Rheolef
7.1
an efficient C++ finite element environment
navier_stokes_dg2.icc
The Navier-Stokes equations with the discontinuous Galerkin method – class body
Float
navier_stokes_dg::space_norm
(
const
value_type& xh)
const
{
return
sqrt (
mu
(xh[0],xh[0]) +
mp
(xh[1],xh[1]));
}
Float
navier_stokes_dg::dual_space_norm
(
const
value_type& mrh)
const
{
value_type
rh = {
field
(
Xh
,0),
field
(
Qh
,0) };
pmu
.solve (mrh[0], rh[0]);
pmp
.solve (mrh[1], rh[1]);
return
sqrt (
dual
(rh[0],mrh[0]) +
dual
(rh[1],mrh[1]));
}
navier_stokes_dg::mp
form mp
Definition:
navier_stokes_dg.h:39
field
see the field page for the full documentation
navier_stokes_dg::Qh
space Qh
Definition:
navier_stokes_dg.h:37
navier_stokes_dg::pmu
problem pmu
Definition:
navier_stokes_dg.h:41
rheolef::dual
rheolef::std enable_if ::type dual const Expr1 expr1, const Expr2 expr2 dual(const Expr1 &expr1, const Expr2 &expr2)
Definition:
field_expr.h:260
navier_stokes_dg::mu
form mu
Definition:
navier_stokes_dg.h:39
navier_stokes_dg::pmp
problem pmp
Definition:
navier_stokes_dg.h:41
navier_stokes_dg::dual_space_norm
Float dual_space_norm(const value_type &mrh) const
Definition:
navier_stokes_dg2.icc:28
navier_stokes_dg::space_norm
Float space_norm(const value_type &uh) const
Definition:
navier_stokes_dg2.icc:25
Float
see the Float page for the full documentation
navier_stokes_dg::value_type
Eigen::Matrix< field, 2, 1 > value_type
Definition:
navier_stokes_dg.h:27
navier_stokes_dg::Xh
space Xh
Definition:
navier_stokes_dg.h:37