augmentLHS |
Augment a Latin Hypercube Design |
createAddelKemp |
Create an orthogonal array using the Addelman-Kempthorne algorithm. The addelkemp program produces 'OA( 2q^2, k, q, 2 )', 'k <= 2q+1', for odd prime powers 'q'. |
createAddelKemp3 |
Create an orthogonal array using the Addelman-Kempthorne algorithm with '2q^3' rows. The addelkemp3 program produces 'OA( 2*q^3, k, q, 2 )', 'k <= 2q^2+2q+1', for prime powers 'q'. 'q' may be an odd prime power, or 'q' may be 2 or 4. |
createAddelKempN |
Create an orthogonal array using the Addelman-Kempthorne algorithm with alternate strength |
createBose |
Create an orthogonal array using the Bose algorithm. The bose program produces 'OA( q^2, k, q, 2 )', 'k <= q+1' for prime powers 'q'. |
createBoseBush |
Create an orthogonal array using the Bose-Bush algorithm. The bosebush program produces 'OA( 2q^2, k, q, 2 )', 'k <= 2q+1', for powers of 2, 'q=2^r'. |
createBoseBushl |
Create an orthogonal array using the Bose-Bush algorithm with alternate strength >= 3. The bosebushl program produces 'OA( lambda*q^2, k, q, 2 )', 'k <= lambda*q+1', for prime powers 'q' and 'lambda > 1'. Both 'q' and 'lambda' must be powers of the same prime. |
createBush |
Create an orthogonal array using the Bush algorithm. The bush program produces 'OA( q^3, k, q, 3 )', 'k <= q+1' for prime powers 'q'. |
createBusht |
Create an orthogonal array using the Bush algorithm with alternate strength. The bush program produces 'OA( q^t, k, q, t )', 'k <= q+1', 't>=3', for prime powers 'q'. |
create_oalhs |
Create an orthogonal array Latin hypercube |
geneticLHS |
Latin Hypercube Sampling with a Genetic Algorithm |
improvedLHS |
Improved Latin Hypercube Sample |
maximinLHS |
Maximin Latin Hypercube Sample |
oa_to_oalhs |
Create a Latin hypercube from an orthogonal array |
optAugmentLHS |
Optimal Augmented Latin Hypercube Sample |
optimumLHS |
Optimum Latin Hypercube Sample |
optSeededLHS |
Optimum Seeded Latin Hypercube Sample |
randomLHS |
Construct a random Latin hypercube design |
runifint |
Create a Random Sample of Uniform Integers |