Local Generic Element¶
This file contains a common superclass for \(p\)-adic elements and power series elements.
AUTHORS:
- David Roe: initial version
- Julian Rueth (2012-10-15): added inverse_of_unit()
-
class
sage.rings.padics.local_generic_element.
LocalGenericElement
¶ Bases:
sage.structure.element.CommutativeRingElement
-
add_bigoh
(prec)¶ Returns self to reduced precision
prec
.- EXAMPLES::
- sage: K = Qp(11, 5) sage: L.<a> = K.extension(x^20 - 11) sage: b = a^3 + 3*a^5; b a^3 + 3*a^5 + O(a^103) sage: b.add_bigoh(17) a^3 + 3*a^5 + O(a^17) sage: b.add_bigoh(150) a^3 + 3*a^5 + O(a^103)
-
euclidean_degree
()¶ Return the degree of this element as an element of an Euclidean domain.
EXAMPLES:
For a field, this is always zero except for the zero element:
sage: K = Qp(2) sage: K.one().euclidean_degree() 0 sage: K.gen().euclidean_degree() 0 sage: K.zero().euclidean_degree() Traceback (most recent call last): ... ValueError: euclidean degree not defined for the zero element
For a ring which is not a field, this is the valuation of the element:
sage: R = Zp(2) sage: R.one().euclidean_degree() 0 sage: R.gen().euclidean_degree() 1 sage: R.zero().euclidean_degree() Traceback (most recent call last): ... ValueError: euclidean degree not defined for the zero element
-
inverse_of_unit
()¶ Returns the inverse of
self
ifself
is a unit.OUTPUT:
- an element in the same ring as
self
EXAMPLES:
sage: R = ZpCA(3,5) sage: a = R(2); a 2 + O(3^5) sage: b = a.inverse_of_unit(); b 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)
A
ZeroDivisionError
is raised if an element has no inverse in the ring:sage: R(3).inverse_of_unit() Traceback (most recent call last): ... ZeroDivisionError: Inverse does not exist.
Unlike the usual inverse of an element, the result is in the same ring as
self
and not just in its fraction field:sage: c = ~a; c 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5) sage: a.parent() 3-adic Ring with capped absolute precision 5 sage: b.parent() 3-adic Ring with capped absolute precision 5 sage: c.parent() 3-adic Field with capped relative precision 5
For fields this does of course not make any difference:
sage: R = QpCR(3,5) sage: a = R(2) sage: b = a.inverse_of_unit() sage: c = ~a sage: a.parent() 3-adic Field with capped relative precision 5 sage: b.parent() 3-adic Field with capped relative precision 5 sage: c.parent() 3-adic Field with capped relative precision 5
- an element in the same ring as
-
is_integral
()¶ Returns whether self is an integral element.
INPUT:
self
– a local ring element
OUTPUT:
- boolean – whether
self
is an integral element.
EXAMPLES:
sage: R = Qp(3,20) sage: a = R(7/3); a.is_integral() False sage: b = R(7/5); b.is_integral() True
-
is_padic_unit
()¶ Returns whether self is a \(p\)-adic unit. That is, whether it has zero valuation.
INPUT:
self
– a local ring element
OUTPUT:
- boolean – whether
self
is a unit
EXAMPLES:
sage: R = Zp(3,20,'capped-rel'); K = Qp(3,20,'capped-rel') sage: R(0).is_padic_unit() False sage: R(1).is_padic_unit() True sage: R(2).is_padic_unit() True sage: R(3).is_padic_unit() False sage: Qp(5,5)(5).is_padic_unit() False
-
is_unit
()¶ Returns whether self is a unit
INPUT:
self
– a local ring element
OUTPUT:
- boolean – whether
self
is a unit
NOTES:
For fields all nonzero elements are units. For DVR’s, only those elements of valuation 0 are. An older implementation ignored the case of fields, and returned always the negation of self.valuation()==0. This behavior is now supported with self.is_padic_unit().
EXAMPLES:
sage: R = Zp(3,20,'capped-rel'); K = Qp(3,20,'capped-rel') sage: R(0).is_unit() False sage: R(1).is_unit() True sage: R(2).is_unit() True sage: R(3).is_unit() False sage: Qp(5,5)(5).is_unit() # Note that 5 is invertible in `QQ_5`, even if it has positive valuation! True sage: Qp(5,5)(5).is_padic_unit() False
-
normalized_valuation
()¶ Returns the normalized valuation of this local ring element, i.e., the valuation divided by the absolute ramification index.
INPUT:
self
– a local ring element.OUTPUT:
rational – the normalized valuation of
self
.EXAMPLES:
sage: Q7 = Qp(7) sage: R.<x> = Q7[] sage: F.<z> = Q7.ext(x^3+7*x+7) sage: z.normalized_valuation() 1/3
-
quo_rem
(other)¶ Return the quotient with remainder of the division of this element by
other
.INPUT:
other
– an element in the same ring
EXAMPLES:
sage: R = Zp(3, 5) sage: R(12).quo_rem(R(2)) (2*3 + O(3^6), 0) sage: R(2).quo_rem(R(12)) (0, 2 + O(3^5)) sage: K = Qp(3, 5) sage: K(12).quo_rem(K(2)) (2*3 + O(3^6), 0) sage: K(2).quo_rem(K(12)) (2*3^-1 + 1 + 3 + 3^2 + 3^3 + O(3^4), 0)
-
slice
(i, j, k=1)¶ Returns the sum of the \(p^{i + l \cdot k}\) terms of the series expansion of this element, for \(i + l \cdot k\) between
i
andj-1
inclusive, and nonnegative integers \(l\). Behaves analogously to the slice function for lists.INPUT:
i
– an integer; if set toNone
, the sum will start with the first non-zero term of the series.j
– an integer; if set toNone
or \(\infty\), this method behaves as if it was set to the absolute precision of this element.k
– (default: 1) a positive integer
EXAMPLES:
sage: R = Zp(5, 6, 'capped-rel') sage: a = R(1/2); a 3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + O(5^6) sage: a.slice(2, 4) 2*5^2 + 2*5^3 + O(5^4) sage: a.slice(1, 6, 2) 2*5 + 2*5^3 + 2*5^5 + O(5^6)
The step size
k
has to be positive:sage: a.slice(0, 3, 0) Traceback (most recent call last): ... ValueError: slice step must be positive sage: a.slice(0, 3, -1) Traceback (most recent call last): ... ValueError: slice step must be positive
If
i
exceedsj
, then the result will be zero, with the precision given byj
:sage: a.slice(5, 4) O(5^4) sage: a.slice(6, 5) O(5^5)
However, the precision can not exceed the precision of the element:
sage: a.slice(101,100) O(5^6) sage: a.slice(0,5,2) 3 + 2*5^2 + 2*5^4 + O(5^5) sage: a.slice(0,6,2) 3 + 2*5^2 + 2*5^4 + O(5^6) sage: a.slice(0,7,2) 3 + 2*5^2 + 2*5^4 + O(5^6)
If start is left blank, it is set to the valuation:
sage: K = Qp(5, 6) sage: x = K(1/25 + 5); x 5^-2 + 5 + O(5^4) sage: x.slice(None, 3) 5^-2 + 5 + O(5^3) sage: x[:3] 5^-2 + 5 + O(5^3)
-
sqrt
(extend=True, all=False)¶ TODO: document what “extend” and “all” do
INPUT:
self
– a local ring element
OUTPUT:
- local ring element – the square root of
self
EXAMPLES:
sage: R = Zp(13, 10, 'capped-rel', 'series') sage: a = sqrt(R(-1)); a * a 12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + 12*13^7 + 12*13^8 + 12*13^9 + O(13^10) sage: sqrt(R(4)) 2 + O(13^10) sage: sqrt(R(4/9)) * 3 2 + O(13^10)
-