Rheolef
7.1
an efficient C++ finite element environment
navier_stokes_upw_dg.icc
The Navier-Stokes equations with the discontinuous Galerkin method and upwinding – class body
#include "
inertia_upw.icc
"
navier_stokes_upw_dg::navier_stokes_upw_dg
(
Float
Re1,
const
geo
& omega,
string
approx)
:
navier_stokes_dg
(Re1, omega, approx) {}
navier_stokes_upw_dg::value_type
navier_stokes_upw_dg::residue
(
const
value_type& xh)
const
{
trial
u
(
Xh
);
test
v (
Xh
);
form
a
=
a0
+
Re
*(
inertia
(xh[0],
u
, v,
iopt
)
+
inertia_upw
(xh[0],
u
, v,
iopt
));
value_type
mrh(2);
mrh[0] =
a
*xh[0] +
b
.trans_mult(xh[1]) -
lh
;
mrh[1] =
b
*xh[0] -
c
*xh[1] -
kh
;
return
mrh;
}
void
navier_stokes_upw_dg::update_derivative
(
const
value_type& xh)
const
{
trial
du (
Xh
);
test
v (
Xh
);
a1
=
a0
+
Re
*(
inertia
(xh[0], du, v,
iopt
)
+
inertia_upw
(xh[0], du, v,
iopt
)
+
inertia
(du, xh[0], v,
iopt
)
+
d_inertia_upw
(xh[0], du, xh[0], v,
iopt
));
stokes1
=
problem_mixed
(
a1
,
b
,
c
);
stokes1
.set_metric (
mp
);
}
form
see the form page for the full documentation
navier_stokes_dg::a0
form a0
Definition:
navier_stokes_dg.h:39
navier_stokes_dg::mp
form mp
Definition:
navier_stokes_dg.h:39
navier_stokes_dg::c
form c
Definition:
navier_stokes_dg.h:39
navier_stokes_dg::stokes1
problem_mixed stokes1
Definition:
navier_stokes_dg.h:43
problem_mixed
see the problem_mixed page for the full documentation
navier_stokes_upw_dg::value_type
navier_stokes_dg::value_type value_type
Definition:
navier_stokes_upw_dg.h:28
navier_stokes_dg::a1
form a1
Definition:
navier_stokes_dg.h:42
navier_stokes_upw_dg::update_derivative
void update_derivative(const value_type &uh) const
Definition:
navier_stokes_upw_dg.icc:40
navier_stokes_dg::lh
field lh
Definition:
navier_stokes_dg.h:40
navier_stokes_dg
Definition:
navier_stokes_dg.h:25
navier_stokes_upw_dg::residue
value_type residue(const value_type &uh) const
Definition:
navier_stokes_upw_dg.icc:31
navier_stokes_dg::Re
Float Re
Definition:
navier_stokes_dg.h:36
a
Definition:
diffusion_isotropic.h:25
inertia
form inertia(W w, U u, V v, integrate_option iopt=integrate_option())
Definition:
inertia.h:26
navier_stokes_upw_dg::navier_stokes_upw_dg
navier_stokes_upw_dg(Float Re, const geo &omega, string approx)
Definition:
navier_stokes_upw_dg.icc:26
test
see the test page for the full documentation
u
Definition:
leveque.h:25
Float
see the Float page for the full documentation
inertia_upw
form inertia_upw(field w, trial u, test v, integrate_option iopt=integrate_option())
Definition:
inertia_upw.icc:26
navier_stokes_dg::kh
field kh
Definition:
navier_stokes_dg.h:40
u
Float u(const point &x)
Definition:
transmission_error.cc:26
navier_stokes_dg::b
form b
Definition:
navier_stokes_dg.h:39
trial
see the test page for the full documentation
navier_stokes_dg::Xh
space Xh
Definition:
navier_stokes_dg.h:37
d_inertia_upw
form d_inertia_upw(field w, trial dw, field u, test v, integrate_option iopt=integrate_option())
Definition:
inertia_upw.icc:32
inertia_upw.icc
The inertia term of the Navier-Stokes equation with the discontinuous Galerkin method – upwinding var...
geo
see the geo page for the full documentation
navier_stokes_dg::iopt
integrate_option iopt
Definition:
navier_stokes_dg.h:38