
Qhull examples

David C. Sterratt

3rd September 2019

This document presents examples of the geometry package functions which
implement functions using the Qhull library.

1 Convex hulls in 2D

1.1 Calling convhulln with one argument

With one argument, convhulln returns the indices of the points of the convex
hull.

> library(geometry)

> ps <-matrix(rnorm(30), , 2)

> ch <- convhulln(ps)

> head(ch)

[,1] [,2]

[1,] 14 12

[2,] 14 6

[3,] 15 6

[4,] 11 15

[5,] 10 12

[6,] 10 11

1.2 Calling convhulln with options

We can supply Qhull options to convhulln; in this case it returns an object
of class convhulln which is also a list. For example FA returns the generalised
area and

volume. Confusingly in 2D the generalised area is the length of the peri-
meter, and the generalised volume is the area.

> ps <-matrix(rnorm(30), , 2)

> ch <- convhulln(ps, options="FA")

> print(ch$area)

[1] 9.342614

1

http://www.qhull.org

> print(ch$vol)

[1] 4.865268

A convhulln object can also be plotted.

> plot(ch)

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x$p[, 1]

x$
p[

, 2
]

We can also find the normals to the “facets” of the convex hull:

> ch <- convhulln(ps, options="n")

> head(ch$normals)

[,1] [,2] [,3]

[1,] -0.3719326 -0.92825975 -1.5860981

[2,] 0.3355017 0.94203961 -0.7377917

[3,] -0.9998825 0.01533019 -1.5687061

[4,] 0.9644909 0.26411596 -0.5890068

[5,] 0.9291260 0.36976339 -0.3696523

[6,] -0.7207810 0.69316286 -1.1871492

Here the first two columns and the x and y direction of the normal, and the
third column defines the position at which the face intersects that normal.

2

1.3 Testing if points are inside a convex hull with inhulln

The function inhulln can be used to test if points are inside a convex hull.
Here the function rbox is a handy way to create points at random locations.

> tp <- rbox(n=200, D=2, B=4)

> in_ch <- inhulln(ch, tp)

> plot(tp[!in_ch,], col="gray")

> points(tp[in_ch,], col="red")

> plot(ch, add=TRUE)

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

tp[!in_ch,][,1]

tp
[!i

n_
ch

,]
[,2

]

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

2 Delaunay triangulation in 2D

2.1 Calling delaunayn with one argument

With one argument, a set of points, delaunayn returns the indices of the points
at each vertex of each triangle in the triangulation.

> ps <- rbox(n=10, D=2)

> dt <- delaunayn(ps)

> head(dt)

[,1] [,2] [,3]

[1,] 7 2 8

3

[2,] 1 5 8

[3,] 4 5 10

[4,] 9 1 5

[5,] 9 4 5

[6,] 6 7 10

> trimesh(dt, ps)

> points(ps)

●

●

●

●

●

●

●

●
●

●

2.2 Calling delaunayn with options

We can supply Qhull options to delaunayn; in this case it returns an object
of class delaunayn which is also a list. For example Fa returns the generalised
area of each triangle. In 2D the generalised area is the actual area; in 3D it
would be the volume.

> dt2 <- delaunayn(ps, options="Fa")

> print(dt2$areas)

[1] 0.0477354797 0.0235319781 0.0005427886 0.0027393269 0.0367158707

[6] 0.0182648794 0.0026812504 0.0715507219 0.0129480324 0.0052285253

[11] 0.0240145535 0.0122203334 0.0360452460 0.0477133185

4

> dt2 <- delaunayn(ps, options="Fn")

> print(dt2$neighbours)

[[1]]

[1] 11 -5 8

[[2]]

[1] -1 12 4

[[3]]

[1] -1 7 5

[[4]]

[1] 2 5 10

[[5]]

[1] 3 4 14

[[6]]

[1] -5 7 8

[[7]]

[1] 3 6 9

[[8]]

[1] 1 9 6

[[9]]

[1] 13 8 7

[[10]]

[1] 4 12 14

[[11]]

[1] 1 12 13

[[12]]

[1] 2 11 10

[[13]]

[1] 9 11 14

[[14]]

[1] 5 13 10

5

	Convex hulls in 2D
	Calling convhulln with one argument
	Calling convhulln with options
	Testing if points are inside a convex hull with inhulln

	Delaunay triangulation in 2D
	Calling delaunayn with one argument
	Calling delaunayn with options

