Rheolef  7.1
an efficient C++ finite element environment
navier_stokes_dg2.icc

The Navier-Stokes equations with the discontinuous Galerkin method – class body

Float navier_stokes_dg::space_norm (const value_type& xh) const {
return sqrt (mu(xh[0],xh[0]) + mp(xh[1],xh[1]));
}
Float navier_stokes_dg::dual_space_norm (const value_type& mrh) const {
value_type rh = { field(Xh,0), field (Qh,0) };
pmu.solve (mrh[0], rh[0]);
pmp.solve (mrh[1], rh[1]);
return sqrt (dual(rh[0],mrh[0]) + dual(rh[1],mrh[1]));
}
navier_stokes_dg::mp
form mp
Definition: navier_stokes_dg.h:39
field
see the field page for the full documentation
navier_stokes_dg::Qh
space Qh
Definition: navier_stokes_dg.h:37
navier_stokes_dg::pmu
problem pmu
Definition: navier_stokes_dg.h:41
rheolef::dual
rheolef::std enable_if ::type dual const Expr1 expr1, const Expr2 expr2 dual(const Expr1 &expr1, const Expr2 &expr2)
Definition: field_expr.h:260
navier_stokes_dg::mu
form mu
Definition: navier_stokes_dg.h:39
navier_stokes_dg::pmp
problem pmp
Definition: navier_stokes_dg.h:41
navier_stokes_dg::dual_space_norm
Float dual_space_norm(const value_type &mrh) const
Definition: navier_stokes_dg2.icc:28
navier_stokes_dg::space_norm
Float space_norm(const value_type &uh) const
Definition: navier_stokes_dg2.icc:25
Float
see the Float page for the full documentation
navier_stokes_dg::value_type
Eigen::Matrix< field, 2, 1 > value_type
Definition: navier_stokes_dg.h:27
navier_stokes_dg::Xh
space Xh
Definition: navier_stokes_dg.h:37