Rheolef  7.1
an efficient C++ finite element environment
navier_stokes_upw_dg.icc

The Navier-Stokes equations with the discontinuous Galerkin method and upwinding – class body

#include "inertia_upw.icc"
Float Re1, const geo& omega, string approx)
: navier_stokes_dg (Re1, omega, approx) {}
navier_stokes_upw_dg::residue (const value_type& xh) const {
trial u (Xh); test v (Xh);
form a = a0 + Re*( inertia (xh[0], u, v, iopt)
+ inertia_upw (xh[0], u, v, iopt));
value_type mrh(2);
mrh[0] = a*xh[0] + b.trans_mult(xh[1]) - lh;
mrh[1] = b*xh[0] - c*xh[1] - kh;
return mrh;
}
void navier_stokes_upw_dg::update_derivative (const value_type& xh) const {
trial du (Xh); test v (Xh);
a1 = a0 + Re*( inertia (xh[0], du, v, iopt)
+ inertia_upw (xh[0], du, v, iopt)
+ inertia (du, xh[0], v, iopt)
+ d_inertia_upw (xh[0], du, xh[0], v, iopt));
stokes1.set_metric (mp);
}
form
see the form page for the full documentation
navier_stokes_dg::a0
form a0
Definition: navier_stokes_dg.h:39
navier_stokes_dg::mp
form mp
Definition: navier_stokes_dg.h:39
navier_stokes_dg::c
form c
Definition: navier_stokes_dg.h:39
navier_stokes_dg::stokes1
problem_mixed stokes1
Definition: navier_stokes_dg.h:43
problem_mixed
see the problem_mixed page for the full documentation
navier_stokes_upw_dg::value_type
navier_stokes_dg::value_type value_type
Definition: navier_stokes_upw_dg.h:28
navier_stokes_dg::a1
form a1
Definition: navier_stokes_dg.h:42
navier_stokes_upw_dg::update_derivative
void update_derivative(const value_type &uh) const
Definition: navier_stokes_upw_dg.icc:40
navier_stokes_dg::lh
field lh
Definition: navier_stokes_dg.h:40
navier_stokes_dg
Definition: navier_stokes_dg.h:25
navier_stokes_upw_dg::residue
value_type residue(const value_type &uh) const
Definition: navier_stokes_upw_dg.icc:31
navier_stokes_dg::Re
Float Re
Definition: navier_stokes_dg.h:36
a
Definition: diffusion_isotropic.h:25
inertia
form inertia(W w, U u, V v, integrate_option iopt=integrate_option())
Definition: inertia.h:26
navier_stokes_upw_dg::navier_stokes_upw_dg
navier_stokes_upw_dg(Float Re, const geo &omega, string approx)
Definition: navier_stokes_upw_dg.icc:26
test
see the test page for the full documentation
u
Definition: leveque.h:25
Float
see the Float page for the full documentation
inertia_upw
form inertia_upw(field w, trial u, test v, integrate_option iopt=integrate_option())
Definition: inertia_upw.icc:26
navier_stokes_dg::kh
field kh
Definition: navier_stokes_dg.h:40
u
Float u(const point &x)
Definition: transmission_error.cc:26
navier_stokes_dg::b
form b
Definition: navier_stokes_dg.h:39
trial
see the test page for the full documentation
navier_stokes_dg::Xh
space Xh
Definition: navier_stokes_dg.h:37
d_inertia_upw
form d_inertia_upw(field w, trial dw, field u, test v, integrate_option iopt=integrate_option())
Definition: inertia_upw.icc:32
inertia_upw.icc
The inertia term of the Navier-Stokes equation with the discontinuous Galerkin method – upwinding var...
geo
see the geo page for the full documentation
navier_stokes_dg::iopt
integrate_option iopt
Definition: navier_stokes_dg.h:38