The Oldroyd problem by the theta-scheme – class body
template<class P>
: We(0),
alpha(8./9),
a(1), Re(1), delta_t(0.025), tol(1e-6), max_iter(500),
Th(), Xh(), Qh(),
b(),
c(),
d(), mt(), inv_mt(),
mu(), mp(), th(), thb(),
theta(),
lambda(),
eta(),
nu(), c1(),
c2(), c3(), c4(), c5(), stokes() {}
template<class P>
Th =
space (omega,
"P1d",
"tensor");
Xh = P::velocity_space (omega, "P2");
Qh =
space (omega,
"P1d");
theta = 1-1/sqrt(2.);
eta = ((1 -
alpha)*We + theta*delta_t)/(We + theta*delta_t);
nu = 1/((1-2*theta)*delta_t);
c1 = We/(We + theta*delta_t);
c2 = - We*theta*delta_t/(We + theta*delta_t);
c3 =
alpha*theta*delta_t/(We + theta*delta_t);
c4 = 1/((1-2*theta)*delta_t) - 1/We;
test v (Xh), xi (Th), q (Qh);
integrate_option iopt;
iopt.invert = true;
stokes.set_metric (mp);
}