Vector Spaces¶
-
class
sage.categories.vector_spaces.
VectorSpaces
(K)¶ Bases:
sage.categories.category_types.Category_module
The category of (abstract) vector spaces over a given field
??? with an embedding in an ambient vector space ???
EXAMPLES:
sage: VectorSpaces(QQ) Category of vector spaces over Rational Field sage: VectorSpaces(QQ).super_categories() [Category of modules over Rational Field]
-
class
CartesianProducts
(category, *args)¶ Bases:
sage.categories.cartesian_product.CartesianProductsCategory
-
extra_super_categories
()¶ The category of vector spaces is closed under Cartesian products:
sage: C = VectorSpaces(QQ) sage: C.CartesianProducts() Category of Cartesian products of vector spaces over Rational Field sage: C in C.CartesianProducts().super_categories() True
-
-
class
DualObjects
(category, *args)¶ Bases:
sage.categories.dual.DualObjectsCategory
-
extra_super_categories
()¶ Returns the dual category
EXAMPLES:
The category of algebras over the Rational Field is dual to the category of coalgebras over the same field:
sage: C = VectorSpaces(QQ) sage: C.dual() Category of duals of vector spaces over Rational Field sage: C.dual().super_categories() # indirect doctest [Category of vector spaces over Rational Field]
-
-
class
ElementMethods
¶
-
class
ParentMethods
¶
-
class
TensorProducts
(category, *args)¶ Bases:
sage.categories.tensor.TensorProductsCategory
-
extra_super_categories
()¶ The category of vector spaces is closed under tensor products:
sage: C = VectorSpaces(QQ) sage: C.TensorProducts() Category of tensor products of vector spaces over Rational Field sage: C in C.TensorProducts().super_categories() True
-
-
class
WithBasis
(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
-
class
CartesianProducts
(category, *args)¶ Bases:
sage.categories.cartesian_product.CartesianProductsCategory
-
extra_super_categories
()¶ The category of vector spaces with basis is closed under Cartesian products:
sage: C = VectorSpaces(QQ).WithBasis() sage: C.CartesianProducts() Category of Cartesian products of vector spaces with basis over Rational Field sage: C in C.CartesianProducts().super_categories() True
-
-
class
TensorProducts
(category, *args)¶ Bases:
sage.categories.tensor.TensorProductsCategory
-
extra_super_categories
()¶ The category of vector spaces with basis is closed under tensor products:
sage: C = VectorSpaces(QQ).WithBasis() sage: C.TensorProducts() Category of tensor products of vector spaces with basis over Rational Field sage: C in C.TensorProducts().super_categories() True
-
-
is_abelian
()¶ Return whether this category is abelian.
This is always
True
since the base ring is a field.EXAMPLES:
sage: VectorSpaces(QQ).WithBasis().is_abelian() True
-
class
-
additional_structure
()¶ Return
None
.Indeed, the category of vector spaces defines no additional structure: a bimodule morphism between two vector spaces is a vector space morphism.
See also
Todo
Should this category be a
CategoryWithAxiom
?EXAMPLES:
sage: VectorSpaces(QQ).additional_structure()
-
base_field
()¶ Returns the base field over which the vector spaces of this category are all defined.
EXAMPLES:
sage: VectorSpaces(QQ).base_field() Rational Field
-
super_categories
()¶ EXAMPLES:
sage: VectorSpaces(QQ).super_categories() [Category of modules over Rational Field]
-
class