sfepy.discrete.fem.poly_spaces module¶
-
class
sfepy.discrete.fem.poly_spaces.
LagrangeNodes
(**kwargs)[source]¶ Helper class for defining nodes of Lagrange elements.
-
class
sfepy.discrete.fem.poly_spaces.
LagrangeSimplexBPolySpace
(name, geometry, order, init_context=True)[source]¶ Lagrange polynomial space with forced bubble function on a simplex domain.
-
name
= 'lagrange_simplex_bubble'¶
-
-
class
sfepy.discrete.fem.poly_spaces.
LagrangeSimplexPolySpace
(name, geometry, order, init_context=True)[source]¶ Lagrange polynomial space on a simplex domain.
-
name
= 'lagrange_simplex'¶
-
-
class
sfepy.discrete.fem.poly_spaces.
LagrangeTensorProductPolySpace
(name, geometry, order, init_context=True)[source]¶ Lagrange polynomial space on a tensor product domain.
-
name
= 'lagrange_tensor_product'¶
-
-
class
sfepy.discrete.fem.poly_spaces.
LobattoTensorProductPolySpace
(name, geometry, order)[source]¶ Hierarchical polynomial space using Lobatto functions.
Each row of the nodes attribute defines indices of Lobatto functions that need to be multiplied together to evaluate the corresponding shape function. This defines the ordering of basis functions on the reference element.
-
name
= 'lobatto_tensor_product'¶
-
-
class
sfepy.discrete.fem.poly_spaces.
NodeDescription
(node_types, nodes)[source]¶ Describe FE nodes defined on different parts of a reference element.
-
class
sfepy.discrete.fem.poly_spaces.
PolySpace
(name, geometry, order)[source]¶ Abstract polynomial space class.
-
static
any_from_args
(name, geometry, order, base='lagrange', force_bubble=False)[source]¶ Construct a particular polynomial space classes according to the arguments passed in.
-
eval_base
(coors, diff=False, ori=None, force_axis=False, suppress_errors=False, eps=1e-15)[source]¶ Evaluate the basis in points given by coordinates. The real work is done in _eval_base() implemented in subclasses.
Parameters: coors : array_like
The coordinates of points where the basis is evaluated. See Notes.
diff : bool
If True, return the first derivative.
ori : array_like, optional
Optional orientation of element facets for per element basis.
force_axis : bool
If True, force the resulting array shape to have one more axis even when ori is None.
suppress_errors : bool
If True, do not report points outside the reference domain.
eps : float
Accuracy for comparing coordinates.
Returns: base : array
The basis (shape (n_coor, 1, n_base)) or its derivative (shape (n_coor, dim, n_base)) evaluated in the given points. An additional axis is pre-pended of length n_cell, if ori is given, or of length 1, if force_axis is True.
Notes
If coors.ndim == 3, several point sets are assumed, with equal number of points in each of them. This is the case, for example, of the values of the volume base functions on the element facets. The indexing (of bf_b(g)) is then (ifa,iqp,:,n_ep), so that the facet can be set in C using FMF_SetCell.
-
keys
= {(1, 2): 'simplex', (3, 4): 'simplex', (3, 8): 'tensor_product', (2, 3): 'simplex', (2, 4): 'tensor_product'}¶
-
static