Rheolef  7.1
an efficient C++ finite element environment
yield_slip_circle.h

The yield slip problem on a circle – exact solution

struct u {
Float operator() (const point& x) const { return (1-norm2(x))/4 + us; }
u (Float S, Float n, Float Cf) : us(pow(max(Float(0),(0.5-S)/Cf), 1/n)) {}
protected: Float us;
};
struct grad_u {
point operator() (const point& x) const { return -x/2; }
grad_u (Float S, Float n, Float Cf) {}
};
struct lambda {
Float operator() (const point& x) const { return 1./2; }
lambda (Float S, Float n, Float Cf) {}
};
mkgeo_ball.n
int n
Definition: mkgeo_ball.sh:150
grad_u::grad_u
grad_u(Float lambda, bool is_upper)
Definition: combustion_exact.icc:37
u::operator()
point operator()(const point &x) const
Definition: leveque.h:26
lambda::lambda
lambda(Float S, Float n, Float Cf)
Definition: yield_slip_circle.h:36
rheolef::pow
space_mult_list< T, M > pow(const space_basic< T, M > &X, size_t n)
Definition: space_mult.h:120
u::us
Float us
Definition: yield_slip_circle.h:28
u::n
Float n
Definition: mosolov_exact_circle.h:30
rheolef::norm2
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
Definition: vec.h:379
u::u
u()
Definition: zalesak.h:33
u
Definition: leveque.h:25
grad_u::n
Float n
Definition: mosolov_exact_circle.h:38
Float
see the Float page for the full documentation
lambda::operator()
Float operator()(const point &x) const
Definition: yield_slip_circle.h:35
point
see the point page for the full documentation
grad_u::operator()
point operator()(const point &x) const
Definition: combustion_exact.icc:35
grad_u
Definition: combustion_exact.icc:34
lambda
Definition: yield_slip_circle.h:34