Rheolef  7.1
an efficient C++ finite element environment
combustion_exact.icc

The combustion problem – its exact solution

#include "lambda2alpha.h"
struct u_exact {
Float operator() (const point& x) const {
return 2*log(cosh(a)/cosh(a*(1-2*x[0]))); }
u_exact (Float lambda, bool is_upper)
: a(lambda2alpha(lambda,is_upper)) {}
u_exact (Float a1) : a(a1) {}
};
struct grad_u {
point operator() (const point& x) const {
return point(4*a*tanh(a*(1-2*x[0]))); }
grad_u (Float lambda, bool is_upper)
: a(lambda2alpha(lambda,is_upper)) {}
grad_u (Float a1) : a(a1) {}
};
grad_u::grad_u
grad_u(Float lambda, bool is_upper)
Definition: combustion_exact.icc:37
lambda2alpha.h
The combustion problem – inversion of the parameter function.
a
Definition: diffusion_isotropic.h:25
u_exact::operator()
point operator()(const point &x) const
Definition: interpolate_RTk_polynom.icc:126
lambda2alpha
Float lambda2alpha(Float lambda, bool up=false)
Definition: lambda2alpha.h:26
u_exact::a
Float a
Definition: combustion_exact.icc:32
u_exact::u_exact
u_exact(size_t d1, Float w1=acos(Float(-1)))
Definition: interpolate_RTk_polynom.icc:144
Float
see the Float page for the full documentation
u_exact
Definition: interpolate_RTk_polynom.icc:125
point
see the point page for the full documentation
grad_u::operator()
point operator()(const point &x) const
Definition: combustion_exact.icc:35
grad_u::a
Float a
Definition: combustion_exact.icc:40
grad_u
Definition: combustion_exact.icc:34
lambda
Definition: yield_slip_circle.h:34