an efficient C++ finite element environment
|
|
The Poisson problem on a surface
int main (
int argc,
char**argv) {
field Uh (Bh.get_space(), 0);
A.set_symmetry(true);
pa.solve (Bh, Uh);
}
rheolef::std enable_if ::type dot const Expr1 expr1, const Expr2 expr2 dot(const Expr1 &expr1, const Expr2 &expr2)
dot(x,y): see the expression page for the full documentation
see the field page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
int main(int argc, char **argv)
see the space page for the full documentation
rheolef - reference manual
see the environment page for the full documentation
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad_s(const Expr &expr)
grad_s(uh): see the expression page for the full documentation
field lh(Float epsilon, Float t, const test &v)
This file is part of Rheolef.
see the test page for the full documentation
see the problem page for the full documentation
see the test page for the full documentation
odiststream dout(cout)
see the diststream page for the full documentation
The torus benchmark – level set, right-hand-side and exact solution.
csr< T, sequential > trans(const csr< T, sequential > &a)
trans(a): see the form page for the full documentation
see the geo page for the full documentation