;
5325 if (bestLength < (*j).length) {
5326 bestLength = (*j).length;
5330 int bestThisIndex = 0;
5331 if (bestConnectedLength > 0) {
5333 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
5334 LaneQ bestConnectedNext;
5335 bestConnectedNext.
length = -1;
5336 if ((*j).allowsContinuation) {
5337 for (std::vector<LaneQ>::const_iterator m = nextLanes.begin(); m != nextLanes.end(); ++m) {
5338 if (((*m).lane->allowsVehicleClass(
getVClass()) || (*m).lane->hadPermissionChanges())
5339 && (*m).lane->isApproachedFrom(&cE, (*j).lane)) {
5340 if (bestConnectedNext.
length < (*m).length || (bestConnectedNext.
length == (*m).length && abs(bestConnectedNext.
bestLaneOffset) > abs((*m).bestLaneOffset))) {
5341 bestConnectedNext = *m;
5345 if (bestConnectedNext.
length == bestConnectedLength && abs(bestConnectedNext.
bestLaneOffset) < 2) {
5346 (*j).
length += bestLength;
5348 (*j).length += bestConnectedNext.
length;
5353 if (clanes[bestThisIndex].length < (*j).length
5354 || (clanes[bestThisIndex].length == (*j).length && abs(clanes[bestThisIndex].bestLaneOffset) > abs((*j).bestLaneOffset))
5355 || (clanes[bestThisIndex].length == (*j).length && abs(clanes[bestThisIndex].bestLaneOffset) == abs((*j).bestLaneOffset) &&
5358 bestThisIndex = index;
5365 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
5367 if (overheadWireSegmentID !=
"") {
5368 bestThisIndex = index;
5375 int bestNextIndex = 0;
5376 int bestDistToNeeded = (int) clanes.size();
5378 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
5379 if ((*j).allowsContinuation) {
5381 for (std::vector<LaneQ>::const_iterator m = nextLanes.begin(); m != nextLanes.end(); ++m, ++nextIndex) {
5382 if ((*m).lane->isApproachedFrom(&cE, (*j).lane)) {
5383 if (bestDistToNeeded > abs((*m).bestLaneOffset)) {
5384 bestDistToNeeded = abs((*m).bestLaneOffset);
5385 bestThisIndex = index;
5386 bestNextIndex = nextIndex;
5392 clanes[bestThisIndex].length += nextLanes[bestNextIndex].length;
5393 copy(nextLanes[bestNextIndex].bestContinuations.begin(), nextLanes[bestNextIndex].bestContinuations.end(), back_inserter(clanes[bestThisIndex].bestContinuations));
5398 bool requiredChangeRightForbidden =
false;
5399 int requireChangeToLeftForbidden = -1;
5400 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
5401 if ((*j).length < clanes[bestThisIndex].length
5402 || ((*j).length == clanes[bestThisIndex].length && abs((*j).bestLaneOffset) > abs(clanes[bestThisIndex].bestLaneOffset))
5405 (*j).bestLaneOffset = bestThisIndex - index;
5408 (*j).length = (*j).currentLength;
5410 if ((*j).bestLaneOffset < 0 && (!(*j).lane->allowsChangingRight(
getVClass()) || requiredChangeRightForbidden)) {
5412 requiredChangeRightForbidden =
true;
5413 (*j).length -= (*j).currentLength;
5414 }
else if ((*j).bestLaneOffset > 0 && !(*j).lane->allowsChangingLeft(
getVClass())) {
5416 requireChangeToLeftForbidden = (*j).lane->getIndex();
5419 (*j).bestLaneOffset = 0;
5422 for (
int idx = requireChangeToLeftForbidden; idx >= 0; idx--) {
5423 clanes[idx].length -= clanes[idx].currentLength;
5430 if (overheadWireID !=
"") {
5431 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
5432 (*j).bestLaneOffset = bestThisIndex - index;
5437 #ifdef DEBUG_BESTLANES
5439 std::cout <<
" edge=" << cE.
getID() <<
"\n";
5440 std::vector<LaneQ>& laneQs = clanes;
5441 for (std::vector<LaneQ>::iterator j = laneQs.begin(); j != laneQs.end(); ++j) {
5442 std::cout <<
" lane=" << (*j).lane->getID() <<
" length=" << (*j).length <<
" bestOffset=" << (*j).bestLaneOffset <<
"\n";
5449 #ifdef DEBUG_BESTLANES
5460 if (conts.size() < 2) {
5463 const MSLink*
const link = conts[0]->getLinkTo(conts[1]);
5464 if (link !=
nullptr) {
5476 std::vector<LaneQ>& currLanes = *
myBestLanes.begin();
5477 std::vector<LaneQ>::iterator i;
5478 for (i = currLanes.begin(); i != currLanes.end(); ++i) {
5479 double nextOccupation = 0;
5480 for (std::vector<MSLane*>::const_iterator j = (*i).bestContinuations.begin() + 1; j != (*i).bestContinuations.end(); ++j) {
5481 nextOccupation += (*j)->getBruttoVehLenSum();
5483 (*i).nextOccupation = nextOccupation;
5484 #ifdef DEBUG_BESTLANES
5486 std::cout <<
" lane=" << (*i).lane->getID() <<
" nextOccupation=" << nextOccupation <<
"\n";
5489 if ((*i).lane == startLane) {
5496 const std::vector<MSLane*>&
5501 return (*myCurrentLaneInBestLanes).bestContinuations;
5505 const std::vector<MSLane*>&
5517 if ((*i).lane == lane) {
5518 return (*i).bestContinuations;
5524 const std::vector<const MSLane*>
5526 std::vector<const MSLane*> lanes;
5528 if (distance <= 0.) {
5539 while (lane->
isInternal() && (distance > 0.)) {
5540 lanes.insert(lanes.end(), lane);
5542 lane = lane->
getLinkCont().front()->getViaLaneOrLane();
5546 if (contLanes.empty()) {
5549 auto contLanesIt = contLanes.begin();
5551 while (distance > 0.) {
5553 if (contLanesIt != contLanes.end()) {
5556 assert(l->
getEdge().
getID() == (*routeIt)->getLanes().front()->getEdge().getID());
5567 l = (*routeIt)->getLanes().back();
5573 assert(l !=
nullptr);
5577 while ((internalLane !=
nullptr) && internalLane->
isInternal() && (distance > 0.)) {
5578 lanes.insert(lanes.end(), internalLane);
5580 internalLane = internalLane->
getLinkCont().front()->getViaLaneOrLane();
5582 if (distance <= 0.) {
5586 lanes.insert(lanes.end(), l);
5593 const std::vector<const MSLane*>
5595 std::vector<const MSLane*> lanes;
5597 if (distance <= 0.) {
5609 while (lane->
isInternal() && (distance > 0.)) {
5610 lanes.insert(lanes.end(), lane);
5615 while (distance > 0.) {
5617 MSLane* l = (*routeIt)->getLanes().back();
5621 const MSLane* internalLane = internalEdge !=
nullptr ? internalEdge->
getLanes().front() :
nullptr;
5622 std::vector<const MSLane*> internalLanes;
5623 while ((internalLane !=
nullptr) && internalLane->
isInternal()) {
5624 internalLanes.insert(internalLanes.begin(), internalLane);
5625 internalLane = internalLane->
getLinkCont().front()->getViaLaneOrLane();
5627 for (
auto it = internalLanes.begin(); (it != internalLanes.end()) && (distance > 0.); ++it) {
5628 lanes.insert(lanes.end(), *it);
5629 distance -= (*it)->getLength();
5631 if (distance <= 0.) {
5635 lanes.insert(lanes.end(), l);
5651 const std::vector<MSLane*>
5654 std::vector<MSLane*> result;
5655 for (
const MSLane* lane : routeLanes) {
5657 if (opposite !=
nullptr) {
5658 result.push_back(opposite);
5672 return (*myCurrentLaneInBestLanes).bestLaneOffset;
5679 std::vector<MSVehicle::LaneQ>& preb =
myBestLanes.front();
5680 assert(laneIndex < (
int)preb.size());
5681 preb[laneIndex].occupation = density + preb[laneIndex].nextOccupation;
5692 std::pair<const MSLane*, double>
5694 if (distance == 0) {
5699 for (
const MSLane* lane : lanes) {
5700 if (lane->getLength() > distance) {
5701 return std::make_pair(lane, distance);
5703 distance -= lane->getLength();
5705 return std::make_pair(
nullptr, -1);
5711 double distance = std::numeric_limits<double>::max();
5712 if (
isOnRoad() && destEdge !=
nullptr) {
5726 std::pair<const MSVehicle* const, double>
5729 return std::make_pair(
static_cast<const MSVehicle*
>(
nullptr), -1);
5738 MSLane::VehCont::const_iterator it = std::find(vehs.begin(), vehs.end(),
this);
5739 if (it != vehs.end() && it + 1 != vehs.end()) {
5742 if (lead !=
nullptr) {
5743 std::pair<const MSVehicle* const, double> result(
5756 std::pair<const MSVehicle* const, double>
5759 return std::make_pair(
static_cast<const MSVehicle*
>(
nullptr), -1);
5771 std::pair<const MSVehicle* const, double> leaderInfo =
getLeader(-1);
5772 if (leaderInfo.first ==
nullptr ||
getSpeed() == 0) {
5784 if (
myStops.front().triggered &&
myStops.front().numExpectedPerson > 0) {
5785 myStops.front().numExpectedPerson -= (int)
myStops.front().pars.awaitedPersons.count(transportable->
getID());
5788 if (
myStops.front().pars.containerTriggered &&
myStops.front().numExpectedContainer > 0) {
5789 myStops.front().numExpectedContainer -= (int)
myStops.front().pars.awaitedContainers.count(transportable->
getID());
5801 const bool blinkerManoeuvre = (((state &
LCA_SUBLANE) == 0) && (
5807 std::swap(left, right);
5809 if ((state &
LCA_LEFT) != 0 && blinkerManoeuvre) {
5811 }
else if ((state &
LCA_RIGHT) != 0 && blinkerManoeuvre) {
5823 switch ((*link)->getDirection()) {
5840 && (
myStops.begin()->reached ||
5843 if (
myStops.begin()->lane->getIndex() > 0 &&
myStops.begin()->lane->getParallelLane(-1)->allowsVehicleClass(
getVClass())) {
5846 }
else if (!
myStops.begin()->reached &&
myStops.begin()->pars.parking) {
5861 if (currentTime % 1000 == 0) {
5916 #ifdef DEBUG_FURTHER
5926 for (
int i = 0; i < (int)shadowFurther.size(); ++i) {
5928 if (shadowFurther[i] == lane) {
5951 #ifdef DEBUG_FURTHER
5959 #ifdef DEBUG_FURTHER
5966 for (
int i = 0; i < (int)shadowFurther.size(); ++i) {
5967 if (shadowFurther[i] == lane) {
5968 #ifdef DEBUG_FURTHER
5971 <<
" lane=" << lane->
getID()
5985 MSLane* targetLane = furtherTargets[i];
5986 if (targetLane == lane) {
5989 #ifdef DEBUG_TARGET_LANE
5991 std::cout <<
" getLatOffset veh=" <<
getID()
5997 <<
" targetDir=" << targetDir
5998 <<
" latOffset=" << latOffset
6015 assert(offset == 0 || offset == 1 || offset == -1);
6016 assert(
myLane !=
nullptr);
6019 const double halfVehWidth = 0.5 * (
getWidth() + NUMERICAL_EPS);
6022 double leftLimit = halfCurrentLaneWidth - halfVehWidth - oppositeSign * latPos;
6023 double rightLimit = -halfCurrentLaneWidth + halfVehWidth - oppositeSign * latPos;
6024 double latLaneDist = 0;
6026 if (latPos + halfVehWidth > halfCurrentLaneWidth) {
6028 latLaneDist = halfCurrentLaneWidth - latPos - halfVehWidth;
6029 }
else if (latPos - halfVehWidth < -halfCurrentLaneWidth) {
6031 latLaneDist = -halfCurrentLaneWidth - latPos + halfVehWidth;
6033 latLaneDist *= oppositeSign;
6034 }
else if (offset == -1) {
6035 latLaneDist = rightLimit - (
getWidth() + NUMERICAL_EPS);
6036 }
else if (offset == 1) {
6037 latLaneDist = leftLimit + (
getWidth() + NUMERICAL_EPS);
6039 #ifdef DEBUG_ACTIONSTEPS
6042 <<
" veh=" <<
getID()
6043 <<
" halfCurrentLaneWidth=" << halfCurrentLaneWidth
6044 <<
" halfVehWidth=" << halfVehWidth
6045 <<
" latPos=" << latPos
6046 <<
" latLaneDist=" << latLaneDist
6047 <<
" leftLimit=" << leftLimit
6048 <<
" rightLimit=" << rightLimit
6072 if (dpi.myLink !=
nullptr) {
6073 dpi.myLink->removeApproaching(
this);
6091 std::vector<MSLink*>::const_iterator link =
MSLane::succLinkSec(*
this, view, *lane, bestLaneConts);
6093 while (!lane->
isLinkEnd(link) && seen <= dist) {
6095 && (((*link)->getState() ==
LINKSTATE_ZIPPER && seen < (*link)->getFoeVisibilityDistance())
6096 || !(*link)->havePriority())) {
6100 if ((*di).myLink !=
nullptr) {
6101 const MSLane* diPredLane = (*di).myLink->getLaneBefore();
6102 if (diPredLane !=
nullptr) {
6113 const SUMOTime leaveTime = (*link)->getLeaveTime((*di).myArrivalTime, (*di).myArrivalSpeed,
6115 if ((*link)->hasApproachingFoe((*di).myArrivalTime, leaveTime, (*di).myArrivalSpeed,
getCarFollowModel().getMaxDecel())) {
6122 lane = (*link)->getViaLaneOrLane();
6146 centerLine.push_back(lane->getShape().back());
6186 result.push_back(line1[0]);
6187 result.push_back(line2[0]);
6188 result.push_back(line2[1]);
6189 result.push_back(line1[1]);
6192 result.push_back(line1[1]);
6193 result.push_back(line2[1]);
6194 result.push_back(line2[0]);
6195 result.push_back(line1[0]);
6207 if (&(*i)->getEdge() == edge) {
6224 if (destParkArea ==
nullptr) {
6226 errorMsg =
"Vehicle " +
getID() +
" is not driving to a parking area so it cannot be rerouted.";
6239 if (newParkingArea ==
nullptr) {
6240 errorMsg =
"Parking area ID " +
toString(parkingAreaID) +
" not found in the network.";
6253 if (!newDestination) {
6264 if (edgesFromPark.size() > 0) {
6265 edges.insert(edges.end(), edgesFromPark.begin() + 1, edgesFromPark.end());
6268 if (newDestination) {
6279 const bool onInit =
myLane ==
nullptr;
6292 const int numStops = (int)
myStops.size();
6337 if (
myStops.front().busstop !=
nullptr) {
6339 myStops.front().busstop->leaveFrom(
this);
6342 if (
myStops.front().containerstop !=
nullptr) {
6344 myStops.front().containerstop->leaveFrom(
this);
6346 if (
myStops.front().parkingarea !=
nullptr) {
6348 myStops.front().parkingarea->leaveFrom(
this);
6350 if (
myStops.front().chargingStation !=
nullptr) {
6352 myStops.front().chargingStation->leaveFrom(
this);
6359 if (vehroutes !=
nullptr) {
6472 #ifdef DEBUG_IGNORE_RED
6477 if (ignoreRedTime < 0) {
6479 if (ignoreYellowTime > 0 && link->
haveYellow()) {
6483 return !canBrake || ignoreYellowTime > yellowDuration;
6493 #ifdef DEBUG_IGNORE_RED
6497 <<
" ignoreRedTime=" << ignoreRedTime
6498 <<
" spentRed=" << redDuration
6499 <<
" canBrake=" << canBrake <<
"\n";
6503 return !canBrake || ignoreRedTime > redDuration;
6529 if (veh ==
nullptr) {
6556 assert(logic !=
nullptr);
6565 response = foeEntry->
haveRed();
6579 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
6582 <<
" foeLane=" << foeLane->
getID()
6584 <<
" linkIndex=" << link->
getIndex()
6585 <<
" foeLinkIndex=" << foeLink->
getIndex()
6588 <<
" response=" << response
6589 <<
" response2=" << response2
6597 }
else if (response && response2) {
6603 if (egoET == foeET) {
6607 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
6609 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" equal ET " << egoET <<
" with foe " << veh->
getID()
6610 <<
" foeIsLeaderByID=" << (
getID() < veh->
getID()) <<
"\n";
6615 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
6617 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" equal ET " << egoET <<
" with foe " << veh->
getID()
6627 #ifdef DEBUG_PLAN_MOVE_LEADERINFO
6629 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" egoET " << egoET <<
" with foe " << veh->
getID()
6630 <<
" foeET=" << foeET <<
" isLeader=" << (egoET > foeET) <<
"\n";
6633 return egoET > foeET;
6649 std::vector<std::string> internals;
6667 stop.write(out,
false);
6684 dev->saveState(out);
6692 throw ProcessError(
"Error: Invalid vehicles in state (may be a meso state)!");
6711 while (pastStops > 0) {
6739 SUMOTime arrivalTime,
double arrivalSpeed,
6740 SUMOTime arrivalTimeBraking,
double arrivalSpeedBraking,
6741 double dist,
double leaveSpeed) {
6744 arrivalTime, arrivalSpeed, arrivalTimeBraking, arrivalSpeedBraking, dist, leaveSpeed));
6749 std::shared_ptr<MSSimpleDriverState>
6811 return (myGUIIncrement);
6816 return (myManoeuvreType);
6832 myManoeuvreType = mType;
6847 if (abs(GUIAngle) < 0.1) {
6850 myManoeuvreVehicleID = veh->
getID();
6853 myManoeuvreStartTime = currentTime;
6855 myGUIIncrement = GUIAngle / ((myManoeuvreCompleteTime - myManoeuvreStartTime) / (
TS * 1000.));
6859 std::cout <<
"ENTRY manoeuvre start: vehicle=" << veh->
getID() <<
" Manoeuvre Angle=" << manoeuverAngle <<
" Rotation angle=" <<
RAD2DEG(GUIAngle) <<
" Road Angle" <<
RAD2DEG(veh->
getAngle()) <<
" increment=" <<
RAD2DEG(myGUIIncrement) <<
" currentTime=" << currentTime <<
6860 " endTime=" << myManoeuvreCompleteTime <<
" manoeuvre time=" << myManoeuvreCompleteTime - currentTime <<
" parkArea=" << myManoeuvreStop << std::endl;
6885 if (abs(GUIAngle) < 0.1) {
6889 myManoeuvreVehicleID = veh->
getID();
6892 myManoeuvreStartTime = currentTime;
6894 myGUIIncrement = (-GUIAngle) / ((myManoeuvreCompleteTime - myManoeuvreStartTime) / (
TS * 1000.));
6901 std::cout <<
"EXIT manoeuvre start: vehicle=" << veh->
getID() <<
" Manoeuvre Angle=" << manoeuverAngle <<
" increment=" <<
RAD2DEG(myGUIIncrement) <<
" currentTime=" << currentTime
6902 <<
" endTime=" << myManoeuvreCompleteTime <<
" manoeuvre time=" << myManoeuvreCompleteTime - currentTime <<
" parkArea=" << myManoeuvreStop << std::endl;
6919 if (configureEntryManoeuvre(veh)) {
6936 if (checkType != myManoeuvreType) {
6961 if (lane ==
nullptr) {
6972 travelTime += (*it)->getMinimumTravelTime(
this);
6973 dist += (*it)->getLength();
6978 dist += stopEdgeDist;
6985 const double d = dist;
6991 const double maxVD =
MAX2(c, ((sqrt(
MAX2(0.0, pow(2 * c * b, 2) + (4 * ((b * ((a * (2 * d * (b + a) + (vs * vs) - (c * c))) - (b * (c * c))))
6992 + pow((a * vs), 2))))) * 0.5) + (c * b)) / (b + a));
6996 double timeLossAccel = 0;
6997 double timeLossDecel = 0;
6998 double timeLossLength = 0;
7000 double v =
MIN2(maxVD, (*it)->getVehicleMaxSpeed(
this));
7002 if (edgeLength <= len && v0Stable && v0 < v) {
7003 const double lengthDist =
MIN2(len, edgeLength);
7004 const double dTL = lengthDist / v0 - lengthDist / v;
7006 timeLossLength += dTL;
7008 if (edgeLength > len) {
7009 const double dv = v - v0;
7012 const double dTA = dv / a - dv * (v + v0) / (2 * a * v);
7014 timeLossAccel += dTA;
7016 }
else if (dv < 0) {
7018 const double dTD = -dv / b + dv * (v + v0) / (2 * b * v0);
7020 timeLossDecel += dTD;
7029 const double dv = v - v0;
7032 const double dTA = dv / a - dv * (v + v0) / (2 * a * v);
7034 timeLossAccel += dTA;
7036 }
else if (dv < 0) {
7038 const double dTD = -dv / b + dv * (v + v0) / (2 * b * v0);
7040 timeLossDecel += dTD;
7042 const double result = travelTime + timeLossAccel + timeLossDecel + timeLossLength;
7045 return MAX2(0.0, result);
std::vector< const MSEdge * > ConstMSEdgeVector
std::vector< MSEdge * > MSEdgeVector
std::pair< const MSVehicle *, double > CLeaderDist
std::pair< const MSPerson *, double > PersonDist
ConstMSEdgeVector::const_iterator MSRouteIterator
#define NUMERICAL_EPS_SPEED
#define STOPPING_PLACE_OFFSET
#define JUNCTION_BLOCKAGE_TIME
#define DIST_TO_STOPLINE_EXPECT_PRIORITY
#define WRITE_WARNINGF(...)
#define WRITE_WARNING(msg)
std::string time2string(SUMOTime t)
convert SUMOTime to string
bool isRailway(SVCPermissions permissions)
Returns whether an edge with the given permission is a railway edge.
@ SVC_RAIL_CLASSES
classes which drive on tracks
@ SVC_EMERGENCY
public emergency vehicles
@ RAIL_CARGO
render as a cargo train
@ PASSENGER_VAN
render as a van
@ PASSENGER
render as a passenger vehicle
@ RAIL_CAR
render as a (city) rail without locomotive
@ PASSENGER_HATCHBACK
render as a hatchback passenger vehicle ("Fliessheck")
@ BUS_FLEXIBLE
render as a flexible city bus
@ TRUCK_1TRAILER
render as a transport vehicle with one trailer
@ PASSENGER_SEDAN
render as a sedan passenger vehicle ("Stufenheck")
@ PASSENGER_WAGON
render as a wagon passenger vehicle ("Combi")
@ TRUCK_SEMITRAILER
render as a semi-trailer transport vehicle ("Sattelschlepper")
int SVCPermissions
bitset where each bit declares whether a certain SVC may use this edge/lane
@ GIVEN
The lane is given.
@ GIVEN
The speed is given.
@ GIVEN
The arrival lane is given.
@ GIVEN
The speed is given.
const int VEHPARS_FORCE_REROUTE
@ GIVEN
The arrival position is given.
const int STOP_STARTED_SET
@ SUMO_TAG_PARKING_AREA_REROUTE
entry for an alternative parking zone
@ SUMO_TAG_PARKING_AREA
A parking area.
@ SUMO_TAG_OVERHEAD_WIRE_SEGMENT
An overhead wire segment.
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ PARTLEFT
The link is a partial left direction.
@ RIGHT
The link is a (hard) right direction.
@ TURN
The link is a 180 degree turn.
@ LEFT
The link is a (hard) left direction.
@ STRAIGHT
The link is a straight direction.
@ TURN_LEFTHAND
The link is a 180 degree turn (left-hand network)
@ PARTRIGHT
The link is a partial right direction.
@ NODIR
The link has no direction (is a dead end link)
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic,...
@ LINKSTATE_ALLWAY_STOP
This is an uncontrolled, all-way stop link.
@ LINKSTATE_EQUAL
This is an uncontrolled, right-before-left link.
@ LINKSTATE_ZIPPER
This is an uncontrolled, zipper-merge link.
@ LCA_KEEPRIGHT
The action is due to the default of keeping right "Rechtsfahrgebot".
@ LCA_BLOCKED
blocked in all directions
@ LCA_URGENT
The action is urgent (to be defined by lc-model)
@ LCA_STAY
Needs to stay on the current lane.
@ LCA_SUBLANE
used by the sublane model
@ LCA_WANTS_LANECHANGE_OR_STAY
lane can change or stay
@ LCA_COOPERATIVE
The action is done to help someone else.
@ LCA_OVERLAPPING
The vehicle is blocked being overlapping.
@ LCA_LEFT
Wants go to the left.
@ LCA_STRATEGIC
The action is needed to follow the route (navigational lc)
@ LCA_TRACI
The action is due to a TraCI request.
@ LCA_SPEEDGAIN
The action is due to the wish to be faster (tactical lc)
@ LCA_RIGHT
Wants go to the right.
@ SUMO_ATTR_JM_IGNORE_KEEPCLEAR_TIME
@ SUMO_ATTR_MAXIMUMPOWER
Maximum Power.
@ SUMO_ATTR_JM_STOPLINE_GAP
@ SUMO_ATTR_JM_DRIVE_AFTER_RED_TIME
@ SUMO_ATTR_JM_DRIVE_AFTER_YELLOW_TIME
@ SUMO_ATTR_JM_IGNORE_JUNCTION_FOE_PROB
@ SUMO_ATTR_STATE
The state of a link.
@ SUMO_ATTR_JM_DRIVE_RED_SPEED
int gPrecision
the precision for floating point outputs
bool gDebugFlag1
global utility flags for debugging
const double INVALID_DOUBLE
const double SUMO_const_laneWidth
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
#define SOFT_ASSERT(expr)
define SOFT_ASSERT raise an assertion in debug mode everywhere except on the windows test server
static double naviDegree(const double angle)
static double fromNaviDegree(const double angle)
Interface for lane-change models.
double getLaneChangeCompletion() const
Get the current lane change completion ratio.
MSLane * updateTargetLane()
bool hasBlueLight() const
const std::vector< double > & getShadowFurtherLanesPosLat() const
double getCommittedSpeed() const
double getManeuverDist() const
Returns the remaining unblocked distance for the current maneuver. (only used by sublane model)
int getLaneChangeDirection() const
return the direction of the current lane change maneuver
virtual void prepareStep()
void resetChanged()
reset the flag whether a vehicle already moved to false
MSLane * getShadowLane() const
Returns the lane the vehicle's shadow is on during continuous/sublane lane change.
void endLaneChangeManeuver(const MSMoveReminder::Notification reason=MSMoveReminder::NOTIFICATION_LANE_CHANGE)
const std::vector< MSLane * > & getShadowFurtherLanes() const
void setNoShadowPartialOccupator(MSLane *lane)
SUMOTime remainingTime() const
Compute the remaining time until LC completion.
void setShadowApproachingInformation(MSLink *link) const
set approach information for the shadow vehicle
const std::vector< MSLane * > & getFurtherTargetLanes() const
static MSAbstractLaneChangeModel * build(LaneChangeModel lcm, MSVehicle &vehicle)
Factory method for instantiating new lane changing models.
void changedToOpposite()
called when a vehicle changes between lanes in opposite directions
int getShadowDirection() const
return the direction in which the current shadow lane lies
MSLane * getTargetLane() const
Returns the lane the vehicle has committed to enter during a sublane lane change.
double getAngleOffset() const
return the angle offset during a continuous change maneuver
bool isChangingLanes() const
return true if the vehicle currently performs a lane change maneuver
void removeShadowApproachingInformation() const
SUMOAbstractRouter< MSEdge, SUMOVehicle > & getRouterTT(const int rngIndex, SUMOVehicleClass svc) const
The base class for microscopic and mesoscopic vehicles.
double getMaxSpeed() const
Returns the maximum speed.
MSVehicleDevice * getDevice(const std::type_info &type) const
Returns a device of the given type if it exists or 0.
virtual bool isSelected() const
whether this vehicle is selected in the GUI
std::list< MSStop > myStops
The vehicle's list of stops.
double getImpatience() const
Returns this vehicles impatience.
const std::vector< MSTransportable * > & getPersons() const
retrieve riding persons
virtual void initDevices()
void calculateArrivalParams(bool onInit)
(Re-)Calculates the arrival position and lane from the vehicle parameters
virtual double getArrivalPos() const
Returns this vehicle's desired arrivalPos for its current route (may change on reroute)
MSVehicleType * myType
This vehicle's type.
MoveReminderCont myMoveReminders
Currently relevant move reminders.
double myDepartPos
The real depart position.
const std::list< MSStop > & getStops() const
const SUMOVehicleParameter & getParameter() const
Returns the vehicle's parameter (including departure definition)
void addReminder(MSMoveReminder *rem)
Adds a MoveReminder dynamically.
void replaceParameter(const SUMOVehicleParameter *newParameter)
replace the vehicle parameter (deleting the old one)
std::vector< MSVehicleDevice * > myDevices
The devices this vehicle has.
virtual void addTransportable(MSTransportable *transportable)
Adds a person or container to this vehicle.
MSVehicleType & getSingularType()
Replaces the current vehicle type with a new one used by this vehicle only.
virtual void replaceVehicleType(MSVehicleType *type)
Replaces the current vehicle type by the one given.
double getLength() const
Returns the vehicle's length.
bool isParking() const
Returns whether the vehicle is parking.
const MSEdge * getEdge() const
Returns the edge the vehicle is currently at.
int getPersonNumber() const
Returns the number of persons.
MSRouteIterator myCurrEdge
Iterator to current route-edge.
bool hasDeparted() const
Returns whether this vehicle has already departed.
double getWidth() const
Returns the vehicle's width.
MSDevice_Transportable * myContainerDevice
The containers this vehicle may have.
SUMOTime getDeparture() const
Returns this vehicle's real departure time.
MSDevice_Transportable * myPersonDevice
The passengers this vehicle may have.
const MSRoute * myRoute
This vehicle's route.
const MSVehicleType & getVehicleType() const
Returns the vehicle's type definition.
bool hasStops() const
Returns whether the vehicle has to stop somewhere.
@ ROUTE_START_INVALID_LANE
@ ROUTE_START_INVALID_PERMISSIONS
SUMOVehicleClass getVClass() const
Returns the vehicle's access class.
virtual bool replaceRoute(const MSRoute *route, const std::string &info, bool onInit=false, int offset=0, bool addStops=true, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given one.
int myArrivalLane
The destination lane where the vehicle stops.
SUMOTime myDeparture
The real departure time.
bool isStoppedTriggered() const
Returns whether the vehicle is on a triggered stop.
std::vector< SUMOVehicleParameter::Stop > myPastStops
The list of stops that the vehicle has already reached.
void onDepart()
Called when the vehicle is inserted into the network.
bool haveValidStopEdges() const
check whether all stop.edge MSRouteIterators are valid and in order
virtual bool addTraciStop(SUMOVehicleParameter::Stop stop, std::string &errorMsg)
int getRoutePosition() const
return index of edge within route
static const SUMOTime NOT_YET_DEPARTED
const SUMOVehicleParameter * myParameter
This vehicle's parameter.
int myRouteValidity
status of the current vehicle route
const MSRoute & getRoute() const
Returns the current route.
bool isStopped() const
Returns whether the vehicle is at a stop.
int myNumberReroutes
The number of reroutings.
double myArrivalPos
The position on the destination lane where the vehicle stops.
virtual void saveState(OutputDevice &out)
Saves the (common) state of a vehicle.
double myOdometer
A simple odometer to keep track of the length of the route already driven.
int getContainerNumber() const
Returns the number of containers.
bool replaceRouteEdges(ConstMSEdgeVector &edges, double cost, double savings, const std::string &info, bool onInit=false, bool check=false, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given edges.
The car-following model abstraction.
double estimateSpeedAfterDistance(const double dist, const double v, const double accel) const
virtual double maxNextSpeed(double speed, const MSVehicle *const veh) const
Returns the maximum speed given the current speed.
double stopSpeed(const MSVehicle *const veh, const double speed, double gap) const
Computes the vehicle's safe speed for approaching a non-moving obstacle (no dawdling)
virtual double minNextSpeedEmergency(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed after emergency braking, given the current speed (depends on the numerical ...
double maximumSafeStopSpeed(double gap, double decel, double currentSpeed, bool onInsertion=false, double headway=-1) const
Returns the maximum next velocity for stopping within gap.
double getEmergencyDecel() const
Get the vehicle type's maximal phisically possible deceleration [m/s^2].
double getMinimalArrivalSpeed(double dist, double currentSpeed) const
Computes the minimal possible arrival speed after covering a given distance.
virtual void setHeadwayTime(double headwayTime)
Sets a new value for desired headway [s].
virtual double minNextSpeed(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed given the current speed (depends on the numerical update scheme and its ste...
SUMOTime getMinimalArrivalTime(double dist, double currentSpeed, double arrivalSpeed) const
Computes the minimal time needed to cover a distance given the desired speed at arrival.
virtual double brakeGap(const double speed) const
Returns the distance the vehicle needs to halt including driver's reaction time tau (i....
virtual double finalizeSpeed(MSVehicle *const veh, double vPos) const
Applies interaction with stops and lane changing model influences. Called at most once per simulation...
virtual double freeSpeed(const MSVehicle *const veh, double speed, double seen, double maxSpeed, const bool onInsertion=false) const
Computes the vehicle's safe speed without a leader.
virtual VehicleVariables * createVehicleVariables() const
Returns model specific values which are stored inside a vehicle and must be used with casting.
virtual double followSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0) const =0
Computes the vehicle's follow speed (no dawdling)
virtual double maximumLaneSpeedCF(double maxSpeed, double maxSpeedLane) const
Returns the maximum velocity the CF-model wants to achieve in the next step.
double getApparentDecel() const
Get the vehicle type's apparent deceleration [m/s^2] (the one regarded by its followers.
double getMaxAccel() const
Get the vehicle type's maximum acceleration [m/s^2].
double getMaxDecel() const
Get the vehicle type's maximal comfortable deceleration [m/s^2].
double getMinimalArrivalSpeedEuler(double dist, double currentSpeed) const
Computes the minimal possible arrival speed after covering a given distance for Euler update.
virtual double getHeadwayTime() const
Get the driver's desired headway [s].
The ToC Device controls transition of control between automated and manual driving.
std::shared_ptr< MSSimpleDriverState > getDriverState() const
return internal state
void update()
update internal state
A device which collects info on the vehicle trip (mainly on departure and arrival)
double consumption(SUMOVehicle &veh, double a, double newSpeed)
return energy consumption in Wh (power multiplied by TS)
double getParameterDouble(const std::string &key) const
void setConsum(const double consumption)
double acceleration(SUMOVehicle &veh, double power, double oldSpeed)
double getConsum() const
Get consum.
bool notifyMove(SUMOTrafficObject &veh, double oldPos, double newPos, double newSpeed)
Checks whether the vehicle is at a stop and transportable action is needed.
A device which collects info on the vehicle trip (mainly on departure and arrival)
void stopEnded(const SUMOVehicleParameter::Stop &stop)
void checkCollisionForInactive(MSLane *l)
trigger collision checking for inactive lane
A road/street connecting two junctions.
const MSEdge * getInternalFollowingEdge(const MSEdge *followerAfterInternal) const
const MSEdge * getOppositeEdge() const
Returns the opposite direction edge if on exists else a nullptr.
bool isFringe() const
return whether this edge is at the fringe of the network
const std::set< MSTransportable * > & getPersons() const
Returns this edge's persons set.
bool isNormal() const
return whether this edge is an internal edge
const std::vector< MSLane * > * allowedLanes(const MSEdge &destination, SUMOVehicleClass vclass=SVC_IGNORING) const
Get the allowed lanes to reach the destination-edge.
const std::vector< MSLane * > & getLanes() const
Returns this edge's lanes.
double getSpeedLimit() const
Returns the speed limit of the edge @caution The speed limit of the first lane is retured; should pro...
const MSJunction * getFromJunction() const
double getMinimumTravelTime(const SUMOVehicle *const veh) const
returns the minimum travel time for the given vehicle
bool isRoundabout() const
bool isInternal() const
return whether this edge is an internal edge
double getWidth() const
Returns the edges's width (sum over all lanes)
bool isVaporizing() const
Returns whether vehicles on this edge shall be vaporized.
void addWaiting(SUMOVehicle *vehicle) const
Adds a vehicle to the list of waiting vehicles.
const MSJunction * getToJunction() const
void removeWaiting(const SUMOVehicle *vehicle) const
Removes a vehicle from the list of waiting vehicles.
const MSEdge * getBidiEdge() const
return opposite superposable/congruent edge, if it exist and 0 else
const MSEdgeVector & getSuccessors(SUMOVehicleClass vClass=SVC_IGNORING) const
Returns the following edges, restricted by vClass.
static bool gModelParkingManoeuver
whether parking simulation includes manoeuver time and any associated lane blocking
static double gTLSYellowMinDecel
The minimum deceleration at a yellow traffic light (only overruled by emergencyDecel)
static double gLateralResolution
static bool gSemiImplicitEulerUpdate
static bool gLefthand
Whether lefthand-drive is being simulated.
static bool gSublane
whether sublane simulation is enabled (sublane model or continuous lanechanging)
static SUMOTime gLaneChangeDuration
static bool gUseStopEnded
whether the simulation should replay previous stop times
static double gEmergencyDecelWarningThreshold
treshold for warning about strong deceleration
static bool gUsingInternalLanes
Information whether the simulation regards internal lanes.
void add(SUMOVehicle *veh)
Adds a single vehicle for departure.
virtual const MSJunctionLogic * getLogic() const
virtual const MSLogicJunction::LinkBits & getResponseFor(int linkIndex) const
Returns the response for the given link.
Representation of a lane in the micro simulation.
const std::vector< MSLink * > & getLinkCont() const
returns the container with all links !!!
MSLane * getParallelLane(int offset, bool includeOpposite=true) const
Returns the lane with the given offset parallel to this one or 0 if it does not exist.
virtual MSVehicle * removeVehicle(MSVehicle *remVehicle, MSMoveReminder::Notification notification, bool notify=true)
int getVehicleNumber() const
Returns the number of vehicles on this lane (for which this lane is responsible)
MSVehicle * getFirstAnyVehicle() const
returns the first vehicle that is fully or partially on this lane
const MSLink * getEntryLink() const
Returns the entry link if this is an internal lane, else nullptr.
int getVehicleNumberWithPartials() const
Returns the number of vehicles on this lane (including partial occupators)
double getBruttoVehLenSum() const
Returns the sum of lengths of vehicles, including their minGaps, which were on the lane during the la...
static std::vector< MSLink * >::const_iterator succLinkSec(const SUMOVehicle &veh, int nRouteSuccs, const MSLane &succLinkSource, const std::vector< MSLane * > &conts)
std::pair< const MSPerson *, double > nextBlocking(double minPos, double minRight, double maxLeft, double stopTime=0) const
This is just a wrapper around MSPModel::nextBlocking. You should always check using hasPedestrians be...
virtual const VehCont & getVehiclesSecure() const
Returns the vehicles container; locks it for microsimulation.
const MSLink * getLinkTo(const MSLane *const) const
returns the link to the given lane or nullptr, if it is not connected
void forceVehicleInsertion(MSVehicle *veh, double pos, MSMoveReminder::Notification notification, double posLat=0)
Inserts the given vehicle at the given position.
double getVehicleStopOffset(const MSVehicle *veh) const
Returns vehicle class specific stopOffset for the vehicle.
double getSpeedLimit() const
Returns the lane's maximum allowed speed.
std::vector< MSVehicle * > VehCont
Container for vehicles.
std::pair< MSVehicle *const, double > getFollower(const MSVehicle *ego, double egoPos, double dist, bool ignoreMinorLinks) const
Find follower vehicle for the given ego vehicle (which may be on the opposite direction lane)
std::vector< StopWatch< std::chrono::nanoseconds > > & getStopWatch()
const MSEdge * getNextNormal() const
Returns the lane's follower if it is an internal lane, the edge of the lane otherwise.
double getLength() const
Returns the lane's length.
double getMaximumBrakeDist() const
compute maximum braking distance on this lane
const MSLane * getInternalFollowingLane(const MSLane *const) const
returns the internal lane leading to the given lane or nullptr, if there is none
const MSLeaderInfo getLastVehicleInformation(const MSVehicle *ego, double latOffset, double minPos=0, bool allowCached=true) const
Returns the last vehicles on the lane.
bool isLinkEnd(std::vector< MSLink * >::const_iterator &i) const
bool allowsVehicleClass(SUMOVehicleClass vclass) const
virtual double setPartialOccupation(MSVehicle *v)
Sets the information about a vehicle lapping into this lane.
double getVehicleMaxSpeed(const SUMOTrafficObject *const veh) const
Returns the lane's maximum speed, given a vehicle's speed limit adaptation.
double getRightSideOnEdge() const
bool hasPedestrians() const
whether the lane has pedestrians on it
int getIndex() const
Returns the lane's index.
const std::vector< IncomingLaneInfo > & getIncomingLanes() const
double getOppositePos(double pos) const
return the corresponding position on the opposite lane
MSLane * getLogicalPredecessorLane() const
get the most likely precedecessor lane (sorted using by_connections_to_sorter). The result is cached ...
double getCenterOnEdge() const
MSLeaderDistanceInfo getFollowersOnConsecutive(const MSVehicle *ego, double backOffset, bool allSublanes, double searchDist=-1, bool ignoreMinorLinks=false) const
return the sublane followers with the largest missing rear gap among all predecessor lanes (within di...
MSVehicle * getLastAnyVehicle() const
returns the last vehicle that is fully or partially on this lane
MSEdge & getEdge() const
Returns the lane's edge.
const PositionVector & getShape() const
Returns this lane's shape.
MSLane * getOpposite() const
return the neighboring opposite direction lane for lane changing or nullptr
virtual void releaseVehicles() const
Allows to use the container for microsimulation again.
bool mustCheckJunctionCollisions() const
whether this lane must check for junction collisions
double interpolateLanePosToGeometryPos(double lanePos) const
MSLane * getBidiLane() const
retrieve bidirectional lane or nullptr
std::pair< MSVehicle *const, double > getLeaderOnConsecutive(double dist, double seen, double speed, const MSVehicle &veh, const std::vector< MSLane * > &bestLaneConts) const
Returns the immediate leader and the distance to him.
MSLane * getParallelOpposite() const
return the opposite direction lane of this lanes edge or nullptr
double getSpaceTillLastStanding(const MSVehicle *ego, bool &foundStopped) const
return the empty space up to the last standing vehicle or the empty space on the whole lane if no veh...
const MSLane * getNormalPredecessorLane() const
get normal lane leading to this internal lane, for normal lanes, the lane itself is returned
const std::vector< MSMoveReminder * > & getMoveReminders() const
Return the list of this lane's move reminders.
double getWidth() const
Returns the lane's width.
const Position geometryPositionAtOffset(double offset, double lateralOffset=0) const
static CollisionAction getCollisionAction()
saves leader/follower vehicles and their distances relative to an ego vehicle
virtual std::string toString() const
print a debugging representation
void fixOppositeGaps(bool isFollower)
subtract vehicle length from all gaps if the leader vehicle is driving in the opposite direction
virtual int addLeader(const MSVehicle *veh, double gap, double latOffset=0, int sublane=-1)
virtual int addLeader(const MSVehicle *veh, bool beyond, double latOffset=0)
void removeOpposite(const MSLane *lane)
remove vehicles that are driving in the opposite direction (fully or partially) on the given lane
virtual std::string toString() const
print a debugging representation
virtual void clear()
discard all information
void getSubLanes(const MSVehicle *veh, double latOffset, int &rightmost, int &leftmost) const
bool fromInternalLane() const
return whether the fromLane of this link is an internal lane
bool isIndirect() const
whether this link is the start of an indirect turn
LinkState getState() const
Returns the current state of the link.
MSLane * getViaLane() const
Returns the following inner lane.
SUMOTime getLastStateChange() const
MSLane * getLane() const
Returns the connected lane.
void setApproaching(const SUMOVehicle *approaching, const SUMOTime arrivalTime, const double arrivalSpeed, const double leaveSpeed, const bool setRequest, const SUMOTime arrivalTimeBraking, const double arrivalSpeedBraking, const SUMOTime waitingTime, double dist, double latOffset)
Sets the information about an approaching vehicle.
MSLane * getViaLaneOrLane() const
return the via lane if it exists and the lane otherwise
bool isConflictEntryLink() const
return whether this link enters the conflict area (not a continuation link)
int getIndex() const
Returns the respond index (for visualization)
std::vector< const SUMOVehicle * > BlockingFoes
bool havePriority() const
Returns whether this link is a major link.
double getZipperSpeed(const MSVehicle *ego, const double dist, double vSafe, SUMOTime arrivalTime, BlockingFoes *collectFoes) const
return the speed at which ego vehicle must approach the zipper link
const LinkLeaders getLeaderInfo(const MSVehicle *ego, double dist, std::vector< const MSPerson * > *collectBlockers=0, bool isShadowLink=false) const
Returns all potential link leaders (vehicles on foeLanes) Valid during the planMove() phase.
bool isEntryLink() const
return whether the toLane of this link is an internal lane and fromLane is a normal lane
const MSLane * getLaneBefore() const
return the internalLaneBefore if it exists and the laneBefore otherwise
bool isInternalJunctionLink() const
return whether the fromLane and the toLane of this link are internal lanes
bool isExitLink() const
return whether the fromLane of this link is an internal lane and toLane is a normal lane
std::vector< LinkLeader > LinkLeaders
bool hasFoes() const
Returns whether this link belongs to a junction where more than one edge is incoming.
const MSLink * getCorrespondingEntryLink() const
returns the corresponding entry link for exitLinks to a junction.
void removeApproaching(const SUMOVehicle *veh)
removes the vehicle from myApproachingVehicles
bool isExitLinkAfterInternalJunction() const
return whether the fromLane of this link is an internal lane and its incoming lane is also an interna...
MSLink * getParallelLink(int direction) const
return the link that is parallel to this lane or 0
double getLateralShift() const
return lateral shift that must be applied when passing this link
const MSTrafficLightLogic * getTLLogic() const
Returns the TLS index.
bool opened(SUMOTime arrivalTime, double arrivalSpeed, double leaveSpeed, double vehicleLength, double impatience, double decel, SUMOTime waitingTime, double posLat=0, BlockingFoes *collectFoes=nullptr, bool ignoreRed=false, const SUMOTrafficObject *ego=nullptr) const
Returns the information whether the link may be passed.
double getFoeVisibilityDistance() const
Returns the distance on the approaching lane from which an approaching vehicle is able to see all rel...
bool lastWasContMajor() const
whether this is a link past an internal junction which currently has priority
MSJunction * getJunction() const
MSLink * getOppositeDirectionLink() const
return the link that is the opposite entry link to this one
LinkDirection getDirection() const
Returns the direction the vehicle passing this link take.
bool keepClear() const
whether the junction after this link must be kept clear
const MSLane * getInternalLaneBefore() const
return myInternalLaneBefore (always 0 when compiled without internal lanes)
bool haveRed() const
Returns whether this link is blocked by a red (or redyellow) traffic light.
Something on a lane to be noticed about vehicle movement.
Notification
Definition of a vehicle state.
@ NOTIFICATION_TELEPORT_ARRIVED
The vehicle was teleported out of the net.
@ NOTIFICATION_PARKING_REROUTE
The vehicle needs another parking area.
@ NOTIFICATION_DEPARTED
The vehicle has departed (was inserted into the network)
@ NOTIFICATION_LANE_CHANGE
The vehicle changes lanes (micro only)
@ NOTIFICATION_VAPORIZED_VAPORIZER
The vehicle got vaporized with a vaporizer.
@ NOTIFICATION_JUNCTION
The vehicle arrived at a junction.
@ NOTIFICATION_PARKING
The vehicle starts or ends parking.
@ NOTIFICATION_LOAD_STATE
The vehicle has been loaded from a state file.
@ NOTIFICATION_TELEPORT
The vehicle is being teleported.
Interface for objects listening to vehicle state changes.
The simulated network and simulation perfomer.
void removeVehicleStateListener(VehicleStateListener *listener)
Removes a vehicle states listener.
VehicleState
Definition of a vehicle state.
@ STARTING_STOP
The vehicles starts to stop.
@ STARTING_PARKING
The vehicles starts to park.
@ STARTING_TELEPORT
The vehicle started to teleport.
@ ENDING_STOP
The vehicle ends to stop.
@ ARRIVED
The vehicle arrived at his destination (is deleted)
@ EMERGENCYSTOP
The vehicle had to brake harder than permitted.
@ MANEUVERING
Vehicle maneuvering either entering or exiting a parking space.
static MSNet * getInstance()
Returns the pointer to the unique instance of MSNet (singleton).
virtual MSTransportableControl & getContainerControl()
Returns the container control.
MSVehicleControl & getVehicleControl()
Returns the vehicle control.
std::string getStoppingPlaceID(const MSLane *lane, const double pos, const SumoXMLTag category) const
Returns the stop of the given category close to the given position.
SUMOTime getCurrentTimeStep() const
Returns the current simulation step.
static bool hasInstance()
Returns whether the network was already constructed.
MSStoppingPlace * getStoppingPlace(const std::string &id, const SumoXMLTag category) const
Returns the named stopping place of the given category.
void addVehicleStateListener(VehicleStateListener *listener)
Adds a vehicle states listener.
MSEdgeControl & getEdgeControl()
Returns the edge control.
bool hasContainers() const
Returns whether containers are simulated.
MSInsertionControl & getInsertionControl()
Returns the insertion control.
void informVehicleStateListener(const SUMOVehicle *const vehicle, VehicleState to, const std::string &info="")
Informs all added listeners about a vehicle's state change.
bool hasPersons() const
Returns whether persons are simulated.
virtual MSTransportableControl & getPersonControl()
Returns the person control.
A lane area vehicles can halt at.
int getCapacity() const
Returns the area capacity.
void enter(SUMOVehicle *veh)
Called if a vehicle enters this stop.
int getLotIndex(const SUMOVehicle *veh) const
compute lot for this vehicle
int getLastFreeLotAngle() const
Return the angle of myLastFreeLot - the next parking lot only expected to be called after we have est...
bool parkOnRoad() const
whether vehicles park on the road
int getOccupancyIncludingBlocked() const
Returns the area occupancy.
double getLastFreePosWithReservation(SUMOTime t, const SUMOVehicle &forVehicle, double brakePos)
Returns the last free position on this stop including reservatiosn from the current lane and time ste...
double getLastFreeLotGUIAngle() const
Return the GUI angle of myLastFreeLot - the angle the GUI uses to rotate into the next parking lot as...
int getManoeuverAngle(const SUMOVehicle &forVehicle) const
Return the manoeuver angle of the lot where the vehicle is parked.
int getOccupancy() const
Returns the area occupancy.
double getGUIAngle(const SUMOVehicle &forVehicle) const
Return the GUI angle of the lot where the vehicle is parked.
MSRouteIterator end() const
Returns the end of the list of edges to pass.
const MSEdge * getLastEdge() const
returns the destination edge
double getDistanceBetween(double fromPos, double toPos, const MSEdge *fromEdge, const MSEdge *toEdge, bool includeInternal=true, int routePosition=0) const
Compute the distance between 2 given edges on this route, including the length of internal lanes....
MSRouteIterator begin() const
Returns the begin of the list of edges to pass.
const ConstMSEdgeVector & getEdges() const
const MSLane * lane
The lane to stop at (microsim only)
bool triggered
whether an arriving person lets the vehicle continue
bool containerTriggered
whether an arriving container lets the vehicle continue
SUMOTime timeToLoadNextContainer
The time at which the vehicle is able to load another container.
MSStoppingPlace * containerstop
(Optional) container stop if one is assigned to the stop
bool joinTriggered
whether coupling another vehicle (train) the vehicle continue
bool isOpposite
whether this an opposite-direction stop
int numExpectedContainer
The number of still expected containers.
bool reached
Information whether the stop has been reached.
MSRouteIterator edge
The edge in the route to stop at.
SUMOTime timeToBoardNextPerson
The time at which the vehicle is able to board another person.
double getReachedThreshold() const
return startPos taking into account opposite stopping
SUMOTime endBoarding
the maximum time at which persons may board this vehicle
double getEndPos(const SUMOVehicle &veh) const
return halting position for upcoming stop;
int numExpectedPerson
The number of still expected persons.
MSParkingArea * parkingarea
(Optional) parkingArea if one is assigned to the stop
MSStoppingPlace * chargingStation
(Optional) charging station if one is assigned to the stop
SUMOTime duration
The stopping duration.
const SUMOVehicleParameter::Stop pars
The stop parameter.
MSStoppingPlace * busstop
(Optional) bus stop if one is assigned to the stop
static MSStopOut * getInstance()
void stopStarted(const SUMOVehicle *veh, int numPersons, int numContainers, SUMOTime time)
void stopEnded(const SUMOVehicle *veh, const SUMOVehicleParameter::Stop &stop, const std::string &laneOrEdgeID, bool simEnd=false)
A lane area vehicles can halt at.
double getBeginLanePosition() const
Returns the begin position of this stop.
bool fits(double pos, const SUMOVehicle &veh) const
return whether the given vehicle fits at the given position
double getEndLanePosition() const
Returns the end position of this stop.
void enter(SUMOVehicle *veh, bool parking)
Called if a vehicle enters this stop.
const MSLane & getLane() const
Returns the lane this stop is located at.
bool boardAnyWaiting(const MSEdge *edge, SUMOVehicle *vehicle, SUMOTime &timeToBoardNextPerson, SUMOTime &stopDuration)
board any applicable persons Boards any people who wait on that edge for the given vehicle and remove...
bool loadAnyWaiting(const MSEdge *edge, SUMOVehicle *vehicle, SUMOTime &timeToLoadNextContainer, SUMOTime &stopDuration)
load any applicable containers Loads any container that is waiting on that edge for the given vehicle...
bool isPerson() const
Whether it is a person.
A static instance of this class in GapControlState deactivates gap control for vehicles whose referen...
void vehicleStateChanged(const SUMOVehicle *const vehicle, MSNet::VehicleState to, const std::string &info="")
Called if a vehicle changes its state.
Changes the wished vehicle speed / lanes.
void setLaneChangeMode(int value)
Sets lane changing behavior.
TraciLaneChangePriority myTraciLaneChangePriority
flags for determining the priority of traci lane change requests
bool getEmergencyBrakeRedLight() const
Returns whether red lights shall be a reason to brake.
SUMOTime getLaneTimeLineEnd()
void adaptLaneTimeLine(int indexShift)
Adapts lane timeline when moving to a new lane and the lane index changes.
void setRemoteControlled(Position xyPos, MSLane *l, double pos, double posLat, double angle, int edgeOffset, const ConstMSEdgeVector &route, SUMOTime t)
bool isRemoteAffected(SUMOTime t) const
int getSpeedMode() const
return the current speed mode
void deactivateGapController()
Deactivates the gap control.
void setSpeedMode(int speedMode)
Sets speed-constraining behaviors.
std::shared_ptr< GapControlState > myGapControlState
The gap control state.
bool considerSafeVelocity() const
Returns whether safe velocities shall be considered.
bool myConsiderMaxDeceleration
Whether the maximum deceleration shall be regarded.
void setLaneTimeLine(const std::vector< std::pair< SUMOTime, int > > &laneTimeLine)
Sets a new lane timeline.
bool myRespectJunctionLeaderPriority
Whether the junction priority rules are respected (within)
void setOriginalSpeed(double speed)
Stores the originally longitudinal speed.
double myOriginalSpeed
The velocity before influence.
double implicitDeltaPosRemote(const MSVehicle *veh)
return the change in longitudinal position that is implicit in the new remote position
double implicitSpeedRemote(const MSVehicle *veh, double oldSpeed)
return the speed that is implicit in the new remote position
void postProcessRemoteControl(MSVehicle *v)
double gapControlSpeed(SUMOTime currentTime, const SUMOVehicle *veh, double speed, double vSafe, double vMin, double vMax)
Applies gap control logic on the speed.
void setSublaneChange(double latDist)
Sets a new sublane-change request.
double getOriginalSpeed() const
Returns the originally longitudinal speed to use.
SUMOTime myLastRemoteAccess
bool getRespectJunctionLeaderPriority() const
Returns whether junction priority rules within the junction shall be respected (concerns vehicles wit...
LaneChangeMode myStrategicLC
lane changing which is necessary to follow the current route
LaneChangeMode mySpeedGainLC
lane changing to travel with higher speed
static void init()
Static initalization.
LaneChangeMode mySublaneLC
changing to the prefered lateral alignment
bool getRespectJunctionPriority() const
Returns whether junction priority rules shall be respected (concerns approaching vehicles outside the...
static void cleanup()
Static cleanup.
int getLaneChangeMode() const
return the current lane change mode
SUMOTime getLaneTimeLineDuration()
double influenceSpeed(SUMOTime currentTime, double speed, double vSafe, double vMin, double vMax)
Applies stored velocity information on the speed to use.
double changeRequestRemainingSeconds(const SUMOTime currentTime) const
Return the remaining number of seconds of the current laneTimeLine assuming one exists.
bool myConsiderSafeVelocity
Whether the safe velocity shall be regarded.
bool mySpeedAdaptationStarted
Whether influencing the speed has already started.
void setSignals(int signals)
double myLatDist
The requested lateral change.
bool myEmergencyBrakeRedLight
Whether red lights are a reason to brake.
LaneChangeMode myRightDriveLC
changing to the rightmost lane
void setSpeedTimeLine(const std::vector< std::pair< SUMOTime, double > > &speedTimeLine)
Sets a new velocity timeline.
SUMOTime getLastAccessTimeStep() const
bool myConsiderMaxAcceleration
Whether the maximum acceleration shall be regarded.
LaneChangeMode myCooperativeLC
lane changing with the intent to help other vehicles
bool isRemoteControlled() const
bool myRespectJunctionPriority
Whether the junction priority rules are respected (approaching)
int influenceChangeDecision(const SUMOTime currentTime, const MSEdge ¤tEdge, const int currentLaneIndex, int state)
Applies stored LaneChangeMode information and laneTimeLine.
void activateGapController(double originalTau, double newTimeHeadway, double newSpaceHeadway, double duration, double changeRate, double maxDecel, MSVehicle *refVeh=nullptr)
Activates the gap control with the given parameters,.
Container for manouevering time associated with stopping.
SUMOTime myManoeuvreCompleteTime
Time at which this manoeuvre should complete.
MSVehicle::ManoeuvreType getManoeuvreType() const
Accessor (get) for manoeuvre type.
std::string myManoeuvreStop
The name of the stop associated with the Manoeuvre - for debug output.
bool manoeuvreIsComplete() const
Check if any manoeuver is ongoing and whether the completion time is beyond currentTime.
bool configureExitManoeuvre(MSVehicle *veh)
Setup the myManoeuvre for exiting (Sets completion time and manoeuvre type)
void setManoeuvreType(const MSVehicle::ManoeuvreType mType)
Accessor (set) for manoeuvre type.
Manoeuvre & operator=(const Manoeuvre &manoeuvre)
Assignment operator.
ManoeuvreType myManoeuvreType
Manoeuvre type - currently entry, exit or none.
double getGUIIncrement() const
Accessor for GUI rotation step when parking (radians)
SUMOTime myManoeuvreStartTime
Time at which the Manoeuvre for this stop started.
bool operator!=(const Manoeuvre &manoeuvre)
Operator !=.
bool entryManoeuvreIsComplete(MSVehicle *veh)
Configure an entry manoeuvre if nothing is configured - otherwise check if complete.
bool manoeuvreIsComplete(const ManoeuvreType checkType) const
Check if specific manoeuver is ongoing and whether the completion time is beyond currentTime.
bool configureEntryManoeuvre(MSVehicle *veh)
Setup the entry manoeuvre for this vehicle (Sets completion time and manoeuvre type)
Container that holds the vehicles driving state (position+speed).
double myPosLat
the stored lateral position
double myPreviousSpeed
the speed at the begin of the previous time step
double myPos
the stored position
bool operator!=(const State &state)
Operator !=.
double mySpeed
the stored speed (should be >=0 at any time)
State & operator=(const State &state)
Assignment operator.
double pos() const
Position of this state.
State(double pos, double speed, double posLat, double backPos)
Constructor.
double myBackPos
the stored back position
void passTime(SUMOTime dt, bool waiting)
const std::string getState() const
SUMOTime cumulatedWaitingTime(SUMOTime memory=-1) const
void setState(const std::string &state)
WaitingTimeCollector(SUMOTime memory=MSGlobals::gWaitingTimeMemory)
Constructor.
void registerEmergencyStop()
register emergency stop
SUMOVehicle * getVehicle(const std::string &id) const
Returns the vehicle with the given id.
void registerStopEnded()
register emergency stop
void removeVType(const MSVehicleType *vehType)
void registerOneWaiting()
increases the count of vehicles waiting for a transport to allow recognition of person / container re...
void unregisterOneWaiting()
decreases the count of vehicles waiting for a transport to allow recognition of person / container re...
void registerStopStarted()
register emergency stop
Abstract in-vehicle device.
Representation of a vehicle in the micro simulation.
void setManoeuvreType(const MSVehicle::ManoeuvreType mType)
accessor function to myManoeuvre equivalent
TraciLaneChangePriority
modes for prioritizing traci lane change requests
double getRightSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
bool wasRemoteControlled(SUMOTime lookBack=DELTA_T) const
Returns the information whether the vehicle is fully controlled via TraCI within the lookBack time.
void processLinkApproaches(double &vSafe, double &vSafeMin, double &vSafeMinDist)
This method iterates through the driveprocess items for the vehicle and adapts the given in/out param...
void checkLinkLeader(const MSLink *link, const MSLane *lane, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass, double &vLinkWait, bool &setRequest, bool isShadowLink=false) const
checks for link leaders on the given link
void checkRewindLinkLanes(const double lengthsInFront, DriveItemVector &lfLinks) const
runs heuristic for keeping the intersection clear in case of downstream jamming
bool willStop() const
Returns whether the vehicle will stop on the current edge.
double getSafeFollowSpeed(const std::pair< const MSVehicle *, double > leaderInfo, const double seen, const MSLane *const lane, double distToCrossing) const
compute safe speed for following the given leader
void adaptToLeader(const std::pair< const MSVehicle *, double > leaderInfo, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass, double distToCrossing=-1) const
bool hasDriverState() const
Whether this vehicle is equipped with a MSDriverState.
static int nextLinkPriority(const std::vector< MSLane * > &conts)
get a numerical value for the priority of the upcoming link
double getTimeGapOnLane() const
Returns the time gap in seconds to the leader of the vehicle on the same lane.
void updateBestLanes(bool forceRebuild=false, const MSLane *startLane=0)
computes the best lanes to use in order to continue the route
bool myAmIdling
Whether the vehicle is trying to enter the network (eg after parking so engine is running)
SUMOTime myWaitingTime
The time the vehicle waits (is not faster than 0.1m/s) in seconds.
double getStopDelay() const
Returns the public transport stop delay in seconds.
double computeAngle() const
compute the current vehicle angle
double myTimeLoss
the time loss in seconds due to driving with less than maximum speed
SUMOTime myLastActionTime
Action offset (actions are taken at time myActionOffset + N*getActionStepLength()) Initialized to 0,...
bool hasArrivedInternal(bool oppositeTransformed=true) const
Returns whether this vehicle has already arived (reached the arrivalPosition on its final edge) metho...
bool replaceParkingArea(MSParkingArea *parkingArea, std::string &errorMsg)
replace the current parking area stop with a new stop with merge duration
void boardTransportables(MSStop &stop)
board persons and load transportables at the given stop
const std::vector< const MSLane * > getUpcomingLanesUntil(double distance) const
Returns the upcoming (best followed by default 0) sequence of lanes to continue the route starting at...
bool isOnRoad() const
Returns the information whether the vehicle is on a road (is simulated)
void adaptLaneEntering2MoveReminder(const MSLane &enteredLane)
Adapts the vehicle's entering of a new lane.
void addTransportable(MSTransportable *transportable)
Adds a person or container to this vehicle.
MSParkingArea * getNextParkingArea()
get the upcoming parking area stop or nullptr
SUMOTime myJunctionConflictEntryTime
PositionVector getBoundingPoly(double offset=0) const
get bounding polygon
void setTentativeLaneAndPosition(MSLane *lane, double pos, double posLat=0)
set tentative lane and position during insertion to ensure that all cfmodels work (some of them requi...
SUMOTime getWaitingTime() const
Returns the SUMOTime waited (speed was lesser than 0.1m/s)
const std::vector< MSLane * > & getFurtherLanes() const
void workOnMoveReminders(double oldPos, double newPos, double newSpeed)
Processes active move reminder.
void setPreviousSpeed(double prevspeed)
Sets the influenced previous speed.
bool isStoppedOnLane() const
double myAcceleration
The current acceleration after dawdling in m/s.
void adaptToLeaders(const MSLeaderInfo &ahead, double latOffset, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass) const
const MSLane * getBackLane() const
void enterLaneAtInsertion(MSLane *enteredLane, double pos, double speed, double posLat, MSMoveReminder::Notification notification)
Update when the vehicle enters a new lane in the emit step.
std::pair< double, LinkDirection > myNextTurn
the upcoming turn for the vehicle
double getBackPositionOnLane() const
Get the vehicle's position relative to its current lane.
SUMOTime getArrivalTime(SUMOTime t, double seen, double v, double arrivalSpeed) const
double getAccumulatedWaitingSeconds() const
Returns the number of seconds waited (speed was lesser than 0.1m/s) within the last millisecs.
bool isFrontOnLane(const MSLane *lane) const
Returns the information whether the front of the vehicle is on the given lane.
virtual ~MSVehicle()
Destructor.
bool myAmRegisteredAsWaitingForPerson
Whether this vehicle is registered as waiting for a person (for deadlock-recognition)
bool stopsAt(MSStoppingPlace *stop) const
Returns whether the vehicle stops at the given stopping place.
void processLaneAdvances(std::vector< MSLane * > &passedLanes, std::string &emergencyReason)
This method checks if the vehicle has advanced over one or several lanes along its route and triggers...
MSAbstractLaneChangeModel & getLaneChangeModel()
void setEmergencyBlueLight(SUMOTime currentTime)
sets the blue flashing light for emergency vehicles
bool isActionStep(SUMOTime t) const
Returns whether the next simulation step will be an action point for the vehicle.
MSAbstractLaneChangeModel * myLaneChangeModel
Position getPositionAlongBestLanes(double offset) const
Return the (x,y)-position, which the vehicle would reach if it continued along its best continuation ...
bool hasValidRouteStart(std::string &msg)
checks wether the vehicle can depart on the first edge
std::vector< MSLane * > myFurtherLanes
The information into which lanes the vehicle laps into.
bool signalSet(int which) const
Returns whether the given signal is on.
MSLane * getMutableLane() const
Returns the lane the vehicle is on Non const version indicates that something volatile is going on.
MSCFModel::VehicleVariables * myCFVariables
The per vehicle variables of the car following model.
bool addTraciStop(SUMOVehicleParameter::Stop stop, std::string &errorMsg)
void checkLinkLeaderCurrentAndParallel(const MSLink *link, const MSLane *lane, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass, double &vLinkWait, bool &setRequest) const
checks for link leaders of the current link as well as the parallel link (if there is one)
int influenceChangeDecision(int state)
allow TraCI to influence a lane change decision
double getMaxSpeedOnLane() const
Returns the maximal speed for the vehicle on its current lane (including speed factor and deviation,...
bool isRemoteControlled() const
Returns the information whether the vehicle is fully controlled via TraCI.
bool myAmOnNet
Whether the vehicle is on the network (not parking, teleported, vaporized, or arrived)
void enterLaneAtMove(MSLane *enteredLane, bool onTeleporting=false)
Update when the vehicle enters a new lane in the move step.
void adaptBestLanesOccupation(int laneIndex, double density)
update occupation from MSLaneChanger
void loadPreviousApproaching(MSLink *link, bool setRequest, SUMOTime arrivalTime, double arrivalSpeed, SUMOTime arrivalTimeBraking, double arrivalSpeedBraking, double dist, double leaveSpeed)
void setAngle(double angle, bool straightenFurther=false)
Set a custom vehicle angle in rad, optionally updates furtherLanePosLat.
std::vector< LaneQ >::iterator myCurrentLaneInBestLanes
double getDeltaPos(const double accel) const
calculates the distance covered in the next integration step given an acceleration and assuming the c...
const MSLane * myLastBestLanesInternalLane
void updateOccupancyAndCurrentBestLane(const MSLane *startLane)
updates LaneQ::nextOccupation and myCurrentLaneInBestLanes
const std::vector< MSLane * > getUpstreamOppositeLanes() const
Returns the sequence of opposite lanes corresponding to past lanes.
WaitingTimeCollector myWaitingTimeCollector
void setRemoteState(Position xyPos)
sets position outside the road network
void fixPosition()
repair errors in vehicle position after changing between internal edges
double getAcceleration() const
Returns the vehicle's acceleration in m/s (this is computed as the last step's mean acceleration in c...
double getSpeedWithoutTraciInfluence() const
Returns the uninfluenced velocity.
PositionVector getBoundingBox(double offset=0) const
get bounding rectangle
ManoeuvreType
flag identifying which, if any, manoeuvre is in progress
@ MANOEUVRE_ENTRY
Manoeuvre into stopping place.
@ MANOEUVRE_NONE
not manouevring
@ MANOEUVRE_EXIT
Manoeuvre out of stopping place.
Position getPosition(const double offset=0) const
Return current position (x/y, cartesian)
void setBrakingSignals(double vNext)
sets the braking lights on/off
const std::vector< MSLane * > & getBestLanesContinuation() const
Returns the best sequence of lanes to continue the route starting at myLane.
double estimateTimeToNextStop() const
MSParkingArea * getCurrentParkingArea()
get the current parking area stop or nullptr
const MSEdge * myLastBestLanesEdge
bool ignoreCollision() const
whether this vehicle is except from collision checks
Influencer * myInfluencer
An instance of a velocity/lane influencing instance; built in "getInfluencer".
void saveState(OutputDevice &out)
Saves the states of a vehicle.
bool replaceRoute(const MSRoute *route, const std::string &info, bool onInit=false, int offset=0, bool addStops=true, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given one.
void onRemovalFromNet(const MSMoveReminder::Notification reason)
Called when the vehicle is removed from the network.
void planMove(const SUMOTime t, const MSLeaderInfo &ahead, const double lengthsInFront)
Compute safe velocities for the upcoming lanes based on positions and speeds from the last time step....
bool resumeFromStopping()
int getBestLaneOffset() const
double lateralDistanceToLane(const int offset) const
Get the minimal lateral distance required to move fully onto the lane at given offset.
bool stopsAtEdge(const MSEdge *edge) const
Returns whether the vehicle stops at the given edge.
double getBackPositionOnLane(const MSLane *lane) const
Get the vehicle's position relative to the given lane.
void resetActionOffset(const SUMOTime timeUntilNextAction=0)
Resets the action offset for the vehicle.
std::vector< DriveProcessItem > DriveItemVector
Container for used Links/visited Lanes during planMove() and executeMove.
void setBlinkerInformation()
sets the blue flashing light for emergency vehicles
DriveItemVector::iterator myNextDriveItem
iterator pointing to the next item in myLFLinkLanes
void leaveLane(const MSMoveReminder::Notification reason, const MSLane *approachedLane=0)
Update of members if vehicle leaves a new lane in the lane change step or at arrival.
bool isIdling() const
Returns whether a sim vehicle is waiting to enter a lane (after parking has completed)
std::shared_ptr< MSSimpleDriverState > getDriverState() const
Returns the vehicle driver's state.
void removeApproachingInformation(const DriveItemVector &lfLinks) const
unregister approach from all upcoming links
void replaceVehicleType(MSVehicleType *type)
Replaces the current vehicle type by the one given.
SUMOTime myJunctionEntryTimeNeverYield
double getLatOffset(const MSLane *lane) const
Get the offset that that must be added to interpret myState.myPosLat for the given lane.
bool rerouteParkingArea(const std::string &parkingAreaID, std::string &errorMsg)
bool hasArrived() const
Returns whether this vehicle has already arived (reached the arrivalPosition on its final edge)
const MSEdge * getRerouteOrigin() const
Returns the starting point for reroutes (usually the current edge)
void switchOffSignal(int signal)
Switches the given signal off.
void updateState(double vNext)
updates the vehicles state, given a next value for its speed. This value can be negative in case of t...
double getStopArrivalDelay() const
Returns the estimated public transport stop arrival delay in seconds.
int mySignals
State of things of the vehicle that can be on or off.
bool setExitManoeuvre()
accessor function to myManoeuvre equivalent
double myStopDist
distance to the next stop or doubleMax if there is none
bool myAmRegisteredAsWaitingForContainer
Whether this vehicle is registered as waiting for a container (for deadlock-recognition)
Signalling
Some boolean values which describe the state of some vehicle parts.
@ VEH_SIGNAL_BLINKER_RIGHT
Right blinker lights are switched on.
@ VEH_SIGNAL_BRAKELIGHT
The brake lights are on.
@ VEH_SIGNAL_EMERGENCY_BLUE
A blue emergency light is on.
@ VEH_SIGNAL_BLINKER_LEFT
Left blinker lights are switched on.
bool isLeader(const MSLink *link, const MSVehicle *veh) const
whether the given vehicle must be followed at the given junction
SUMOTime getActionStepLength() const
Returns the vehicle's action step length in millisecs, i.e. the interval between two action points.
bool myHaveToWaitOnNextLink
SUMOTime collisionStopTime() const
Returns the remaining time a vehicle needs to stop due to a collision. A negative value indicates tha...
const std::vector< const MSLane * > getPastLanesUntil(double distance) const
Returns the sequence of past lanes (right-most on edge) based on the route starting at the current la...
std::pair< const MSVehicle *const, double > getLeader(double dist=0) const
Returns the leader of the vehicle looking for a fixed distance.
bool executeMove()
Executes planned vehicle movements with regards to right-of-way.
std::pair< const MSVehicle *const, double > getFollower(double dist=0) const
Returns the follower of the vehicle looking for a fixed distance.
ChangeRequest
Requests set via TraCI.
@ REQUEST_HOLD
vehicle want's to keep the current lane
@ REQUEST_LEFT
vehicle want's to change to left lane
@ REQUEST_NONE
vehicle doesn't want to change
@ REQUEST_RIGHT
vehicle want's to change to right lane
void computeFurtherLanes(MSLane *enteredLane, double pos, bool collision=false)
updates myFurtherLanes on lane insertion or after collision
std::pair< const MSLane *, double > getLanePosAfterDist(double distance) const
return lane and position along bestlanes at the given distance
SUMOTime myCollisionImmunity
amount of time for which the vehicle is immune from collisions
bool passingMinor() const
decide whether the vehicle is passing a minor link or has comitted to do so
void updateWaitingTime(double vNext)
Updates the vehicle's waiting time counters (accumulated and consecutive)
void enterLaneAtLaneChange(MSLane *enteredLane)
Update when the vehicle enters a new lane in the laneChange step.
BaseInfluencer & getBaseInfluencer()
Returns the velocity/lane influencer.
Influencer & getInfluencer()
double getRightSideOnLane() const
Get the vehicle's lateral position on the lane:
bool unsafeLinkAhead(const MSLane *lane) const
whether the vehicle may safely move to the given lane with regard to upcoming links
double getCurrentApparentDecel() const
get apparent deceleration based on vType parameters and current acceleration
double updateFurtherLanes(std::vector< MSLane * > &furtherLanes, std::vector< double > &furtherLanesPosLat, const std::vector< MSLane * > &passedLanes)
update a vector of further lanes and return the new backPos
DriveItemVector myLFLinkLanesPrev
planned speeds from the previous step for un-registering from junctions after the new container is fi...
std::vector< std::vector< LaneQ > > myBestLanes
void setActionStepLength(double actionStepLength, bool resetActionOffset=true)
Sets the action steplength of the vehicle.
double getLateralPositionOnLane() const
Get the vehicle's lateral position on the lane.
double getSlope() const
Returns the slope of the road at vehicle's position in degrees.
bool myActionStep
The flag myActionStep indicates whether the current time step is an action point for the vehicle.
const Position getBackPosition() const
void loadState(const SUMOSAXAttributes &attrs, const SUMOTime offset)
Loads the state of this vehicle from the given description.
double getSpeed() const
Returns the vehicle's current speed.
void setApproachingForAllLinks(const SUMOTime t)
Register junction approaches for all link items in the current plan.
SUMOTime remainingStopDuration() const
Returns the remaining stop duration for a stopped vehicle or 0.
bool keepStopping(bool afterProcessing=false) const
Returns whether the vehicle is stopped and must continue to do so.
void workOnIdleReminders()
cycle through vehicle devices invoking notifyIdle
static std::vector< MSLane * > myEmptyLaneVector
Position myCachedPosition
MSVehicle::ManoeuvreType getManoeuvreType() const
accessor function to myManoeuvre equivalent
double checkReversal(bool &canReverse, double speedThreshold=SUMO_const_haltingSpeed, double seen=0) const
void removePassedDriveItems()
Erase passed drive items from myLFLinkLanes (and unregister approaching information for corresponding...
const std::vector< LaneQ > & getBestLanes() const
Returns the description of best lanes to use in order to continue the route.
std::vector< double > myFurtherLanesPosLat
lateral positions on further lanes
bool checkActionStep(const SUMOTime t)
Returns whether the vehicle is supposed to take action in the current simulation step Updates myActio...
Position validatePosition(Position result, double offset=0) const
ensure that a vehicle-relative position is not invalid
bool keepClear(const MSLink *link) const
decide whether the given link must be kept clear
bool manoeuvreIsComplete() const
accessor function to myManoeuvre equivalent
double processNextStop(double currentVelocity)
Processes stops, returns the velocity needed to reach the stop.
double myAngle
the angle in radians (
bool ignoreRed(const MSLink *link, bool canBrake) const
decide whether a red (or yellow light) may be ignore
double getPositionOnLane() const
Get the vehicle's position along the lane.
const MSLane * getLane() const
Returns the lane the vehicle is on.
void updateTimeLoss(double vNext)
Updates the vehicle's time loss.
MSDevice_DriverState * myDriverState
This vehicle's driver state.
bool joinTrainPart(MSVehicle *veh)
try joining the given vehicle to the rear of this one (to resolve joinTriggered)
const MSCFModel & getCarFollowModel() const
Returns the vehicle's car following model definition.
MSLane * myLane
The lane the vehicle is on.
bool onFurtherEdge(const MSEdge *edge) const
whether this vehicle has its back (and no its front) on the given edge
double processTraCISpeedControl(double vSafe, double vNext)
Check for speed advices from the traci client and adjust the speed vNext in the current (euler) / aft...
double getLateralOverlap() const
return the amount by which the vehicle extends laterally outside it's primary lane
double getAngle() const
Returns the vehicle's direction in radians.
bool handleCollisionStop(MSStop &stop, const double distToStop)
bool hasInfluencer() const
whether the vehicle is individually influenced (via TraCI or special parameters)
double getPreviousSpeed() const
Returns the vehicle's speed before the previous time step.
MSVehicle()
invalidated default constructor
bool joinTrainPartFront(MSVehicle *veh)
try joining the given vehicle to the front of this one (to resolve joinTriggered)
void updateActionOffset(const SUMOTime oldActionStepLength, const SUMOTime newActionStepLength)
Process an updated action step length value (only affects the vehicle's action offset,...
double getBrakeGap(bool delayed=false) const
get distance for coming to a stop (used for rerouting checks)
void executeFractionalMove(double dist)
move vehicle forward by the given distance during insertion
LaneChangeMode
modes for resolving conflicts between external control (traci) and vehicle control over lane changing...
virtual void drawOutsideNetwork(bool)
register vehicle for drawing while outside the network
State myState
This Vehicles driving state (pos and speed)
void adaptToLeaderDistance(const MSLeaderDistanceInfo &ahead, double latOffset, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass) const
double getCenterOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
void activateReminders(const MSMoveReminder::Notification reason, const MSLane *enteredLane=0)
"Activates" all current move reminder
double getDistanceToPosition(double destPos, const MSEdge *destEdge) const
void planMoveInternal(const SUMOTime t, MSLeaderInfo ahead, DriveItemVector &lfLinks, double &myStopDist, std::pair< double, LinkDirection > &myNextTurn) const
void switchOnSignal(int signal)
Switches the given signal on.
void updateParkingState()
update state while parking
DriveItemVector myLFLinkLanes
container for the planned speeds in the current step
void updateDriveItems()
Check whether the drive items (myLFLinkLanes) are up to date, and update them if required.
SUMOTime myJunctionEntryTime
time at which the current junction was entered
static MSVehicleTransfer * getInstance()
Returns the instance of this object.
void remove(MSVehicle *veh)
Remove a vehicle from this transfer object.
The car-following model and parameter.
double getLengthWithGap() const
Get vehicle's length including the minimum gap [m].
double getWidth() const
Get the width which vehicles of this class shall have when being drawn.
SUMOVehicleClass getVehicleClass() const
Get this vehicle type's vehicle class.
double getMaxSpeed() const
Get vehicle's maximum speed [m/s].
double getMinGap() const
Get the free space in front of vehicles of this class.
LaneChangeModel getLaneChangeModel() const
void setLength(const double &length)
Set a new value for this type's length.
SUMOTime getExitManoeuvreTime(const int angle) const
Accessor function for parameter equivalent returning exit time for a specific manoeuver angle.
bool isVehicleSpecific() const
Returns whether this type belongs to a single vehicle only (was modified)
const std::string & getID() const
Returns the name of the vehicle type.
void setActionStepLength(const SUMOTime actionStepLength, bool resetActionOffset)
Set a new value for this type's action step length.
double getLength() const
Get vehicle's length [m].
SUMOVehicleShape getGuiShape() const
Get this vehicle type's shape.
const MSCFModel & getCarFollowModel() const
Returns the vehicle type's car following model definition (const version)
SUMOTime getEntryManoeuvreTime(const int angle) const
Accessor function for parameter equivalent returning entry time for a specific manoeuver angle.
const SUMOVTypeParameter & getParameter() const
static std::string getIDSecure(const T *obj, const std::string &fallBack="NULL")
get an identifier for Named-like object which may be Null
const std::string & getID() const
Returns the id.
Static storage of an output device and its base (abstract) implementation.
OutputDevice & writeAttr(const SumoXMLAttr attr, const T &val)
writes a named attribute
bool closeTag(const std::string &comment="")
Closes the most recently opened tag and optionally adds a comment.
void writeParams(OutputDevice &device) const
write Params in the given outputdevice
A point in 2D or 3D with translation and scaling methods.
static const Position INVALID
used to indicate that a position is valid
double distanceTo2D(const Position &p2) const
returns the euclidean distance in the x-y-plane
double angleTo2D(const Position &other) const
returns the angle in the plane of the vector pointing from here to the other position
void append(const PositionVector &v, double sameThreshold=2.0)
double rotationAtOffset(double pos) const
Returns the rotation at the given length.
Position positionAtOffset(double pos, double lateralOffset=0) const
Returns the position at the given length.
void move2side(double amount, double maxExtension=100)
move position vector to side using certain ammount
double slopeDegreeAtOffset(double pos) const
Returns the slope at the given length.
void extrapolate2D(const double val, const bool onlyFirst=false)
extrapolate position vector in two dimensions (Z is ignored)
void scaleRelative(double factor)
enlarges/shrinks the polygon by a factor based at the centroid
PositionVector reverse() const
reverse position vector
static double rand(SumoRNG *rng=nullptr)
Returns a random real number in [0, 1)
double recomputeCosts(const std::vector< const E * > &edges, const V *const v, SUMOTime msTime, double *lengthp=nullptr) const
virtual bool compute(const E *from, const E *to, const V *const vehicle, SUMOTime msTime, std::vector< const E * > &into, bool silent=false)=0
Builds the route between the given edges using the minimum effort at the given time The definition of...
Encapsulated SAX-Attributes.
virtual double getFloat(int id) const =0
Returns the double-value of the named (by its enum-value) attribute.
virtual bool hasAttribute(int id) const =0
Returns the information whether the named (by its enum-value) attribute is within the current list.
virtual std::string getString(int id) const =0
Returns the string-value of the named (by its enum-value) attribute.
virtual double getSpeed() const =0
Returns the object's current speed.
double getJMParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
Representation of a vehicle.
Definition of vehicle stop (position and duration)
SUMOTime started
the time at which this stop was reached
std::string lane
The lane to stop at.
SUMOTime extension
The maximum time extension for boarding / loading.
double speed
the speed at which this stop counts as reached (waypoint mode)
std::string parkingarea
(Optional) parking area if one is assigned to the stop
std::string split
the id of the vehicle (train portion) that splits of upon reaching this stop
double startPos
The stopping position start.
std::string line
the new line id of the trip within a cyclical public transport route
double posLat
the lateral offset when stopping
std::string join
the id of the vehicle (train portion) to which this vehicle shall be joined
SUMOTime until
The time at which the vehicle may continue its journey.
SUMOTime ended
the time at which this stop was ended
double endPos
The stopping position end.
bool parking
whether the vehicle is removed from the net while stopping
std::string tripId
id of the trip within a cyclical public transport route
SUMOTime arrival
The (expected) time at which the vehicle reaches the stop.
SUMOTime duration
The stopping duration.
Structure representing possible vehicle parameter.
int parametersSet
Information for the router which parameter were set, TraCI may modify this (when changing color)
int departLane
(optional) The lane the vehicle shall depart from (index in edge)
ArrivalSpeedDefinition arrivalSpeedProcedure
Information how the vehicle's end speed shall be chosen.
double departSpeed
(optional) The initial speed of the vehicle
std::vector< std::string > via
List of the via-edges the vehicle must visit.
ArrivalLaneDefinition arrivalLaneProcedure
Information how the vehicle shall choose the lane to arrive on.
DepartLaneDefinition departLaneProcedure
Information how the vehicle shall choose the lane to depart from.
DepartSpeedDefinition departSpeedProcedure
Information how the vehicle's initial speed shall be chosen.
double arrivalPos
(optional) The position the vehicle shall arrive on
bool wasSet(int what) const
Returns whether the given parameter was set.
ArrivalPosDefinition arrivalPosProcedure
Information how the vehicle shall choose the arrival position.
double arrivalSpeed
(optional) The final speed of the vehicle (not used yet)
int arrivalEdge
(optional) The final edge within the route of the vehicle
static SUMOTime processActionStepLength(double given)
Checks and converts given value for the action step length from seconds to miliseconds assuring it be...
Drive process items represent bounds on the safe velocity corresponding to the upcoming links.
double getLeaveSpeed() const
void adaptLeaveSpeed(const double v)
static std::map< const MSVehicle *, GapControlState * > refVehMap
stores reference vehicles currently in use by a gapController
static GapControlVehStateListener vehStateListener
void activate(double tauOriginal, double tauTarget, double additionalGap, double duration, double changeRate, double maxDecel, const MSVehicle *refVeh)
Start gap control with given params.
static void cleanup()
Static cleanup (removes vehicle state listener)
virtual ~GapControlState()
void deactivate()
Stop gap control.
static void init()
Static initalization (adds vehicle state listener)
A structure representing the best lanes for continuing the current route starting at 'lane'.
double length
The overall length which may be driven when using this lane without a lane change.
bool allowsContinuation
Whether this lane allows to continue the drive.
double nextOccupation
As occupation, but without the first lane.
std::vector< MSLane * > bestContinuations
MSLane * lane
The described lane.
double currentLength
The length which may be driven on this lane.
int bestLaneOffset
The (signed) number of lanes to be crossed to get to the lane which allows to continue the drive.
double occupation
The overall vehicle sum on consecutive lanes which can be passed without a lane change.