1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2021, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: PEP routines related to options that can be set via the command-line
12: or procedurally
13: */
15: #include <slepc/private/pepimpl.h> 16: #include <petscdraw.h>
18: /*@C
19: PEPMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
20: indicated by the user.
22: Collective on pep
24: Input Parameters:
25: + pep - the polynomial eigensolver context
26: . opt - the command line option for this monitor
27: . name - the monitor type one is seeking
28: . ctx - an optional user context for the monitor, or NULL
29: - trackall - whether this monitor tracks all eigenvalues or not
31: Level: developer
33: .seealso: PEPMonitorSet(), PEPSetTrackAll()
34: @*/
35: PetscErrorCode PEPMonitorSetFromOptions(PEP pep,const char opt[],const char name[],void *ctx,PetscBool trackall) 36: {
37: PetscErrorCode (*mfunc)(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
38: PetscErrorCode (*cfunc)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**);
39: PetscErrorCode (*dfunc)(PetscViewerAndFormat**);
40: PetscViewerAndFormat *vf;
41: PetscViewer viewer;
42: PetscViewerFormat format;
43: PetscViewerType vtype;
44: char key[PETSC_MAX_PATH_LEN];
45: PetscBool flg;
46: PetscErrorCode ierr;
49: PetscOptionsGetViewer(PetscObjectComm((PetscObject)pep),((PetscObject)pep)->options,((PetscObject)pep)->prefix,opt,&viewer,&format,&flg);
50: if (!flg) return(0);
52: PetscViewerGetType(viewer,&vtype);
53: SlepcMonitorMakeKey_Internal(name,vtype,format,key);
54: PetscFunctionListFind(PEPMonitorList,key,&mfunc);
55: if (!mfunc) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"Specified viewer and format not supported");
56: PetscFunctionListFind(PEPMonitorCreateList,key,&cfunc);
57: PetscFunctionListFind(PEPMonitorDestroyList,key,&dfunc);
58: if (!cfunc) cfunc = PetscViewerAndFormatCreate_Internal;
59: if (!dfunc) dfunc = PetscViewerAndFormatDestroy;
61: (*cfunc)(viewer,format,ctx,&vf);
62: PetscObjectDereference((PetscObject)viewer);
63: PEPMonitorSet(pep,mfunc,vf,(PetscErrorCode(*)(void **))dfunc);
64: if (trackall) {
65: PEPSetTrackAll(pep,PETSC_TRUE);
66: }
67: return(0);
68: }
70: /*@
71: PEPSetFromOptions - Sets PEP options from the options database.
72: This routine must be called before PEPSetUp() if the user is to be
73: allowed to set the solver type.
75: Collective on pep
77: Input Parameters:
78: . pep - the polynomial eigensolver context
80: Notes:
81: To see all options, run your program with the -help option.
83: Level: beginner
84: @*/
85: PetscErrorCode PEPSetFromOptions(PEP pep) 86: {
87: PetscErrorCode ierr;
88: char type[256];
89: PetscBool set,flg,flg1,flg2,flg3,flg4,flg5;
90: PetscReal r,t,array[2]={0,0};
91: PetscScalar s;
92: PetscInt i,j,k;
93: PEPScale scale;
94: PEPRefine refine;
95: PEPRefineScheme scheme;
99: PEPRegisterAll();
100: PetscObjectOptionsBegin((PetscObject)pep);
101: PetscOptionsFList("-pep_type","Polynomial eigensolver method","PEPSetType",PEPList,(char*)(((PetscObject)pep)->type_name?((PetscObject)pep)->type_name:PEPTOAR),type,sizeof(type),&flg);
102: if (flg) {
103: PEPSetType(pep,type);
104: } else if (!((PetscObject)pep)->type_name) {
105: PEPSetType(pep,PEPTOAR);
106: }
108: PetscOptionsBoolGroupBegin("-pep_general","General polynomial eigenvalue problem","PEPSetProblemType",&flg);
109: if (flg) { PEPSetProblemType(pep,PEP_GENERAL); }
110: PetscOptionsBoolGroup("-pep_hermitian","Hermitian polynomial eigenvalue problem","PEPSetProblemType",&flg);
111: if (flg) { PEPSetProblemType(pep,PEP_HERMITIAN); }
112: PetscOptionsBoolGroup("-pep_hyperbolic","Hyperbolic polynomial eigenvalue problem","PEPSetProblemType",&flg);
113: if (flg) { PEPSetProblemType(pep,PEP_HYPERBOLIC); }
114: PetscOptionsBoolGroupEnd("-pep_gyroscopic","Gyroscopic polynomial eigenvalue problem","PEPSetProblemType",&flg);
115: if (flg) { PEPSetProblemType(pep,PEP_GYROSCOPIC); }
117: scale = pep->scale;
118: PetscOptionsEnum("-pep_scale","Scaling strategy","PEPSetScale",PEPScaleTypes,(PetscEnum)scale,(PetscEnum*)&scale,&flg1);
119: r = pep->sfactor;
120: PetscOptionsReal("-pep_scale_factor","Scale factor","PEPSetScale",pep->sfactor,&r,&flg2);
121: if (!flg2 && r==1.0) r = PETSC_DEFAULT;
122: j = pep->sits;
123: PetscOptionsInt("-pep_scale_its","Number of iterations in diagonal scaling","PEPSetScale",pep->sits,&j,&flg3);
124: t = pep->slambda;
125: PetscOptionsReal("-pep_scale_lambda","Estimate of eigenvalue (modulus) for diagonal scaling","PEPSetScale",pep->slambda,&t,&flg4);
126: if (flg1 || flg2 || flg3 || flg4) { PEPSetScale(pep,scale,r,NULL,NULL,j,t); }
128: PetscOptionsEnum("-pep_extract","Extraction method","PEPSetExtract",PEPExtractTypes,(PetscEnum)pep->extract,(PetscEnum*)&pep->extract,NULL);
130: refine = pep->refine;
131: PetscOptionsEnum("-pep_refine","Iterative refinement method","PEPSetRefine",PEPRefineTypes,(PetscEnum)refine,(PetscEnum*)&refine,&flg1);
132: i = pep->npart;
133: PetscOptionsInt("-pep_refine_partitions","Number of partitions of the communicator for iterative refinement","PEPSetRefine",pep->npart,&i,&flg2);
134: r = pep->rtol;
135: PetscOptionsReal("-pep_refine_tol","Tolerance for iterative refinement","PEPSetRefine",pep->rtol==PETSC_DEFAULT?SLEPC_DEFAULT_TOL/1000:pep->rtol,&r,&flg3);
136: j = pep->rits;
137: PetscOptionsInt("-pep_refine_its","Maximum number of iterations for iterative refinement","PEPSetRefine",pep->rits,&j,&flg4);
138: scheme = pep->scheme;
139: PetscOptionsEnum("-pep_refine_scheme","Scheme used for linear systems within iterative refinement","PEPSetRefine",PEPRefineSchemes,(PetscEnum)scheme,(PetscEnum*)&scheme,&flg5);
140: if (flg1 || flg2 || flg3 || flg4 || flg5) { PEPSetRefine(pep,refine,i,r,j,scheme); }
142: i = pep->max_it;
143: PetscOptionsInt("-pep_max_it","Maximum number of iterations","PEPSetTolerances",pep->max_it,&i,&flg1);
144: r = pep->tol;
145: PetscOptionsReal("-pep_tol","Tolerance","PEPSetTolerances",SlepcDefaultTol(pep->tol),&r,&flg2);
146: if (flg1 || flg2) { PEPSetTolerances(pep,r,i); }
148: PetscOptionsBoolGroupBegin("-pep_conv_rel","Relative error convergence test","PEPSetConvergenceTest",&flg);
149: if (flg) { PEPSetConvergenceTest(pep,PEP_CONV_REL); }
150: PetscOptionsBoolGroup("-pep_conv_norm","Convergence test relative to the matrix norms","PEPSetConvergenceTest",&flg);
151: if (flg) { PEPSetConvergenceTest(pep,PEP_CONV_NORM); }
152: PetscOptionsBoolGroup("-pep_conv_abs","Absolute error convergence test","PEPSetConvergenceTest",&flg);
153: if (flg) { PEPSetConvergenceTest(pep,PEP_CONV_ABS); }
154: PetscOptionsBoolGroupEnd("-pep_conv_user","User-defined convergence test","PEPSetConvergenceTest",&flg);
155: if (flg) { PEPSetConvergenceTest(pep,PEP_CONV_USER); }
157: PetscOptionsBoolGroupBegin("-pep_stop_basic","Stop iteration if all eigenvalues converged or max_it reached","PEPSetStoppingTest",&flg);
158: if (flg) { PEPSetStoppingTest(pep,PEP_STOP_BASIC); }
159: PetscOptionsBoolGroupEnd("-pep_stop_user","User-defined stopping test","PEPSetStoppingTest",&flg);
160: if (flg) { PEPSetStoppingTest(pep,PEP_STOP_USER); }
162: i = pep->nev;
163: PetscOptionsInt("-pep_nev","Number of eigenvalues to compute","PEPSetDimensions",pep->nev,&i,&flg1);
164: j = pep->ncv;
165: PetscOptionsInt("-pep_ncv","Number of basis vectors","PEPSetDimensions",pep->ncv,&j,&flg2);
166: k = pep->mpd;
167: PetscOptionsInt("-pep_mpd","Maximum dimension of projected problem","PEPSetDimensions",pep->mpd,&k,&flg3);
168: if (flg1 || flg2 || flg3) { PEPSetDimensions(pep,i,j,k); }
170: PetscOptionsEnum("-pep_basis","Polynomial basis","PEPSetBasis",PEPBasisTypes,(PetscEnum)pep->basis,(PetscEnum*)&pep->basis,NULL);
172: PetscOptionsBoolGroupBegin("-pep_largest_magnitude","Compute largest eigenvalues in magnitude","PEPSetWhichEigenpairs",&flg);
173: if (flg) { PEPSetWhichEigenpairs(pep,PEP_LARGEST_MAGNITUDE); }
174: PetscOptionsBoolGroup("-pep_smallest_magnitude","Compute smallest eigenvalues in magnitude","PEPSetWhichEigenpairs",&flg);
175: if (flg) { PEPSetWhichEigenpairs(pep,PEP_SMALLEST_MAGNITUDE); }
176: PetscOptionsBoolGroup("-pep_largest_real","Compute eigenvalues with largest real parts","PEPSetWhichEigenpairs",&flg);
177: if (flg) { PEPSetWhichEigenpairs(pep,PEP_LARGEST_REAL); }
178: PetscOptionsBoolGroup("-pep_smallest_real","Compute eigenvalues with smallest real parts","PEPSetWhichEigenpairs",&flg);
179: if (flg) { PEPSetWhichEigenpairs(pep,PEP_SMALLEST_REAL); }
180: PetscOptionsBoolGroup("-pep_largest_imaginary","Compute eigenvalues with largest imaginary parts","PEPSetWhichEigenpairs",&flg);
181: if (flg) { PEPSetWhichEigenpairs(pep,PEP_LARGEST_IMAGINARY); }
182: PetscOptionsBoolGroup("-pep_smallest_imaginary","Compute eigenvalues with smallest imaginary parts","PEPSetWhichEigenpairs",&flg);
183: if (flg) { PEPSetWhichEigenpairs(pep,PEP_SMALLEST_IMAGINARY); }
184: PetscOptionsBoolGroup("-pep_target_magnitude","Compute eigenvalues closest to target","PEPSetWhichEigenpairs",&flg);
185: if (flg) { PEPSetWhichEigenpairs(pep,PEP_TARGET_MAGNITUDE); }
186: PetscOptionsBoolGroup("-pep_target_real","Compute eigenvalues with real parts closest to target","PEPSetWhichEigenpairs",&flg);
187: if (flg) { PEPSetWhichEigenpairs(pep,PEP_TARGET_REAL); }
188: PetscOptionsBoolGroup("-pep_target_imaginary","Compute eigenvalues with imaginary parts closest to target","PEPSetWhichEigenpairs",&flg);
189: if (flg) { PEPSetWhichEigenpairs(pep,PEP_TARGET_IMAGINARY); }
190: PetscOptionsBoolGroupEnd("-pep_all","Compute all eigenvalues in an interval or a region","PEPSetWhichEigenpairs",&flg);
191: if (flg) { PEPSetWhichEigenpairs(pep,PEP_ALL); }
193: PetscOptionsScalar("-pep_target","Value of the target","PEPSetTarget",pep->target,&s,&flg);
194: if (flg) {
195: if (pep->which!=PEP_TARGET_REAL && pep->which!=PEP_TARGET_IMAGINARY) {
196: PEPSetWhichEigenpairs(pep,PEP_TARGET_MAGNITUDE);
197: }
198: PEPSetTarget(pep,s);
199: }
201: k = 2;
202: PetscOptionsRealArray("-pep_interval","Computational interval (two real values separated with a comma without spaces)","PEPSetInterval",array,&k,&flg);
203: if (flg) {
204: if (k<2) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_SIZ,"Must pass two values in -pep_interval (comma-separated without spaces)");
205: PEPSetWhichEigenpairs(pep,PEP_ALL);
206: PEPSetInterval(pep,array[0],array[1]);
207: }
209: /* -----------------------------------------------------------------------*/
210: /*
211: Cancels all monitors hardwired into code before call to PEPSetFromOptions()
212: */
213: PetscOptionsBool("-pep_monitor_cancel","Remove any hardwired monitor routines","PEPMonitorCancel",PETSC_FALSE,&flg,&set);
214: if (set && flg) { PEPMonitorCancel(pep); }
215: PEPMonitorSetFromOptions(pep,"-pep_monitor","first_approximation",NULL,PETSC_FALSE);
216: PEPMonitorSetFromOptions(pep,"-pep_monitor_all","all_approximations",NULL,PETSC_TRUE);
217: PEPMonitorSetFromOptions(pep,"-pep_monitor_conv","convergence_history",NULL,PETSC_FALSE);
219: /* -----------------------------------------------------------------------*/
220: PetscOptionsName("-pep_view","Print detailed information on solver used","PEPView",NULL);
221: PetscOptionsName("-pep_view_vectors","View computed eigenvectors","PEPVectorsView",NULL);
222: PetscOptionsName("-pep_view_values","View computed eigenvalues","PEPValuesView",NULL);
223: PetscOptionsName("-pep_converged_reason","Print reason for convergence, and number of iterations","PEPConvergedReasonView",NULL);
224: PetscOptionsName("-pep_error_absolute","Print absolute errors of each eigenpair","PEPErrorView",NULL);
225: PetscOptionsName("-pep_error_relative","Print relative errors of each eigenpair","PEPErrorView",NULL);
226: PetscOptionsName("-pep_error_backward","Print backward errors of each eigenpair","PEPErrorView",NULL);
228: if (pep->ops->setfromoptions) {
229: (*pep->ops->setfromoptions)(PetscOptionsObject,pep);
230: }
231: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)pep);
232: PetscOptionsEnd();
234: if (!pep->V) { PEPGetBV(pep,&pep->V); }
235: BVSetFromOptions(pep->V);
236: if (!pep->rg) { PEPGetRG(pep,&pep->rg); }
237: RGSetFromOptions(pep->rg);
238: if (!pep->ds) { PEPGetDS(pep,&pep->ds); }
239: DSSetFromOptions(pep->ds);
240: if (!pep->st) { PEPGetST(pep,&pep->st); }
241: PEPSetDefaultST(pep);
242: STSetFromOptions(pep->st);
243: if (!pep->refineksp) { PEPRefineGetKSP(pep,&pep->refineksp); }
244: KSPSetFromOptions(pep->refineksp);
245: return(0);
246: }
248: /*@C
249: PEPGetTolerances - Gets the tolerance and maximum iteration count used
250: by the PEP convergence tests.
252: Not Collective
254: Input Parameter:
255: . pep - the polynomial eigensolver context
257: Output Parameters:
258: + tol - the convergence tolerance
259: - maxits - maximum number of iterations
261: Notes:
262: The user can specify NULL for any parameter that is not needed.
264: Level: intermediate
266: .seealso: PEPSetTolerances()
267: @*/
268: PetscErrorCode PEPGetTolerances(PEP pep,PetscReal *tol,PetscInt *maxits)269: {
272: if (tol) *tol = pep->tol;
273: if (maxits) *maxits = pep->max_it;
274: return(0);
275: }
277: /*@
278: PEPSetTolerances - Sets the tolerance and maximum iteration count used
279: by the PEP convergence tests.
281: Logically Collective on pep
283: Input Parameters:
284: + pep - the polynomial eigensolver context
285: . tol - the convergence tolerance
286: - maxits - maximum number of iterations to use
288: Options Database Keys:
289: + -pep_tol <tol> - Sets the convergence tolerance
290: - -pep_max_it <maxits> - Sets the maximum number of iterations allowed
292: Notes:
293: Use PETSC_DEFAULT for either argument to assign a reasonably good value.
295: Level: intermediate
297: .seealso: PEPGetTolerances()
298: @*/
299: PetscErrorCode PEPSetTolerances(PEP pep,PetscReal tol,PetscInt maxits)300: {
305: if (tol == PETSC_DEFAULT) {
306: pep->tol = PETSC_DEFAULT;
307: pep->state = PEP_STATE_INITIAL;
308: } else {
309: if (tol <= 0.0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
310: pep->tol = tol;
311: }
312: if (maxits == PETSC_DEFAULT || maxits == PETSC_DECIDE) {
313: pep->max_it = PETSC_DEFAULT;
314: pep->state = PEP_STATE_INITIAL;
315: } else {
316: if (maxits <= 0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of maxits. Must be > 0");
317: pep->max_it = maxits;
318: }
319: return(0);
320: }
322: /*@C
323: PEPGetDimensions - Gets the number of eigenvalues to compute
324: and the dimension of the subspace.
326: Not Collective
328: Input Parameter:
329: . pep - the polynomial eigensolver context
331: Output Parameters:
332: + nev - number of eigenvalues to compute
333: . ncv - the maximum dimension of the subspace to be used by the solver
334: - mpd - the maximum dimension allowed for the projected problem
336: Notes:
337: The user can specify NULL for any parameter that is not needed.
339: Level: intermediate
341: .seealso: PEPSetDimensions()
342: @*/
343: PetscErrorCode PEPGetDimensions(PEP pep,PetscInt *nev,PetscInt *ncv,PetscInt *mpd)344: {
347: if (nev) *nev = pep->nev;
348: if (ncv) *ncv = pep->ncv;
349: if (mpd) *mpd = pep->mpd;
350: return(0);
351: }
353: /*@
354: PEPSetDimensions - Sets the number of eigenvalues to compute
355: and the dimension of the subspace.
357: Logically Collective on pep
359: Input Parameters:
360: + pep - the polynomial eigensolver context
361: . nev - number of eigenvalues to compute
362: . ncv - the maximum dimension of the subspace to be used by the solver
363: - mpd - the maximum dimension allowed for the projected problem
365: Options Database Keys:
366: + -pep_nev <nev> - Sets the number of eigenvalues
367: . -pep_ncv <ncv> - Sets the dimension of the subspace
368: - -pep_mpd <mpd> - Sets the maximum projected dimension
370: Notes:
371: Use PETSC_DEFAULT for ncv and mpd to assign a reasonably good value, which is
372: dependent on the solution method.
374: The parameters ncv and mpd are intimately related, so that the user is advised
375: to set one of them at most. Normal usage is that
376: (a) in cases where nev is small, the user sets ncv (a reasonable default is 2*nev); and
377: (b) in cases where nev is large, the user sets mpd.
379: The value of ncv should always be between nev and (nev+mpd), typically
380: ncv=nev+mpd. If nev is not too large, mpd=nev is a reasonable choice, otherwise
381: a smaller value should be used.
383: When computing all eigenvalues in an interval, see PEPSetInterval(), these
384: parameters lose relevance, and tuning must be done with PEPSTOARSetDimensions().
386: Level: intermediate
388: .seealso: PEPGetDimensions(), PEPSetInterval(), PEPSTOARSetDimensions()
389: @*/
390: PetscErrorCode PEPSetDimensions(PEP pep,PetscInt nev,PetscInt ncv,PetscInt mpd)391: {
397: if (nev<1) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of nev. Must be > 0");
398: pep->nev = nev;
399: if (ncv == PETSC_DECIDE || ncv == PETSC_DEFAULT) {
400: pep->ncv = PETSC_DEFAULT;
401: } else {
402: if (ncv<1) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of ncv. Must be > 0");
403: pep->ncv = ncv;
404: }
405: if (mpd == PETSC_DECIDE || mpd == PETSC_DEFAULT) {
406: pep->mpd = PETSC_DEFAULT;
407: } else {
408: if (mpd<1) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of mpd. Must be > 0");
409: pep->mpd = mpd;
410: }
411: pep->state = PEP_STATE_INITIAL;
412: return(0);
413: }
415: /*@
416: PEPSetWhichEigenpairs - Specifies which portion of the spectrum is
417: to be sought.
419: Logically Collective on pep
421: Input Parameters:
422: + pep - eigensolver context obtained from PEPCreate()
423: - which - the portion of the spectrum to be sought
425: Possible values:
426: The parameter 'which' can have one of these values
428: + PEP_LARGEST_MAGNITUDE - largest eigenvalues in magnitude (default)
429: . PEP_SMALLEST_MAGNITUDE - smallest eigenvalues in magnitude
430: . PEP_LARGEST_REAL - largest real parts
431: . PEP_SMALLEST_REAL - smallest real parts
432: . PEP_LARGEST_IMAGINARY - largest imaginary parts
433: . PEP_SMALLEST_IMAGINARY - smallest imaginary parts
434: . PEP_TARGET_MAGNITUDE - eigenvalues closest to the target (in magnitude)
435: . PEP_TARGET_REAL - eigenvalues with real part closest to target
436: . PEP_TARGET_IMAGINARY - eigenvalues with imaginary part closest to target
437: . PEP_ALL - all eigenvalues contained in a given interval or region
438: - PEP_WHICH_USER - user defined ordering set with PEPSetEigenvalueComparison()
440: Options Database Keys:
441: + -pep_largest_magnitude - Sets largest eigenvalues in magnitude
442: . -pep_smallest_magnitude - Sets smallest eigenvalues in magnitude
443: . -pep_largest_real - Sets largest real parts
444: . -pep_smallest_real - Sets smallest real parts
445: . -pep_largest_imaginary - Sets largest imaginary parts
446: . -pep_smallest_imaginary - Sets smallest imaginary parts
447: . -pep_target_magnitude - Sets eigenvalues closest to target
448: . -pep_target_real - Sets real parts closest to target
449: . -pep_target_imaginary - Sets imaginary parts closest to target
450: - -pep_all - Sets all eigenvalues in an interval or region
452: Notes:
453: Not all eigensolvers implemented in PEP account for all the possible values
454: stated above. If SLEPc is compiled for real numbers PEP_LARGEST_IMAGINARY455: and PEP_SMALLEST_IMAGINARY use the absolute value of the imaginary part
456: for eigenvalue selection.
458: The target is a scalar value provided with PEPSetTarget().
460: The criterion PEP_TARGET_IMAGINARY is available only in case PETSc and
461: SLEPc have been built with complex scalars.
463: PEP_ALL is intended for use in combination with an interval (see
464: PEPSetInterval()), when all eigenvalues within the interval are requested,
465: and also for computing all eigenvalues in a region with the CISS solver.
466: In both cases, the number of eigenvalues is unknown, so the nev parameter
467: has a different sense, see PEPSetDimensions().
469: Level: intermediate
471: .seealso: PEPGetWhichEigenpairs(), PEPSetTarget(), PEPSetInterval(),
472: PEPSetDimensions(), PEPSetEigenvalueComparison(), PEPWhich473: @*/
474: PetscErrorCode PEPSetWhichEigenpairs(PEP pep,PEPWhich which)475: {
479: switch (which) {
480: case PEP_LARGEST_MAGNITUDE:
481: case PEP_SMALLEST_MAGNITUDE:
482: case PEP_LARGEST_REAL:
483: case PEP_SMALLEST_REAL:
484: case PEP_LARGEST_IMAGINARY:
485: case PEP_SMALLEST_IMAGINARY:
486: case PEP_TARGET_MAGNITUDE:
487: case PEP_TARGET_REAL:
488: #if defined(PETSC_USE_COMPLEX)
489: case PEP_TARGET_IMAGINARY:
490: #endif
491: case PEP_ALL:
492: case PEP_WHICH_USER:
493: if (pep->which != which) {
494: pep->state = PEP_STATE_INITIAL;
495: pep->which = which;
496: }
497: break;
498: #if !defined(PETSC_USE_COMPLEX)
499: case PEP_TARGET_IMAGINARY:
500: SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"PEP_TARGET_IMAGINARY can be used only with complex scalars");
501: #endif
502: default:503: SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'which' value");
504: }
505: return(0);
506: }
508: /*@
509: PEPGetWhichEigenpairs - Returns which portion of the spectrum is to be
510: sought.
512: Not Collective
514: Input Parameter:
515: . pep - eigensolver context obtained from PEPCreate()
517: Output Parameter:
518: . which - the portion of the spectrum to be sought
520: Notes:
521: See PEPSetWhichEigenpairs() for possible values of 'which'.
523: Level: intermediate
525: .seealso: PEPSetWhichEigenpairs(), PEPWhich526: @*/
527: PetscErrorCode PEPGetWhichEigenpairs(PEP pep,PEPWhich *which)528: {
532: *which = pep->which;
533: return(0);
534: }
536: /*@C
537: PEPSetEigenvalueComparison - Specifies the eigenvalue comparison function
538: when PEPSetWhichEigenpairs() is set to PEP_WHICH_USER.
540: Logically Collective on pep
542: Input Parameters:
543: + pep - eigensolver context obtained from PEPCreate()
544: . func - a pointer to the comparison function
545: - ctx - a context pointer (the last parameter to the comparison function)
547: Calling Sequence of func:
548: $ func(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *res,void *ctx)
550: + ar - real part of the 1st eigenvalue
551: . ai - imaginary part of the 1st eigenvalue
552: . br - real part of the 2nd eigenvalue
553: . bi - imaginary part of the 2nd eigenvalue
554: . res - result of comparison
555: - ctx - optional context, as set by PEPSetEigenvalueComparison()
557: Note:
558: The returning parameter 'res' can be
559: + negative - if the 1st eigenvalue is preferred to the 2st one
560: . zero - if both eigenvalues are equally preferred
561: - positive - if the 2st eigenvalue is preferred to the 1st one
563: Level: advanced
565: .seealso: PEPSetWhichEigenpairs(), PEPWhich566: @*/
567: PetscErrorCode PEPSetEigenvalueComparison(PEP pep,PetscErrorCode (*func)(PetscScalar,PetscScalar,PetscScalar,PetscScalar,PetscInt*,void*),void* ctx)568: {
571: pep->sc->comparison = func;
572: pep->sc->comparisonctx = ctx;
573: pep->which = PEP_WHICH_USER;
574: return(0);
575: }
577: /*@
578: PEPSetProblemType - Specifies the type of the polynomial eigenvalue problem.
580: Logically Collective on pep
582: Input Parameters:
583: + pep - the polynomial eigensolver context
584: - type - a known type of polynomial eigenvalue problem
586: Options Database Keys:
587: + -pep_general - general problem with no particular structure
588: . -pep_hermitian - problem whose coefficient matrices are Hermitian
589: . -pep_hyperbolic - Hermitian problem that satisfies the definition of hyperbolic
590: - -pep_gyroscopic - problem with Hamiltonian structure
592: Notes:
593: Allowed values for the problem type are: general (PEP_GENERAL), Hermitian
594: (PEP_HERMITIAN), hyperbolic (PEP_HYPERBOLIC), and gyroscopic (PEP_GYROSCOPIC).
596: This function is used to instruct SLEPc to exploit certain structure in
597: the polynomial eigenproblem. By default, no particular structure is assumed.
599: If the problem matrices are Hermitian (symmetric in the real case) or
600: Hermitian/skew-Hermitian then the solver can exploit this fact to perform
601: less operations or provide better stability. Hyperbolic problems are a
602: particular case of Hermitian problems, some solvers may treat them simply as
603: Hermitian.
605: Level: intermediate
607: .seealso: PEPSetOperators(), PEPSetType(), PEPGetProblemType(), PEPProblemType608: @*/
609: PetscErrorCode PEPSetProblemType(PEP pep,PEPProblemType type)610: {
614: if (type!=PEP_GENERAL && type!=PEP_HERMITIAN && type!=PEP_HYPERBOLIC && type!=PEP_GYROSCOPIC) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_WRONG,"Unknown eigenvalue problem type");
615: if (type != pep->problem_type) {
616: pep->problem_type = type;
617: pep->state = PEP_STATE_INITIAL;
618: }
619: return(0);
620: }
622: /*@
623: PEPGetProblemType - Gets the problem type from the PEP object.
625: Not Collective
627: Input Parameter:
628: . pep - the polynomial eigensolver context
630: Output Parameter:
631: . type - the problem type
633: Level: intermediate
635: .seealso: PEPSetProblemType(), PEPProblemType636: @*/
637: PetscErrorCode PEPGetProblemType(PEP pep,PEPProblemType *type)638: {
642: *type = pep->problem_type;
643: return(0);
644: }
646: /*@
647: PEPSetBasis - Specifies the type of polynomial basis used to describe the
648: polynomial eigenvalue problem.
650: Logically Collective on pep
652: Input Parameters:
653: + pep - the polynomial eigensolver context
654: - basis - the type of polynomial basis
656: Options Database Key:
657: . -pep_basis <basis> - Select the basis type
659: Notes:
660: By default, the coefficient matrices passed via PEPSetOperators() are
661: expressed in the monomial basis, i.e.
662: P(lambda) = A_0 + lambda*A_1 + lambda^2*A_2 + ... + lambda^d*A_d.
663: Other polynomial bases may have better numerical behaviour, but the user
664: must then pass the coefficient matrices accordingly.
666: Level: intermediate
668: .seealso: PEPSetOperators(), PEPGetBasis(), PEPBasis669: @*/
670: PetscErrorCode PEPSetBasis(PEP pep,PEPBasis basis)671: {
675: pep->basis = basis;
676: return(0);
677: }
679: /*@
680: PEPGetBasis - Gets the type of polynomial basis from the PEP object.
682: Not Collective
684: Input Parameter:
685: . pep - the polynomial eigensolver context
687: Output Parameter:
688: . basis - the polynomial basis
690: Level: intermediate
692: .seealso: PEPSetBasis(), PEPBasis693: @*/
694: PetscErrorCode PEPGetBasis(PEP pep,PEPBasis *basis)695: {
699: *basis = pep->basis;
700: return(0);
701: }
703: /*@
704: PEPSetTrackAll - Specifies if the solver must compute the residual of all
705: approximate eigenpairs or not.
707: Logically Collective on pep
709: Input Parameters:
710: + pep - the eigensolver context
711: - trackall - whether compute all residuals or not
713: Notes:
714: If the user sets trackall=PETSC_TRUE then the solver explicitly computes
715: the residual for each eigenpair approximation. Computing the residual is
716: usually an expensive operation and solvers commonly compute the associated
717: residual to the first unconverged eigenpair.
719: The option '-pep_monitor_all' automatically activates this option.
721: Level: developer
723: .seealso: PEPGetTrackAll()
724: @*/
725: PetscErrorCode PEPSetTrackAll(PEP pep,PetscBool trackall)726: {
730: pep->trackall = trackall;
731: return(0);
732: }
734: /*@
735: PEPGetTrackAll - Returns the flag indicating whether all residual norms must
736: be computed or not.
738: Not Collective
740: Input Parameter:
741: . pep - the eigensolver context
743: Output Parameter:
744: . trackall - the returned flag
746: Level: developer
748: .seealso: PEPSetTrackAll()
749: @*/
750: PetscErrorCode PEPGetTrackAll(PEP pep,PetscBool *trackall)751: {
755: *trackall = pep->trackall;
756: return(0);
757: }
759: /*@C
760: PEPSetConvergenceTestFunction - Sets a function to compute the error estimate
761: used in the convergence test.
763: Logically Collective on pep
765: Input Parameters:
766: + pep - eigensolver context obtained from PEPCreate()
767: . func - a pointer to the convergence test function
768: . ctx - context for private data for the convergence routine (may be null)
769: - destroy - a routine for destroying the context (may be null)
771: Calling Sequence of func:
772: $ func(PEP pep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
774: + pep - eigensolver context obtained from PEPCreate()
775: . eigr - real part of the eigenvalue
776: . eigi - imaginary part of the eigenvalue
777: . res - residual norm associated to the eigenpair
778: . errest - (output) computed error estimate
779: - ctx - optional context, as set by PEPSetConvergenceTestFunction()
781: Note:
782: If the error estimate returned by the convergence test function is less than
783: the tolerance, then the eigenvalue is accepted as converged.
785: Level: advanced
787: .seealso: PEPSetConvergenceTest(), PEPSetTolerances()
788: @*/
789: PetscErrorCode PEPSetConvergenceTestFunction(PEP pep,PetscErrorCode (*func)(PEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*),void* ctx,PetscErrorCode (*destroy)(void*))790: {
795: if (pep->convergeddestroy) {
796: (*pep->convergeddestroy)(pep->convergedctx);
797: }
798: pep->convergeduser = func;
799: pep->convergeddestroy = destroy;
800: pep->convergedctx = ctx;
801: if (func == PEPConvergedRelative) pep->conv = PEP_CONV_REL;
802: else if (func == PEPConvergedNorm) pep->conv = PEP_CONV_NORM;
803: else if (func == PEPConvergedAbsolute) pep->conv = PEP_CONV_ABS;
804: else {
805: pep->conv = PEP_CONV_USER;
806: pep->converged = pep->convergeduser;
807: }
808: return(0);
809: }
811: /*@
812: PEPSetConvergenceTest - Specifies how to compute the error estimate
813: used in the convergence test.
815: Logically Collective on pep
817: Input Parameters:
818: + pep - eigensolver context obtained from PEPCreate()
819: - conv - the type of convergence test
821: Options Database Keys:
822: + -pep_conv_abs - Sets the absolute convergence test
823: . -pep_conv_rel - Sets the convergence test relative to the eigenvalue
824: . -pep_conv_norm - Sets the convergence test relative to the matrix norms
825: - -pep_conv_user - Selects the user-defined convergence test
827: Note:
828: The parameter 'conv' can have one of these values
829: + PEP_CONV_ABS - absolute error ||r||
830: . PEP_CONV_REL - error relative to the eigenvalue l, ||r||/|l|
831: . PEP_CONV_NORM - error relative matrix norms, ||r||/sum_i(l^i*||A_i||)
832: - PEP_CONV_USER - function set by PEPSetConvergenceTestFunction()
834: Level: intermediate
836: .seealso: PEPGetConvergenceTest(), PEPSetConvergenceTestFunction(), PEPSetStoppingTest(), PEPConv837: @*/
838: PetscErrorCode PEPSetConvergenceTest(PEP pep,PEPConv conv)839: {
843: switch (conv) {
844: case PEP_CONV_ABS: pep->converged = PEPConvergedAbsolute; break;
845: case PEP_CONV_REL: pep->converged = PEPConvergedRelative; break;
846: case PEP_CONV_NORM: pep->converged = PEPConvergedNorm; break;
847: case PEP_CONV_USER:
848: if (!pep->convergeduser) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ORDER,"Must call PEPSetConvergenceTestFunction() first");
849: pep->converged = pep->convergeduser;
850: break;
851: default:852: SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'conv' value");
853: }
854: pep->conv = conv;
855: return(0);
856: }
858: /*@
859: PEPGetConvergenceTest - Gets the method used to compute the error estimate
860: used in the convergence test.
862: Not Collective
864: Input Parameters:
865: . pep - eigensolver context obtained from PEPCreate()
867: Output Parameters:
868: . conv - the type of convergence test
870: Level: intermediate
872: .seealso: PEPSetConvergenceTest(), PEPConv873: @*/
874: PetscErrorCode PEPGetConvergenceTest(PEP pep,PEPConv *conv)875: {
879: *conv = pep->conv;
880: return(0);
881: }
883: /*@C
884: PEPSetStoppingTestFunction - Sets a function to decide when to stop the outer
885: iteration of the eigensolver.
887: Logically Collective on pep
889: Input Parameters:
890: + pep - eigensolver context obtained from PEPCreate()
891: . func - pointer to the stopping test function
892: . ctx - context for private data for the stopping routine (may be null)
893: - destroy - a routine for destroying the context (may be null)
895: Calling Sequence of func:
896: $ func(PEP pep,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nev,PEPConvergedReason *reason,void *ctx)
898: + pep - eigensolver context obtained from PEPCreate()
899: . its - current number of iterations
900: . max_it - maximum number of iterations
901: . nconv - number of currently converged eigenpairs
902: . nev - number of requested eigenpairs
903: . reason - (output) result of the stopping test
904: - ctx - optional context, as set by PEPSetStoppingTestFunction()
906: Note:
907: Normal usage is to first call the default routine PEPStoppingBasic() and then
908: set reason to PEP_CONVERGED_USER if some user-defined conditions have been
909: met. To let the eigensolver continue iterating, the result must be left as
910: PEP_CONVERGED_ITERATING.
912: Level: advanced
914: .seealso: PEPSetStoppingTest(), PEPStoppingBasic()
915: @*/
916: PetscErrorCode PEPSetStoppingTestFunction(PEP pep,PetscErrorCode (*func)(PEP,PetscInt,PetscInt,PetscInt,PetscInt,PEPConvergedReason*,void*),void* ctx,PetscErrorCode (*destroy)(void*))917: {
922: if (pep->stoppingdestroy) {
923: (*pep->stoppingdestroy)(pep->stoppingctx);
924: }
925: pep->stoppinguser = func;
926: pep->stoppingdestroy = destroy;
927: pep->stoppingctx = ctx;
928: if (func == PEPStoppingBasic) pep->stop = PEP_STOP_BASIC;
929: else {
930: pep->stop = PEP_STOP_USER;
931: pep->stopping = pep->stoppinguser;
932: }
933: return(0);
934: }
936: /*@
937: PEPSetStoppingTest - Specifies how to decide the termination of the outer
938: loop of the eigensolver.
940: Logically Collective on pep
942: Input Parameters:
943: + pep - eigensolver context obtained from PEPCreate()
944: - stop - the type of stopping test
946: Options Database Keys:
947: + -pep_stop_basic - Sets the default stopping test
948: - -pep_stop_user - Selects the user-defined stopping test
950: Note:
951: The parameter 'stop' can have one of these values
952: + PEP_STOP_BASIC - default stopping test
953: - PEP_STOP_USER - function set by PEPSetStoppingTestFunction()
955: Level: advanced
957: .seealso: PEPGetStoppingTest(), PEPSetStoppingTestFunction(), PEPSetConvergenceTest(), PEPStop958: @*/
959: PetscErrorCode PEPSetStoppingTest(PEP pep,PEPStop stop)960: {
964: switch (stop) {
965: case PEP_STOP_BASIC: pep->stopping = PEPStoppingBasic; break;
966: case PEP_STOP_USER:
967: if (!pep->stoppinguser) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ORDER,"Must call PEPSetStoppingTestFunction() first");
968: pep->stopping = pep->stoppinguser;
969: break;
970: default:971: SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'stop' value");
972: }
973: pep->stop = stop;
974: return(0);
975: }
977: /*@
978: PEPGetStoppingTest - Gets the method used to decide the termination of the outer
979: loop of the eigensolver.
981: Not Collective
983: Input Parameters:
984: . pep - eigensolver context obtained from PEPCreate()
986: Output Parameters:
987: . stop - the type of stopping test
989: Level: advanced
991: .seealso: PEPSetStoppingTest(), PEPStop992: @*/
993: PetscErrorCode PEPGetStoppingTest(PEP pep,PEPStop *stop)994: {
998: *stop = pep->stop;
999: return(0);
1000: }
1002: /*@
1003: PEPSetScale - Specifies the scaling strategy to be used.
1005: Logically Collective on pep
1007: Input Parameters:
1008: + pep - the eigensolver context
1009: . scale - scaling strategy
1010: . alpha - the scaling factor used in the scalar strategy
1011: . Dl - the left diagonal matrix of the diagonal scaling algorithm
1012: . Dr - the right diagonal matrix of the diagonal scaling algorithm
1013: . its - number of iterations of the diagonal scaling algorithm
1014: - lambda - approximation to wanted eigenvalues (modulus)
1016: Options Database Keys:
1017: + -pep_scale <type> - scaling type, one of <none,scalar,diagonal,both>
1018: . -pep_scale_factor <alpha> - the scaling factor
1019: . -pep_scale_its <its> - number of iterations
1020: - -pep_scale_lambda <lambda> - approximation to eigenvalues
1022: Notes:
1023: There are two non-exclusive scaling strategies: scalar and diagonal.
1025: In the scalar strategy, scaling is applied to the eigenvalue, that is,
1026: mu = lambda/alpha is the new eigenvalue and all matrices are scaled
1027: accordingly. After solving the scaled problem, the original lambda is
1028: recovered. Parameter 'alpha' must be positive. Use PETSC_DEFAULT to let
1029: the solver compute a reasonable scaling factor.
1031: In the diagonal strategy, the solver works implicitly with matrix Dl*A*Dr,
1032: where Dl and Dr are appropriate diagonal matrices. This improves the accuracy
1033: of the computed results in some cases. The user may provide the Dr and Dl
1034: matrices represented as Vec objects storing diagonal elements. If not
1035: provided, these matrices are computed internally. This option requires
1036: that the polynomial coefficient matrices are of MATAIJ type.
1037: The parameter 'its' is the number of iterations performed by the method.
1038: Parameter 'lambda' must be positive. Use PETSC_DEFAULT or set lambda = 1.0 if
1039: no information about eigenvalues is available.
1041: Level: intermediate
1043: .seealso: PEPGetScale()
1044: @*/
1045: PetscErrorCode PEPSetScale(PEP pep,PEPScale scale,PetscReal alpha,Vec Dl,Vec Dr,PetscInt its,PetscReal lambda)1046: {
1052: pep->scale = scale;
1053: if (scale==PEP_SCALE_SCALAR || scale==PEP_SCALE_BOTH) {
1055: if (alpha == PETSC_DEFAULT || alpha == PETSC_DECIDE) {
1056: pep->sfactor = 0.0;
1057: pep->sfactor_set = PETSC_FALSE;
1058: } else {
1059: if (alpha<=0.0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of alpha. Must be > 0");
1060: pep->sfactor = alpha;
1061: pep->sfactor_set = PETSC_TRUE;
1062: }
1063: }
1064: if (scale==PEP_SCALE_DIAGONAL || scale==PEP_SCALE_BOTH) {
1065: if (Dl) {
1068: PetscObjectReference((PetscObject)Dl);
1069: VecDestroy(&pep->Dl);
1070: pep->Dl = Dl;
1071: }
1072: if (Dr) {
1075: PetscObjectReference((PetscObject)Dr);
1076: VecDestroy(&pep->Dr);
1077: pep->Dr = Dr;
1078: }
1081: if (its==PETSC_DECIDE || its==PETSC_DEFAULT) pep->sits = 5;
1082: else pep->sits = its;
1083: if (lambda==PETSC_DECIDE || lambda==PETSC_DEFAULT) pep->slambda = 1.0;
1084: else if (lambda<=0.0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of lambda. Must be > 0");
1085: else pep->slambda = lambda;
1086: }
1087: pep->state = PEP_STATE_INITIAL;
1088: return(0);
1089: }
1091: /*@C
1092: PEPGetScale - Gets the scaling strategy used by the PEP object, and the
1093: associated parameters.
1095: Not Collectiv, but vectors are shared by all processors that share the PEP1097: Input Parameter:
1098: . pep - the eigensolver context
1100: Output Parameters:
1101: + scale - scaling strategy
1102: . alpha - the scaling factor used in the scalar strategy
1103: . Dl - the left diagonal matrix of the diagonal scaling algorithm
1104: . Dr - the right diagonal matrix of the diagonal scaling algorithm
1105: . its - number of iterations of the diagonal scaling algorithm
1106: - lambda - approximation to wanted eigenvalues (modulus)
1108: Level: intermediate
1110: Note:
1111: The user can specify NULL for any parameter that is not needed.
1113: If Dl or Dr were not set by the user, then the ones computed internally are
1114: returned (or a null pointer if called before PEPSetUp).
1116: .seealso: PEPSetScale(), PEPSetUp()
1117: @*/
1118: PetscErrorCode PEPGetScale(PEP pep,PEPScale *scale,PetscReal *alpha,Vec *Dl,Vec *Dr,PetscInt *its,PetscReal *lambda)1119: {
1122: if (scale) *scale = pep->scale;
1123: if (alpha) *alpha = pep->sfactor;
1124: if (Dl) *Dl = pep->Dl;
1125: if (Dr) *Dr = pep->Dr;
1126: if (its) *its = pep->sits;
1127: if (lambda) *lambda = pep->slambda;
1128: return(0);
1129: }
1131: /*@
1132: PEPSetExtract - Specifies the extraction strategy to be used.
1134: Logically Collective on pep
1136: Input Parameters:
1137: + pep - the eigensolver context
1138: - extract - extraction strategy
1140: Options Database Keys:
1141: . -pep_extract <type> - extraction type, one of <none,norm,residual,structured>
1143: Level: intermediate
1145: .seealso: PEPGetExtract()
1146: @*/
1147: PetscErrorCode PEPSetExtract(PEP pep,PEPExtract extract)1148: {
1152: pep->extract = extract;
1153: return(0);
1154: }
1156: /*@
1157: PEPGetExtract - Gets the extraction strategy used by the PEP object.
1159: Not Collective
1161: Input Parameter:
1162: . pep - the eigensolver context
1164: Output Parameter:
1165: . extract - extraction strategy
1167: Level: intermediate
1169: .seealso: PEPSetExtract(), PEPExtract1170: @*/
1171: PetscErrorCode PEPGetExtract(PEP pep,PEPExtract *extract)1172: {
1176: *extract = pep->extract;
1177: return(0);
1178: }
1180: /*@
1181: PEPSetRefine - Specifies the refinement type (and options) to be used
1182: after the solve.
1184: Logically Collective on pep
1186: Input Parameters:
1187: + pep - the polynomial eigensolver context
1188: . refine - refinement type
1189: . npart - number of partitions of the communicator
1190: . tol - the convergence tolerance
1191: . its - maximum number of refinement iterations
1192: - scheme - which scheme to be used for solving the involved linear systems
1194: Options Database Keys:
1195: + -pep_refine <type> - refinement type, one of <none,simple,multiple>
1196: . -pep_refine_partitions <n> - the number of partitions
1197: . -pep_refine_tol <tol> - the tolerance
1198: . -pep_refine_its <its> - number of iterations
1199: - -pep_refine_scheme - to set the scheme for the linear solves
1201: Notes:
1202: By default, iterative refinement is disabled, since it may be very
1203: costly. There are two possible refinement strategies: simple and multiple.
1204: The simple approach performs iterative refinement on each of the
1205: converged eigenpairs individually, whereas the multiple strategy works
1206: with the invariant pair as a whole, refining all eigenpairs simultaneously.
1207: The latter may be required for the case of multiple eigenvalues.
1209: In some cases, especially when using direct solvers within the
1210: iterative refinement method, it may be helpful for improved scalability
1211: to split the communicator in several partitions. The npart parameter
1212: indicates how many partitions to use (defaults to 1).
1214: The tol and its parameters specify the stopping criterion. In the simple
1215: method, refinement continues until the residual of each eigenpair is
1216: below the tolerance (tol defaults to the PEP tol, but may be set to a
1217: different value). In contrast, the multiple method simply performs its
1218: refinement iterations (just one by default).
1220: The scheme argument is used to change the way in which linear systems are
1221: solved. Possible choices are: explicit, mixed block elimination (MBE),
1222: and Schur complement.
1224: Level: intermediate
1226: .seealso: PEPGetRefine()
1227: @*/
1228: PetscErrorCode PEPSetRefine(PEP pep,PEPRefine refine,PetscInt npart,PetscReal tol,PetscInt its,PEPRefineScheme scheme)1229: {
1231: PetscMPIInt size;
1240: pep->refine = refine;
1241: if (refine) { /* process parameters only if not REFINE_NONE */
1242: if (npart!=pep->npart) {
1243: PetscSubcommDestroy(&pep->refinesubc);
1244: KSPDestroy(&pep->refineksp);
1245: }
1246: if (npart == PETSC_DEFAULT || npart == PETSC_DECIDE) {
1247: pep->npart = 1;
1248: } else {
1249: MPI_Comm_size(PetscObjectComm((PetscObject)pep),&size);
1250: if (npart<1 || npart>size) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of npart");
1251: pep->npart = npart;
1252: }
1253: if (tol == PETSC_DEFAULT || tol == PETSC_DECIDE) {
1254: pep->rtol = PETSC_DEFAULT;
1255: } else {
1256: if (tol<=0.0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
1257: pep->rtol = tol;
1258: }
1259: if (its==PETSC_DECIDE || its==PETSC_DEFAULT) {
1260: pep->rits = PETSC_DEFAULT;
1261: } else {
1262: if (its<0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of its. Must be >= 0");
1263: pep->rits = its;
1264: }
1265: pep->scheme = scheme;
1266: }
1267: pep->state = PEP_STATE_INITIAL;
1268: return(0);
1269: }
1271: /*@C
1272: PEPGetRefine - Gets the refinement strategy used by the PEP object, and the
1273: associated parameters.
1275: Not Collective
1277: Input Parameter:
1278: . pep - the polynomial eigensolver context
1280: Output Parameters:
1281: + refine - refinement type
1282: . npart - number of partitions of the communicator
1283: . tol - the convergence tolerance
1284: . its - maximum number of refinement iterations
1285: - scheme - the scheme used for solving linear systems
1287: Level: intermediate
1289: Note:
1290: The user can specify NULL for any parameter that is not needed.
1292: .seealso: PEPSetRefine()
1293: @*/
1294: PetscErrorCode PEPGetRefine(PEP pep,PEPRefine *refine,PetscInt *npart,PetscReal *tol,PetscInt *its,PEPRefineScheme *scheme)1295: {
1298: if (refine) *refine = pep->refine;
1299: if (npart) *npart = pep->npart;
1300: if (tol) *tol = pep->rtol;
1301: if (its) *its = pep->rits;
1302: if (scheme) *scheme = pep->scheme;
1303: return(0);
1304: }
1306: /*@C
1307: PEPSetOptionsPrefix - Sets the prefix used for searching for all
1308: PEP options in the database.
1310: Logically Collective on pep
1312: Input Parameters:
1313: + pep - the polynomial eigensolver context
1314: - prefix - the prefix string to prepend to all PEP option requests
1316: Notes:
1317: A hyphen (-) must NOT be given at the beginning of the prefix name.
1318: The first character of all runtime options is AUTOMATICALLY the
1319: hyphen.
1321: For example, to distinguish between the runtime options for two
1322: different PEP contexts, one could call
1323: .vb
1324: PEPSetOptionsPrefix(pep1,"qeig1_")
1325: PEPSetOptionsPrefix(pep2,"qeig2_")
1326: .ve
1328: Level: advanced
1330: .seealso: PEPAppendOptionsPrefix(), PEPGetOptionsPrefix()
1331: @*/
1332: PetscErrorCode PEPSetOptionsPrefix(PEP pep,const char *prefix)1333: {
1338: if (!pep->st) { PEPGetST(pep,&pep->st); }
1339: STSetOptionsPrefix(pep->st,prefix);
1340: if (!pep->V) { PEPGetBV(pep,&pep->V); }
1341: BVSetOptionsPrefix(pep->V,prefix);
1342: if (!pep->ds) { PEPGetDS(pep,&pep->ds); }
1343: DSSetOptionsPrefix(pep->ds,prefix);
1344: if (!pep->rg) { PEPGetRG(pep,&pep->rg); }
1345: RGSetOptionsPrefix(pep->rg,prefix);
1346: PetscObjectSetOptionsPrefix((PetscObject)pep,prefix);
1347: return(0);
1348: }
1350: /*@C
1351: PEPAppendOptionsPrefix - Appends to the prefix used for searching for all
1352: PEP options in the database.
1354: Logically Collective on pep
1356: Input Parameters:
1357: + pep - the polynomial eigensolver context
1358: - prefix - the prefix string to prepend to all PEP option requests
1360: Notes:
1361: A hyphen (-) must NOT be given at the beginning of the prefix name.
1362: The first character of all runtime options is AUTOMATICALLY the hyphen.
1364: Level: advanced
1366: .seealso: PEPSetOptionsPrefix(), PEPGetOptionsPrefix()
1367: @*/
1368: PetscErrorCode PEPAppendOptionsPrefix(PEP pep,const char *prefix)1369: {
1374: if (!pep->st) { PEPGetST(pep,&pep->st); }
1375: STAppendOptionsPrefix(pep->st,prefix);
1376: if (!pep->V) { PEPGetBV(pep,&pep->V); }
1377: BVAppendOptionsPrefix(pep->V,prefix);
1378: if (!pep->ds) { PEPGetDS(pep,&pep->ds); }
1379: DSAppendOptionsPrefix(pep->ds,prefix);
1380: if (!pep->rg) { PEPGetRG(pep,&pep->rg); }
1381: RGAppendOptionsPrefix(pep->rg,prefix);
1382: PetscObjectAppendOptionsPrefix((PetscObject)pep,prefix);
1383: return(0);
1384: }
1386: /*@C
1387: PEPGetOptionsPrefix - Gets the prefix used for searching for all
1388: PEP options in the database.
1390: Not Collective
1392: Input Parameters:
1393: . pep - the polynomial eigensolver context
1395: Output Parameters:
1396: . prefix - pointer to the prefix string used is returned
1398: Note:
1399: On the Fortran side, the user should pass in a string 'prefix' of
1400: sufficient length to hold the prefix.
1402: Level: advanced
1404: .seealso: PEPSetOptionsPrefix(), PEPAppendOptionsPrefix()
1405: @*/
1406: PetscErrorCode PEPGetOptionsPrefix(PEP pep,const char *prefix[])1407: {
1413: PetscObjectGetOptionsPrefix((PetscObject)pep,prefix);
1414: return(0);
1415: }