Rheolef  7.1
an efficient C++ finite element environment
taylor_exact.h

The Taylor benchmark – the exact solution of the Stokes problem

#include "taylor.h"
typedef g u_exact;
struct p_exact {
Float operator() (const point& x) const {
return - Re*(cos(2*pi*x[0]) + cos(2*pi*x[1]))/4
- (!have_kinetic_energy ? 0 : Re*(norm2(u(x))/2 - 0.25));
}
p_exact(Float Re1=0, bool have_kinetic_energy1=false)
: u(), pi(acos(Float(-1.0))), Re(Re1), have_kinetic_energy(have_kinetic_energy1) {}
};
p_exact::pi
const Float pi
Definition: taylor_exact.h:34
taylor.h
The Taylor benchmark – right-hand-side and boundary condition.
p_exact
Definition: taylor_exact.h:27
p_exact::have_kinetic_energy
bool have_kinetic_energy
Definition: taylor_exact.h:34
p_exact::operator()
Float operator()(const point &x) const
Definition: taylor_exact.h:28
rheolef::norm2
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
Definition: vec.h:379
u_exact
g u_exact
Definition: taylor_exact.h:26
Float
see the Float page for the full documentation
u_exact
Definition: interpolate_RTk_polynom.icc:125
point
see the point page for the full documentation
p_exact::p_exact
p_exact(Float Re1=0, bool have_kinetic_energy1=false)
Definition: taylor_exact.h:32
g
Definition: cavity_dg.h:25
p_exact::Re
const Float Re
Definition: taylor_exact.h:34
p_exact::u
u_exact u
Definition: taylor_exact.h:34