Rheolef  7.1
an efficient C++ finite element environment
embankment.cc

The elasticity problem for the embankment geometry

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "embankment.icc"
int main(int argc, char**argv) {
environment rheolef(argc, argv);
geo omega (argv[1]);
space Xh = embankment_space (omega, argv[2]);
Float lambda = (argc > 3) ? atof(argv[3]) : 1;
size_t d = omega.dimension();
point f (0,0,0);
f[d-1] = -1;
trial u (Xh); test v (Xh);
form a = integrate (lambda*div(u)*div(v) + 2*ddot(D(u),D(v)));
field uh (Xh, 0);
problem p (a);
p.solve (lh, uh);
dout << catchmark("inv_lambda") << 1/lambda << endl
<< catchmark("u") << uh;
}
rheolef::div
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::divergence >>::type div(const Expr &expr)
div(uh): see the expression page for the full documentation
Definition: field_expr_terminal.h:1031
form
see the form page for the full documentation
rheolef::catchmark
see the catchmark page for the full documentation
Definition: catchmark.h:67
rheolef::dot
rheolef::std enable_if ::type dot const Expr1 expr1, const Expr2 expr2 dot(const Expr1 &expr1, const Expr2 &expr2)
dot(x,y): see the expression page for the full documentation
Definition: vec_expr_v2.h:415
field
see the field page for the full documentation
mkgeo_ball.f
int f
Definition: mkgeo_ball.sh:221
rheolef::integrate
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:202
mkgeo_ball.d
int d
Definition: mkgeo_ball.sh:154
space
see the space page for the full documentation
rheolef.h
rheolef - reference manual
embankment.icc
The elasticity problem for the embankment geometry – boundary conditions.
p
Definition: sphere.icc:25
rheolef::ddot
T ddot(const tensor_basic< T > &a, const tensor_basic< T > &b)
ddot(x,y): see the expression page for the full documentation
Definition: tensor.cc:278
a
Definition: diffusion_isotropic.h:25
rheolef::environment
see the environment page for the full documentation
Definition: environment.h:115
lh
field lh(Float epsilon, Float t, const test &v)
Definition: burgers_diffusion_operators.icc:25
embankment_space
space embankment_space(const geo &omega, string approx)
Definition: embankment.icc:25
rheolef
This file is part of Rheolef.
Definition: compiler_eigen.h:37
test
see the test page for the full documentation
problem
see the problem page for the full documentation
u
Definition: leveque.h:25
Float
see the Float page for the full documentation
rheolef::D
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type D(const Expr &expr)
D(uh): see the expression page for the full documentation.
Definition: field_expr_terminal.h:969
point
see the point page for the full documentation
u
Float u(const point &x)
Definition: transmission_error.cc:26
trial
see the test page for the full documentation
rheolef::dout
odiststream dout(cout)
see the diststream page for the full documentation
Definition: diststream.h:430
f
Definition: cavity_dg.h:29
main
int main(int argc, char **argv)
Definition: embankment.cc:29
rheolef::std
Definition: vec_expr_v2.h:402
geo
see the geo page for the full documentation
lambda
Definition: yield_slip_circle.h:34