The Navier-Stokes equations with the discontinuous Galerkin method – class body
Float Re1,
const geo& omega,
string approx)
: Re(Re1), Xh(), Qh(), iopt(), a0(),
b(),
c(),
mu(), mp(), lh0(),
lh(), kh(),
pmu(), pmp(), a1(), stokes1()
{
Xh =
space (omega, approx,
"vector");
Qh =
space (omega, approx);
iopt.set_family(integrate_option::gauss);
iopt.set_order(2*Xh.degree()+1);
}
if (restart == "") {
stokes0.solve (
lh0,
kh, xh[0], xh[1]);
} else {
idiststream in (restart);
in >> catchmark("Re") >> Re0
>> catchmark("u") >> xh[0]
>> catchmark("p") >> xh[1];
<< xh[0].get_space().
name() <<
" approximation in file \""
<< restart <<
"\" (" <<
Xh.name() <<
" expected)");
}
derr <<
"# continuation: from Re=" << Re0 <<
" to " <<
Re << endl;
return xh;
}
return mrh;
}
}
stokes1.solve (mrh[0], mrh[1], delta_xh[0], delta_xh[1]);
return delta_xh;
}
pmu.solve (mrh[0], rh[0]);
pmp.solve (mrh[1], rh[1]);
return mgh;
}