Easy Data Wrangling


[Up] [Top]

Documentation for package ‘datawizard’ version 0.2.2

Help Pages

adjust Adjust data for the effect of other variable(s)
center Centering (Grand-Mean Centering)
center.data.frame Centering (Grand-Mean Centering)
center.numeric Centering (Grand-Mean Centering)
centre Centering (Grand-Mean Centering)
change_scale Rescale Variables to a New Range
convert_data_to_numeric Convert data to numeric
data_addprefix Convenient dataframe manipulation functionalities
data_addsuffix Convenient dataframe manipulation functionalities
data_adjust Adjust data for the effect of other variable(s)
data_extract Extract a single column or element from an object
data_findcols Convenient dataframe manipulation functionalities
data_match Find row indices of a data frame matching a specific condition
data_partition Partition data into a test and a training set
data_relocate Relocate (reorder) columns of a data frame
data_remove Convenient dataframe manipulation functionalities
data_rename Convenient dataframe manipulation functionalities
data_rename_rows Convenient dataframe manipulation functionalities
data_reorder Convenient dataframe manipulation functionalities
data_rescale Rescale Variables to a New Range
data_rescale.data.frame Rescale Variables to a New Range
data_rescale.grouped_df Rescale Variables to a New Range
data_rescale.numeric Rescale Variables to a New Range
data_restoretype Restore the type of columns according to a reference data frame
data_to_long Reshape (pivot) data from wide to long
data_to_numeric Convert data to numeric
data_to_wide Reshape (pivot) data from wide to long
data_transpose Transpose a dataframe
degroup Compute group-meaned and de-meaned variables
demean Compute group-meaned and de-meaned variables
describe_distribution Describe a distribution
describe_distribution.data.frame Describe a distribution
describe_distribution.factor Describe a distribution
describe_distribution.numeric Describe a distribution
detrend Compute group-meaned and de-meaned variables
extract Extract a single column or element from an object
format_text Convenient text formatting functionalities
kurtosis Compute Skewness and (Excess) Kurtosis
nhanes_sample Sample dataset from the National Health and Nutrition Examination Survey
normalize Normalize numeric variable to 0-1 range
normalize.data.frame Normalize numeric variable to 0-1 range
normalize.grouped_df Normalize numeric variable to 0-1 range
normalize.numeric Normalize numeric variable to 0-1 range
print.parameters_kurtosis Compute Skewness and (Excess) Kurtosis
print.parameters_skewness Compute Skewness and (Excess) Kurtosis
ranktransform (Signed) rank transformation
ranktransform.data.frame (Signed) rank transformation
ranktransform.grouped_df (Signed) rank transformation
ranktransform.numeric (Signed) rank transformation
rescale_weights Rescale design weights for multilevel analysis
reshape_ci Reshape CI between wide/long formats
reshape_longer Reshape (pivot) data from wide to long
reshape_wider Reshape (pivot) data from wide to long
skewness Compute Skewness and (Excess) Kurtosis
smoothness Quantify the smoothness of a vector
standardise Standardization (Z-scoring)
standardize Standardization (Z-scoring)
standardize.data.frame Standardization (Z-scoring)
standardize.numeric Standardization (Z-scoring)
summary.parameters_kurtosis Compute Skewness and (Excess) Kurtosis
summary.parameters_skewness Compute Skewness and (Excess) Kurtosis
text_concatenate Convenient text formatting functionalities
text_fullstop Convenient text formatting functionalities
text_lastchar Convenient text formatting functionalities
text_paste Convenient text formatting functionalities
text_remove Convenient text formatting functionalities
text_wrap Convenient text formatting functionalities
to_numeric Convert to Numeric (if possible)
unstandardise Standardization (Z-scoring)
unstandardize Standardization (Z-scoring)
visualisation_recipe Prepare objects for visualisation
winsorize Winsorize data
winsorize.numeric Winsorize data