A B C D E F G H I M N P R S T V W Z misc
sjmisc-package | Data and Variable Transformation Functions |
add_case | Add variables or cases to data frames |
add_columns | Add or replace data frame columns |
add_id | Add or replace data frame columns |
add_rows | Merge labelled data frames |
add_variables | Add variables or cases to data frames |
all_na | Check if vector only has NA values |
big_mark | Format numbers |
center | Standardize and center variables |
center_if | Standardize and center variables |
clean_values | Clean values of character vectors. |
col_count | Count row or column indices |
complete_cases | Check if variables or cases have missing / infinite values |
complete_vars | Check if variables or cases have missing / infinite values |
count_na | Frequency table of tagged NA values |
descr | Basic descriptive statistics |
de_mean | Compute group-meaned and de-meaned variables |
dicho | Dichotomize variables |
dicho_if | Dichotomize variables |
efc | Sample dataset from the EUROFAMCARE project |
empty_cols | Return or remove variables or observations that are completely missing |
empty_rows | Return or remove variables or observations that are completely missing |
find_in_data | Find variable by name or label |
find_var | Find variable by name or label |
flat_table | Flat (proportional) tables |
frq | Frequency table of labelled variables |
group_labels | Recode numeric variables into equal-ranged groups |
group_labels_if | Recode numeric variables into equal-ranged groups |
group_str | Group near elements of string vectors |
group_var | Recode numeric variables into equal-ranged groups |
group_var_if | Recode numeric variables into equal-ranged groups |
has_na | Check if variables or cases have missing / infinite values |
incomplete_cases | Check if variables or cases have missing / infinite values |
incomplete_vars | Check if variables or cases have missing / infinite values |
is_crossed | Check whether two factors are crossed or nested |
is_cross_classified | Check whether two factors are crossed or nested |
is_empty | Check whether string, list or vector is empty |
is_even | Check whether value is even or odd |
is_float | Check if a variable is of (non-integer) double type or a whole number |
is_nested | Check whether two factors are crossed or nested |
is_num_chr | Check whether a factor has numeric levels only |
is_num_fac | Check whether a factor has numeric levels only |
is_odd | Check whether value is even or odd |
is_whole | Check if a variable is of (non-integer) double type or a whole number |
merge_df | Merge labelled data frames |
merge_imputations | Merges multiple imputed data frames into a single data frame |
move_columns | Move columns to other positions in a data frame |
numeric_to_factor | Convert numeric vectors into factors associated value labels |
prcn | Format numbers |
rec | Recode variables |
recode_to | Recode variable categories into new values |
recode_to_if | Recode variable categories into new values |
rec_if | Recode variables |
rec_pattern | Create recode pattern for 'rec' function |
ref_lvl | Change reference level of (numeric) factors |
remove_cols | Remove variables from a data frame |
remove_empty_cols | Return or remove variables or observations that are completely missing |
remove_empty_rows | Return or remove variables or observations that are completely missing |
remove_var | Remove variables from a data frame |
rename_columns | Rename variables |
rename_variables | Rename variables |
replace_columns | Add or replace data frame columns |
replace_na | Replace NA with specific values |
reshape_longer | Reshape data into long format |
rotate_df | Rotate a data frame |
round_num | Round numeric variables in a data frame |
row_count | Count row or column indices |
row_means | Row sums and means for data frames |
row_means.default | Row sums and means for data frames |
row_means.mids | Row sums and means for data frames |
row_sums | Row sums and means for data frames |
row_sums.default | Row sums and means for data frames |
row_sums.mids | Row sums and means for data frames |
seq_col | Sequence generation for column or row counts of data frames |
seq_row | Sequence generation for column or row counts of data frames |
set_na_if | Replace specific values in vector with NA |
shorten_string | Shorten character strings |
sjmisc | Data and Variable Transformation Functions |
split_var | Split numeric variables into smaller groups |
split_var_if | Split numeric variables into smaller groups |
spread_coef | Spread model coefficients of list-variables into columns |
std | Standardize and center variables |
std_if | Standardize and center variables |
str_contains | Check if string contains pattern |
str_end | Find start and end index of pattern in string |
str_find | Find partial matching and close distance elements in strings |
str_start | Find start and end index of pattern in string |
tidy_values | Clean values of character vectors. |
total_mean | Row sums and means for data frames |
to_character | Convert variable into character vector and replace values with associated value labels |
to_dummy | Split (categorical) vectors into dummy variables |
to_factor | Convert variable into factor and keep value labels |
to_label | Convert variable into factor with associated value labels |
to_long | Convert wide data to long format |
to_numeric | Convert factors to numeric variables |
to_value | Convert factors to numeric variables |
trim | Trim leading and trailing whitespaces from strings |
typical_value | Return the typical value of a vector |
var_rename | Rename variables |
var_type | Determine variable type |
word_wrap | Insert line breaks in long labels |
zap_inf | Convert infiite or NaN values into regular NA |
%nin% | Value matching |