1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. #[doc(primitive = "bool")] // /// The boolean type. /// /// The `bool` represents a value, which could only be either `true` or `false`. If you cast /// a `bool` into an integer, `true` will be 1 and `false` will be 0. /// /// # Basic usage /// /// `bool` implements various traits, such as [`BitAnd`], [`BitOr`], [`Not`], etc., /// which allow us to perform boolean operations using `&`, `|` and `!`. /// /// [`if`] always demands a `bool` value. [`assert!`], being an important macro in testing, /// checks whether an expression returns `true`. /// /// ``` /// let bool_val = true & false | false; /// assert!(!bool_val); /// ``` /// /// [`assert!`]: macro.assert.html /// [`if`]: ../book/first-edition/if.html /// [`BitAnd`]: ops/trait.BitAnd.html /// [`BitOr`]: ops/trait.BitOr.html /// [`Not`]: ops/trait.Not.html /// /// # Examples /// /// A trivial example of the usage of `bool`, /// /// ``` /// let praise_the_borrow_checker = true; /// /// // using the `if` conditional /// if praise_the_borrow_checker { /// println!("oh, yeah!"); /// } else { /// println!("what?!!"); /// } /// /// // ... or, a match pattern /// match praise_the_borrow_checker { /// true => println!("keep praising!"), /// false => println!("you should praise!"), /// } /// ``` /// /// Also, since `bool` implements the [`Copy`](marker/trait.Copy.html) trait, we don't /// have to worry about the move semantics (just like the integer and float primitives). /// /// Now an example of `bool` cast to integer type: /// /// ``` /// assert_eq!(true as i32, 1); /// assert_eq!(false as i32, 0); /// ``` #[stable(feature = "rust1", since = "1.0.0")] mod prim_bool { } #[doc(primitive = "char")] // /// A character type. /// /// The `char` type represents a single character. More specifically, since /// 'character' isn't a well-defined concept in Unicode, `char` is a '[Unicode /// scalar value]', which is similar to, but not the same as, a '[Unicode code /// point]'. /// /// [Unicode scalar value]: http://www.unicode.org/glossary/#unicode_scalar_value /// [Unicode code point]: http://www.unicode.org/glossary/#code_point /// /// This documentation describes a number of methods and trait implementations on the /// `char` type. For technical reasons, there is additional, separate /// documentation in [the `std::char` module](char/index.html) as well. /// /// # Representation /// /// `char` is always four bytes in size. This is a different representation than /// a given character would have as part of a [`String`]. For example: /// /// ``` /// let v = vec!['h', 'e', 'l', 'l', 'o']; /// /// // five elements times four bytes for each element /// assert_eq!(20, v.len() * std::mem::size_of::<char>()); /// /// let s = String::from("hello"); /// /// // five elements times one byte per element /// assert_eq!(5, s.len() * std::mem::size_of::<u8>()); /// ``` /// /// [`String`]: string/struct.String.html /// /// As always, remember that a human intuition for 'character' may not map to /// Unicode's definitions. For example, emoji symbols such as '❤️' can be more /// than one Unicode code point; this ❤️ in particular is two: /// /// ``` /// let s = String::from("❤️"); /// /// // we get two chars out of a single ❤️ /// let mut iter = s.chars(); /// assert_eq!(Some('\u{2764}'), iter.next()); /// assert_eq!(Some('\u{fe0f}'), iter.next()); /// assert_eq!(None, iter.next()); /// ``` /// /// This means it won't fit into a `char`. Trying to create a literal with /// `let heart = '❤️';` gives an error: /// /// ```text /// error: character literal may only contain one codepoint: '❤ /// let heart = '❤️'; /// ^~ /// ``` /// /// Another implication of the 4-byte fixed size of a `char` is that /// per-`char` processing can end up using a lot more memory: /// /// ``` /// let s = String::from("love: ❤️"); /// let v: Vec<char> = s.chars().collect(); /// /// assert_eq!(12, s.len() * std::mem::size_of::<u8>()); /// assert_eq!(32, v.len() * std::mem::size_of::<char>()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] mod prim_char { } #[doc(primitive = "unit")] // /// The `()` type, sometimes called "unit" or "nil". /// /// The `()` type has exactly one value `()`, and is used when there /// is no other meaningful value that could be returned. `()` is most /// commonly seen implicitly: functions without a `-> ...` implicitly /// have return type `()`, that is, these are equivalent: /// /// ```rust /// fn long() -> () {} /// /// fn short() {} /// ``` /// /// The semicolon `;` can be used to discard the result of an /// expression at the end of a block, making the expression (and thus /// the block) evaluate to `()`. For example, /// /// ```rust /// fn returns_i64() -> i64 { /// 1i64 /// } /// fn returns_unit() { /// 1i64; /// } /// /// let is_i64 = { /// returns_i64() /// }; /// let is_unit = { /// returns_i64(); /// }; /// ``` /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_unit { } #[doc(primitive = "pointer")] // /// Raw, unsafe pointers, `*const T`, and `*mut T`. /// /// Working with raw pointers in Rust is uncommon, /// typically limited to a few patterns. /// /// Use the [`null`] function to create null pointers, and the [`is_null`] method /// of the `*const T` type to check for null. The `*const T` type also defines /// the [`offset`] method, for pointer math. /// /// # Common ways to create raw pointers /// /// ## 1. Coerce a reference (`&T`) or mutable reference (`&mut T`). /// /// ``` /// let my_num: i32 = 10; /// let my_num_ptr: *const i32 = &my_num; /// let mut my_speed: i32 = 88; /// let my_speed_ptr: *mut i32 = &mut my_speed; /// ``` /// /// To get a pointer to a boxed value, dereference the box: /// /// ``` /// let my_num: Box<i32> = Box::new(10); /// let my_num_ptr: *const i32 = &*my_num; /// let mut my_speed: Box<i32> = Box::new(88); /// let my_speed_ptr: *mut i32 = &mut *my_speed; /// ``` /// /// This does not take ownership of the original allocation /// and requires no resource management later, /// but you must not use the pointer after its lifetime. /// /// ## 2. Consume a box (`Box<T>`). /// /// The [`into_raw`] function consumes a box and returns /// the raw pointer. It doesn't destroy `T` or deallocate any memory. /// /// ``` /// let my_speed: Box<i32> = Box::new(88); /// let my_speed: *mut i32 = Box::into_raw(my_speed); /// /// // By taking ownership of the original `Box<T>` though /// // we are obligated to put it together later to be destroyed. /// unsafe { /// drop(Box::from_raw(my_speed)); /// } /// ``` /// /// Note that here the call to [`drop`] is for clarity - it indicates /// that we are done with the given value and it should be destroyed. /// /// ## 3. Get it from C. /// /// ``` /// # #![feature(libc)] /// extern crate libc; /// /// use std::mem; /// /// fn main() { /// unsafe { /// let my_num: *mut i32 = libc::malloc(mem::size_of::<i32>()) as *mut i32; /// if my_num.is_null() { /// panic!("failed to allocate memory"); /// } /// libc::free(my_num as *mut libc::c_void); /// } /// } /// ``` /// /// Usually you wouldn't literally use `malloc` and `free` from Rust, /// but C APIs hand out a lot of pointers generally, so are a common source /// of raw pointers in Rust. /// /// *[See also the `std::ptr` module](ptr/index.html).* /// /// [`null`]: ../std/ptr/fn.null.html /// [`is_null`]: ../std/primitive.pointer.html#method.is_null /// [`offset`]: ../std/primitive.pointer.html#method.offset /// [`into_raw`]: ../std/boxed/struct.Box.html#method.into_raw /// [`drop`]: ../std/mem/fn.drop.html #[stable(feature = "rust1", since = "1.0.0")] mod prim_pointer { } #[doc(primitive = "array")] // /// A fixed-size array, denoted `[T; N]`, for the element type, `T`, and the /// non-negative compile-time constant size, `N`. /// /// There are two syntactic forms for creating an array: /// /// * A list with each element, i.e. `[x, y, z]`. /// * A repeat expression `[x; N]`, which produces an array with `N` copies of `x`. /// The type of `x` must be [`Copy`][copy]. /// /// Arrays of sizes from 0 to 32 (inclusive) implement the following traits if /// the element type allows it: /// /// - [`Clone`][clone] (only if `T: `[`Copy`][copy]) /// - [`Debug`][debug] /// - [`IntoIterator`][intoiterator] (implemented for `&[T; N]` and `&mut [T; N]`) /// - [`PartialEq`][partialeq], [`PartialOrd`][partialord], [`Eq`][eq], [`Ord`][ord] /// - [`Hash`][hash] /// - [`AsRef`][asref], [`AsMut`][asmut] /// - [`Borrow`][borrow], [`BorrowMut`][borrowmut] /// - [`Default`][default] /// /// This limitation on the size `N` exists because Rust does not yet support /// code that is generic over the size of an array type. `[Foo; 3]` and `[Bar; 3]` /// are instances of same generic type `[T; 3]`, but `[Foo; 3]` and `[Foo; 5]` are /// entirely different types. As a stopgap, trait implementations are /// statically generated up to size 32. /// /// Arrays of *any* size are [`Copy`][copy] if the element type is [`Copy`][copy]. This /// works because the [`Copy`][copy] trait is specially known to the compiler. /// /// Arrays coerce to [slices (`[T]`)][slice], so a slice method may be called on /// an array. Indeed, this provides most of the API for working with arrays. /// Slices have a dynamic size and do not coerce to arrays. /// /// There is no way to move elements out of an array. See [`mem::replace`][replace] /// for an alternative. /// /// # Examples /// /// ``` /// let mut array: [i32; 3] = [0; 3]; /// /// array[1] = 1; /// array[2] = 2; /// /// assert_eq!([1, 2], &array[1..]); /// /// // This loop prints: 0 1 2 /// for x in &array { /// print!("{} ", x); /// } /// ``` /// /// An array itself is not iterable: /// /// ```compile_fail,E0277 /// let array: [i32; 3] = [0; 3]; /// /// for x in array { } /// // error: the trait bound `[i32; 3]: std::iter::Iterator` is not satisfied /// ``` /// /// The solution is to coerce the array to a slice by calling a slice method: /// /// ``` /// # let array: [i32; 3] = [0; 3]; /// for x in array.iter() { } /// ``` /// /// If the array has 32 or fewer elements (see above), you can also use the /// array reference's [`IntoIterator`] implementation: /// /// ``` /// # let array: [i32; 3] = [0; 3]; /// for x in &array { } /// ``` /// /// [slice]: primitive.slice.html /// [copy]: marker/trait.Copy.html /// [clone]: clone/trait.Clone.html /// [debug]: fmt/trait.Debug.html /// [intoiterator]: iter/trait.IntoIterator.html /// [partialeq]: cmp/trait.PartialEq.html /// [partialord]: cmp/trait.PartialOrd.html /// [eq]: cmp/trait.Eq.html /// [ord]: cmp/trait.Ord.html /// [hash]: hash/trait.Hash.html /// [asref]: convert/trait.AsRef.html /// [asmut]: convert/trait.AsMut.html /// [borrow]: borrow/trait.Borrow.html /// [borrowmut]: borrow/trait.BorrowMut.html /// [default]: default/trait.Default.html /// [replace]: mem/fn.replace.html /// [`IntoIterator`]: iter/trait.IntoIterator.html /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_array { } #[doc(primitive = "slice")] // /// A dynamically-sized view into a contiguous sequence, `[T]`. /// /// Slices are a view into a block of memory represented as a pointer and a /// length. /// /// ``` /// // slicing a Vec /// let vec = vec![1, 2, 3]; /// let int_slice = &vec[..]; /// // coercing an array to a slice /// let str_slice: &[&str] = &["one", "two", "three"]; /// ``` /// /// Slices are either mutable or shared. The shared slice type is `&[T]`, /// while the mutable slice type is `&mut [T]`, where `T` represents the element /// type. For example, you can mutate the block of memory that a mutable slice /// points to: /// /// ``` /// let x = &mut [1, 2, 3]; /// x[1] = 7; /// assert_eq!(x, &[1, 7, 3]); /// ``` /// /// *[See also the `std::slice` module](slice/index.html).* /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_slice { } #[doc(primitive = "str")] // /// String slices. /// /// The `str` type, also called a 'string slice', is the most primitive string /// type. It is usually seen in its borrowed form, `&str`. It is also the type /// of string literals, `&'static str`. /// /// Strings slices are always valid UTF-8. /// /// This documentation describes a number of methods and trait implementations /// on the `str` type. For technical reasons, there is additional, separate /// documentation in the [`std::str`](str/index.html) module as well. /// /// # Examples /// /// String literals are string slices: /// /// ``` /// let hello = "Hello, world!"; /// /// // with an explicit type annotation /// let hello: &'static str = "Hello, world!"; /// ``` /// /// They are `'static` because they're stored directly in the final binary, and /// so will be valid for the `'static` duration. /// /// # Representation /// /// A `&str` is made up of two components: a pointer to some bytes, and a /// length. You can look at these with the [`as_ptr`] and [`len`] methods: /// /// ``` /// use std::slice; /// use std::str; /// /// let story = "Once upon a time..."; /// /// let ptr = story.as_ptr(); /// let len = story.len(); /// /// // story has nineteen bytes /// assert_eq!(19, len); /// /// // We can re-build a str out of ptr and len. This is all unsafe because /// // we are responsible for making sure the two components are valid: /// let s = unsafe { /// // First, we build a &[u8]... /// let slice = slice::from_raw_parts(ptr, len); /// /// // ... and then convert that slice into a string slice /// str::from_utf8(slice) /// }; /// /// assert_eq!(s, Ok(story)); /// ``` /// /// [`as_ptr`]: #method.as_ptr /// [`len`]: #method.len /// /// Note: This example shows the internals of `&str`. `unsafe` should not be /// used to get a string slice under normal circumstances. Use `as_slice` /// instead. #[stable(feature = "rust1", since = "1.0.0")] mod prim_str { } #[doc(primitive = "tuple")] // /// A finite heterogeneous sequence, `(T, U, ..)`. /// /// Let's cover each of those in turn: /// /// Tuples are *finite*. In other words, a tuple has a length. Here's a tuple /// of length `3`: /// /// ``` /// ("hello", 5, 'c'); /// ``` /// /// 'Length' is also sometimes called 'arity' here; each tuple of a different /// length is a different, distinct type. /// /// Tuples are *heterogeneous*. This means that each element of the tuple can /// have a different type. In that tuple above, it has the type: /// /// ``` /// # let _: /// (&'static str, i32, char) /// # = ("hello", 5, 'c'); /// ``` /// /// Tuples are a *sequence*. This means that they can be accessed by position; /// this is called 'tuple indexing', and it looks like this: /// /// ```rust /// let tuple = ("hello", 5, 'c'); /// /// assert_eq!(tuple.0, "hello"); /// assert_eq!(tuple.1, 5); /// assert_eq!(tuple.2, 'c'); /// ``` /// /// For more about tuples, see [the book](../book/first-edition/primitive-types.html#tuples). /// /// # Trait implementations /// /// If every type inside a tuple implements one of the following traits, then a /// tuple itself also implements it. /// /// * [`Clone`] /// * [`Copy`] /// * [`PartialEq`] /// * [`Eq`] /// * [`PartialOrd`] /// * [`Ord`] /// * [`Debug`] /// * [`Default`] /// * [`Hash`] /// /// [`Clone`]: clone/trait.Clone.html /// [`Copy`]: marker/trait.Copy.html /// [`PartialEq`]: cmp/trait.PartialEq.html /// [`Eq`]: cmp/trait.Eq.html /// [`PartialOrd`]: cmp/trait.PartialOrd.html /// [`Ord`]: cmp/trait.Ord.html /// [`Debug`]: fmt/trait.Debug.html /// [`Default`]: default/trait.Default.html /// [`Hash`]: hash/trait.Hash.html /// /// Due to a temporary restriction in Rust's type system, these traits are only /// implemented on tuples of arity 12 or less. In the future, this may change. /// /// # Examples /// /// Basic usage: /// /// ``` /// let tuple = ("hello", 5, 'c'); /// /// assert_eq!(tuple.0, "hello"); /// ``` /// /// Tuples are often used as a return type when you want to return more than /// one value: /// /// ``` /// fn calculate_point() -> (i32, i32) { /// // Don't do a calculation, that's not the point of the example /// (4, 5) /// } /// /// let point = calculate_point(); /// /// assert_eq!(point.0, 4); /// assert_eq!(point.1, 5); /// /// // Combining this with patterns can be nicer. /// /// let (x, y) = calculate_point(); /// /// assert_eq!(x, 4); /// assert_eq!(y, 5); /// ``` /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_tuple { } #[doc(primitive = "f32")] /// The 32-bit floating point type. /// /// *[See also the `std::f32` module](f32/index.html).* /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_f32 { } #[doc(primitive = "f64")] // /// The 64-bit floating point type. /// /// *[See also the `std::f64` module](f64/index.html).* /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_f64 { } #[doc(primitive = "i8")] // /// The 8-bit signed integer type. /// /// *[See also the `std::i8` module](i8/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `i64` in there. /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_i8 { } #[doc(primitive = "i16")] // /// The 16-bit signed integer type. /// /// *[See also the `std::i16` module](i16/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `i32` in there. /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_i16 { } #[doc(primitive = "i32")] // /// The 32-bit signed integer type. /// /// *[See also the `std::i32` module](i32/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `i16` in there. /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_i32 { } #[doc(primitive = "i64")] // /// The 64-bit signed integer type. /// /// *[See also the `std::i64` module](i64/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `i8` in there. /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_i64 { } #[doc(primitive = "i128")] // /// The 128-bit signed integer type. /// /// *[See also the `std::i128` module](i128/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `i8` in there. /// #[unstable(feature = "i128", issue="35118")] mod prim_i128 { } #[doc(primitive = "u8")] // /// The 8-bit unsigned integer type. /// /// *[See also the `std::u8` module](u8/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `u64` in there. /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_u8 { } #[doc(primitive = "u16")] // /// The 16-bit unsigned integer type. /// /// *[See also the `std::u16` module](u16/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `u32` in there. /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_u16 { } #[doc(primitive = "u32")] // /// The 32-bit unsigned integer type. /// /// *[See also the `std::u32` module](u32/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `u16` in there. /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_u32 { } #[doc(primitive = "u64")] // /// The 64-bit unsigned integer type. /// /// *[See also the `std::u64` module](u64/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `u8` in there. /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_u64 { } #[doc(primitive = "u128")] // /// The 128-bit unsigned integer type. /// /// *[See also the `std::u128` module](u128/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `u8` in there. /// #[unstable(feature = "i128", issue="35118")] mod prim_u128 { } #[doc(primitive = "isize")] // /// The pointer-sized signed integer type. /// /// *[See also the `std::isize` module](isize/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `usize` in there. /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_isize { } #[doc(primitive = "usize")] // /// The pointer-sized unsigned integer type. /// /// *[See also the `std::usize` module](usize/index.html).* /// /// However, please note that examples are shared between primitive integer /// types. So it's normal if you see usage of types like `isize` in there. /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_usize { }