Actual source code: test2.c
slepc-3.16.2 2022-02-01
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2021, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test NEP interface functions.\n\n";
13: #include <slepcnep.h>
15: int main(int argc,char **argv)
16: {
17: Mat A[3],B; /* problem matrices */
18: FN f[3],g; /* problem functions */
19: NEP nep; /* eigenproblem solver context */
20: DS ds;
21: RG rg;
22: PetscReal tol;
23: PetscScalar coeffs[2],target;
24: PetscInt n=20,i,its,nev,ncv,mpd,Istart,Iend,nterm;
25: PetscBool twoside;
26: NEPWhich which;
27: NEPConvergedReason reason;
28: NEPType type;
29: NEPRefine refine;
30: NEPRefineScheme rscheme;
31: NEPConv conv;
32: NEPStop stop;
33: NEPProblemType ptype;
34: MatStructure mstr;
35: PetscErrorCode ierr;
36: PetscViewerAndFormat *vf;
38: SlepcInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
39: PetscPrintf(PETSC_COMM_WORLD,"\nDiagonal Nonlinear Eigenproblem, n=%D\n\n",n);
41: /*
42: Matrices
43: */
44: MatCreate(PETSC_COMM_WORLD,&A[0]);
45: MatSetSizes(A[0],PETSC_DECIDE,PETSC_DECIDE,n,n);
46: MatSetFromOptions(A[0]);
47: MatSetUp(A[0]);
48: MatGetOwnershipRange(A[0],&Istart,&Iend);
49: for (i=Istart;i<Iend;i++) {
50: MatSetValue(A[0],i,i,i+1,INSERT_VALUES);
51: }
52: MatAssemblyBegin(A[0],MAT_FINAL_ASSEMBLY);
53: MatAssemblyEnd(A[0],MAT_FINAL_ASSEMBLY);
55: MatCreate(PETSC_COMM_WORLD,&A[1]);
56: MatSetSizes(A[1],PETSC_DECIDE,PETSC_DECIDE,n,n);
57: MatSetFromOptions(A[1]);
58: MatSetUp(A[1]);
59: MatGetOwnershipRange(A[1],&Istart,&Iend);
60: for (i=Istart;i<Iend;i++) {
61: MatSetValue(A[1],i,i,1.0,INSERT_VALUES);
62: }
63: MatAssemblyBegin(A[1],MAT_FINAL_ASSEMBLY);
64: MatAssemblyEnd(A[1],MAT_FINAL_ASSEMBLY);
66: MatCreate(PETSC_COMM_WORLD,&A[2]);
67: MatSetSizes(A[2],PETSC_DECIDE,PETSC_DECIDE,n,n);
68: MatSetFromOptions(A[2]);
69: MatSetUp(A[2]);
70: MatGetOwnershipRange(A[1],&Istart,&Iend);
71: for (i=Istart;i<Iend;i++) {
72: MatSetValue(A[2],i,i,n/(PetscReal)(i+1),INSERT_VALUES);
73: }
74: MatAssemblyBegin(A[2],MAT_FINAL_ASSEMBLY);
75: MatAssemblyEnd(A[2],MAT_FINAL_ASSEMBLY);
77: /*
78: Functions: f0=-lambda, f1=1.0, f2=sqrt(lambda)
79: */
80: FNCreate(PETSC_COMM_WORLD,&f[0]);
81: FNSetType(f[0],FNRATIONAL);
82: coeffs[0] = -1.0; coeffs[1] = 0.0;
83: FNRationalSetNumerator(f[0],2,coeffs);
85: FNCreate(PETSC_COMM_WORLD,&f[1]);
86: FNSetType(f[1],FNRATIONAL);
87: coeffs[0] = 1.0;
88: FNRationalSetNumerator(f[1],1,coeffs);
90: FNCreate(PETSC_COMM_WORLD,&f[2]);
91: FNSetType(f[2],FNSQRT);
93: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
94: Create eigensolver and test interface functions
95: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
96: NEPCreate(PETSC_COMM_WORLD,&nep);
97: NEPSetSplitOperator(nep,3,A,f,SAME_NONZERO_PATTERN);
98: NEPGetSplitOperatorInfo(nep,&nterm,&mstr);
99: PetscPrintf(PETSC_COMM_WORLD," Nonlinear function with %d terms, with %s\n",(int)nterm,MatStructures[mstr]);
100: NEPGetSplitOperatorTerm(nep,0,&B,&g);
101: MatView(B,NULL);
102: FNView(g,NULL);
104: NEPSetType(nep,NEPRII);
105: NEPGetType(nep,&type);
106: PetscPrintf(PETSC_COMM_WORLD," Type set to %s\n",type);
107: NEPGetTwoSided(nep,&twoside);
108: PetscPrintf(PETSC_COMM_WORLD," Two-sided flag = %s\n",twoside?"true":"false");
110: NEPGetProblemType(nep,&ptype);
111: PetscPrintf(PETSC_COMM_WORLD," Problem type before changing = %d",(int)ptype);
112: NEPSetProblemType(nep,NEP_RATIONAL);
113: NEPGetProblemType(nep,&ptype);
114: PetscPrintf(PETSC_COMM_WORLD," ... changed to %d.\n",(int)ptype);
116: NEPSetRefine(nep,NEP_REFINE_SIMPLE,1,1e-9,2,NEP_REFINE_SCHEME_EXPLICIT);
117: NEPGetRefine(nep,&refine,NULL,&tol,&its,&rscheme);
118: PetscPrintf(PETSC_COMM_WORLD," Refinement: %s, tol=%g, its=%D, scheme=%s\n",NEPRefineTypes[refine],(double)tol,its,NEPRefineSchemes[rscheme]);
120: NEPSetTarget(nep,1.1);
121: NEPGetTarget(nep,&target);
122: NEPSetWhichEigenpairs(nep,NEP_TARGET_MAGNITUDE);
123: NEPGetWhichEigenpairs(nep,&which);
124: PetscPrintf(PETSC_COMM_WORLD," Which = %d, target = %g\n",(int)which,(double)PetscRealPart(target));
126: NEPSetDimensions(nep,1,12,PETSC_DEFAULT);
127: NEPGetDimensions(nep,&nev,&ncv,&mpd);
128: PetscPrintf(PETSC_COMM_WORLD," Dimensions: nev=%D, ncv=%D, mpd=%D\n",nev,ncv,mpd);
130: NEPSetTolerances(nep,1.0e-6,200);
131: NEPGetTolerances(nep,&tol,&its);
132: PetscPrintf(PETSC_COMM_WORLD," Tolerance = %.6f, max_its = %D\n",(double)tol,its);
134: NEPSetConvergenceTest(nep,NEP_CONV_ABS);
135: NEPGetConvergenceTest(nep,&conv);
136: NEPSetStoppingTest(nep,NEP_STOP_BASIC);
137: NEPGetStoppingTest(nep,&stop);
138: PetscPrintf(PETSC_COMM_WORLD," Convergence test = %d, stopping test = %d\n",(int)conv,(int)stop);
140: PetscViewerAndFormatCreate(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_DEFAULT,&vf);
141: NEPMonitorSet(nep,(PetscErrorCode (*)(NEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*))NEPMonitorFirst,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
142: NEPMonitorCancel(nep);
144: NEPGetDS(nep,&ds);
145: DSView(ds,NULL);
146: NEPSetFromOptions(nep);
148: NEPGetRG(nep,&rg);
149: RGView(rg,NULL);
151: NEPSolve(nep);
152: NEPGetConvergedReason(nep,&reason);
153: PetscPrintf(PETSC_COMM_WORLD," Finished - converged reason = %d\n",(int)reason);
155: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
156: Display solution and clean up
157: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
158: NEPErrorView(nep,NEP_ERROR_RELATIVE,NULL);
159: NEPDestroy(&nep);
160: MatDestroy(&A[0]);
161: MatDestroy(&A[1]);
162: MatDestroy(&A[2]);
163: FNDestroy(&f[0]);
164: FNDestroy(&f[1]);
165: FNDestroy(&f[2]);
166: SlepcFinalize();
167: return ierr;
168: }
170: /*TEST
172: test:
173: suffix: 1
175: TEST*/