Rheolef
7.1
an efficient C++ finite element environment
combustion_exact.icc
The combustion problem – its exact solution
#include "
lambda2alpha.h
"
struct
u_exact
{
Float
operator()
(
const
point
& x)
const
{
return
2*log(cosh(
a
)/cosh(
a
*(1-2*x[0]))); }
u_exact
(
Float
lambda
,
bool
is_upper)
:
a
(
lambda2alpha
(
lambda
,is_upper)) {}
u_exact
(
Float
a1) :
a
(a1) {}
Float
a
;
};
struct
grad_u
{
point
operator()
(
const
point
& x)
const
{
return
point
(4*
a
*tanh(
a
*(1-2*x[0]))); }
grad_u
(
Float
lambda
,
bool
is_upper)
:
a
(
lambda2alpha
(
lambda
,is_upper)) {}
grad_u
(
Float
a1) :
a
(a1) {}
Float
a
;
};
grad_u::grad_u
grad_u(Float lambda, bool is_upper)
Definition:
combustion_exact.icc:37
lambda2alpha.h
The combustion problem – inversion of the parameter function.
a
Definition:
diffusion_isotropic.h:25
u_exact::operator()
point operator()(const point &x) const
Definition:
interpolate_RTk_polynom.icc:126
lambda2alpha
Float lambda2alpha(Float lambda, bool up=false)
Definition:
lambda2alpha.h:26
u_exact::a
Float a
Definition:
combustion_exact.icc:32
u_exact::u_exact
u_exact(size_t d1, Float w1=acos(Float(-1)))
Definition:
interpolate_RTk_polynom.icc:144
Float
see the Float page for the full documentation
u_exact
Definition:
interpolate_RTk_polynom.icc:125
point
see the point page for the full documentation
grad_u::operator()
point operator()(const point &x) const
Definition:
combustion_exact.icc:35
grad_u::a
Float a
Definition:
combustion_exact.icc:40
grad_u
Definition:
combustion_exact.icc:34
lambda
Definition:
yield_slip_circle.h:34