Recursive Species¶
-
class
sage.combinat.species.recursive_species.
CombinatorialSpecies
¶ Bases:
sage.combinat.species.species.GenericCombinatorialSpecies
EXAMPLES:
sage: F = CombinatorialSpecies() sage: loads(dumps(F)) Combinatorial species
sage: X = species.SingletonSpecies() sage: E = species.EmptySetSpecies() sage: L = CombinatorialSpecies() sage: L.define(E+X*L) sage: L.generating_series().coefficients(4) [1, 1, 1, 1] sage: LL = loads(dumps(L)) sage: LL.generating_series().coefficients(4) [1, 1, 1, 1]
-
define
(x)¶ Define
self
to be equal to the combinatorial speciesx
.This is used to define combinatorial species recursively. All of the real work is done by calling the .set() method for each of the series associated to self.
EXAMPLES: The species of linear orders L can be recursively defined by \(L = 1 + X*L\) where 1 represents the empty set species and X represents the singleton species.
sage: X = species.SingletonSpecies() sage: E = species.EmptySetSpecies() sage: L = CombinatorialSpecies() sage: L.define(E+X*L) sage: L.generating_series().coefficients(4) [1, 1, 1, 1] sage: L.structures([1,2,3]).cardinality() 6 sage: L.structures([1,2,3]).list() [1*(2*(3*{})), 1*(3*(2*{})), 2*(1*(3*{})), 2*(3*(1*{})), 3*(1*(2*{})), 3*(2*(1*{}))]
sage: L = species.LinearOrderSpecies() sage: L.generating_series().coefficients(4) [1, 1, 1, 1] sage: L.structures([1,2,3]).cardinality() 6 sage: L.structures([1,2,3]).list() [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
sage: A = CombinatorialSpecies() sage: A.define(X+A*A) sage: A.generating_series().coefficients(6) [0, 1, 1, 2, 5, 14] sage: A.generating_series().counts(6) [0, 1, 2, 12, 120, 1680] sage: len(A.structures([1,2,3]).list()) 12 sage: A.isotype_generating_series().coefficients(6) [0, 1, 1, 2, 5, 14] sage: len(A.isotypes([1,2,3,4]).list()) 5
sage: X2 = X*X sage: X5 = X2*X2*X sage: A = CombinatorialSpecies() sage: B = CombinatorialSpecies() sage: C = CombinatorialSpecies() sage: A.define(X5+B*B) sage: B.define(X5+C*C) sage: C.define(X2+C*C+A*A) sage: A.generating_series().coefficients(Integer(10)) [0, 0, 0, 0, 0, 1, 0, 0, 1, 2] sage: A.generating_series().coefficients(15) [0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 5, 4, 14, 10, 48] sage: B.generating_series().coefficients(15) [0, 0, 0, 0, 1, 1, 2, 0, 5, 0, 14, 0, 44, 0, 138] sage: C.generating_series().coefficients(15) [0, 0, 1, 0, 1, 0, 2, 0, 5, 0, 15, 0, 44, 2, 142]
sage: F = CombinatorialSpecies() sage: F.define(E+X+(X*F+X*X*F)) sage: F.generating_series().counts(10) [1, 2, 6, 30, 192, 1560, 15120, 171360, 2217600, 32296320] sage: F.generating_series().coefficients(10) [1, 2, 3, 5, 8, 13, 21, 34, 55, 89] sage: F.isotype_generating_series().coefficients(10) [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
-
weight_ring
()¶ EXAMPLES:
sage: F = species.CombinatorialSpecies() sage: F.weight_ring() Rational Field
sage: X = species.SingletonSpecies() sage: E = species.EmptySetSpecies() sage: L = CombinatorialSpecies() sage: L.define(E+X*L) sage: L.weight_ring() Rational Field
-
-
class
sage.combinat.species.recursive_species.
CombinatorialSpeciesStructure
(parent, s, **options)¶ Bases:
sage.combinat.species.structure.SpeciesStructureWrapper
This is a class for the structures of species such as the sum species that do not provide “additional” structure. For example, if you have the sum \(C\) of species \(A\) and \(B\), then a structure of \(C\) will either be either something from \(A\) or \(B\). Instead of just returning one of these directly, a “wrapper” is put around them so that they have their parent is \(C\) rather than \(A\) or \(B\):
sage: X = species.SingletonSpecies() sage: X2 = X+X sage: s = X2.structures([1]).random_element(); s 1 sage: s.parent() Sum of (Singleton species) and (Singleton species) sage: from sage.combinat.species.structure import SpeciesStructureWrapper sage: issubclass(type(s), SpeciesStructureWrapper) True
EXAMPLES:
sage: E = species.SetSpecies(); B = E+E sage: s = B.structures([1,2,3]).random_element() sage: s.parent() Sum of (Set species) and (Set species) sage: s == loads(dumps(s)) True