Hydrology, weirs and open flow (fluids.open_flow)

fluids.open_flow.Q_weir_V_Shen(h1, angle=90)[source]

Calculates the flow rate across a V-notch (triangular) weir from the height of the liquid above the tip of the notch, and with the angle of the notch. Most of these type of weir are 90 degrees. Model from [R526] as reproduced in [R527].

Flow rate is given by:

\[Q = C \tan\left(\frac{\theta}{2}\right)\sqrt{g}(h_1 + k)^{2.5}\]
Parameters

h1 : float

Height of the fluid above the notch [m]

angle : float, optional

Angle of the notch [degrees]

Returns

Q : float

Volumetric flow rate across the weir [m^3/s]

Notes

angles = [20, 40, 60, 80, 100] Cs = [0.59, 0.58, 0.575, 0.575, 0.58] k = [0.0028, 0.0017, 0.0012, 0.001, 0.001]

The following limits apply to the use of this equation:

h1 >= 0.05 m h2 > 0.45 m h1/h2 <= 0.4 m b > 0.9 m

\[\frac{h_1}{b}\tan\left(\frac{\theta}{2}\right) < 2\]

Flows are lower than obtained by the curves at http://www.lmnoeng.com/Weirs/vweir.php.

References

R526(1,2)

Shen, John. “Discharge Characteristics of Triangular-Notch Thin-Plate Weirs : Studies of Flow to Water over Weirs and Dams.” USGS Numbered Series. Water Supply Paper. U.S. Geological Survey : U.S. G.P.O., 1981

R527(1,2)

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

>>> Q_weir_V_Shen(0.6, angle=45)
0.21071725775478228
fluids.open_flow.Q_weir_rectangular_Kindsvater_Carter(h1, h2, b)[source]

Calculates the flow rate across rectangular weir from the height of the liquid above the crest of the notch, the liquid depth beneath it, and the width of the notch. Model from [R528] as reproduced in [R529].

Flow rate is given by:

\[Q = 0.554\left(1 - 0.0035\frac{h_1}{h_2}\right)(b + 0.0025) \sqrt{g}(h_1 + 0.0001)^{1.5}\]
Parameters

h1 : float

Height of the fluid above the crest of the weir [m]

h2 : float

Height of the fluid below the crest of the weir [m]

b : float

Width of the rectangular flow section of the weir [m]

Returns

Q : float

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

b/b1 ≤ 0.2 h1/h2 < 2 b > 0.15 m h1 > 0.03 m h2 > 0.1 m

References

R528(1,2)

Kindsvater, Carl E., and Rolland W. Carter. “Discharge Characteristics of Rectangular Thin-Plate Weirs.” Journal of the Hydraulics Division 83, no. 6 (December 1957): 1-36.

R529(1,2)

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

>>> Q_weir_rectangular_Kindsvater_Carter(0.2, 0.5, 1)
0.15545928949179422
fluids.open_flow.Q_weir_rectangular_SIA(h1, h2, b, b1)[source]

Calculates the flow rate across rectangular weir from the height of the liquid above the crest of the notch, the liquid depth beneath it, and the width of the notch. Model from [R530] as reproduced in [R531].

Flow rate is given by:

\[Q = 0.544\left[1 + 0.064\left(\frac{b}{b_1}\right)^2 + \frac{0.00626 - 0.00519(b/b_1)^2}{h_1 + 0.0016}\right] \left[1 + 0.5\left(\frac{b}{b_1}\right)^4\left(\frac{h_1}{h_1+h_2} \right)^2\right]b\sqrt{g}h^{1.5}\]
Parameters

h1 : float

Height of the fluid above the crest of the weir [m]

h2 : float

Height of the fluid below the crest of the weir [m]

b : float

Width of the rectangular flow section of the weir [m]

b1 : float

Width of the full section of the channel [m]

Returns

Q : float

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

b/b1 ≤ 0.2 h1/h2 < 2 b > 0.15 m h1 > 0.03 m h2 > 0.1 m

References

R530(1,2)

Normen für Wassermessungen: bei Durchführung von Abnahmeversuchen an Wasserkraftmaschinen. SIA, 1924.

R531(1,2)

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

>>> Q_weir_rectangular_SIA(0.2, 0.5, 1, 2)
1.0408858453811165
fluids.open_flow.Q_weir_rectangular_full_Ackers(h1, h2, b)[source]

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [R532] as reproduced in [R533], confirmed with [R534].

Flow rate is given by:

\[Q = 0.564\left(1+0.150\frac{h_1}{h_2}\right)b\sqrt{g}(h_1+0.001)^{1.5}\]
Parameters

h1 : float

Height of the fluid above the crest of the weir [m]

h2 : float

Height of the fluid below the crest of the weir [m]

b : float

Width of the channel section [m]

Returns

Q : float

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

h1 > 0.02 m h2 > 0.15 m h1/h2 ≤ 2.2

References

R532(1,2)

Ackers, Peter, W. R. White, J. A. Perkins, and A. J. M. Harrison. Weirs and Flumes for Flow Measurement. Chichester ; New York: John Wiley & Sons Ltd, 1978.

R533(1,2)

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

R534(1,2,3)

Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.

Examples

Example as in [R534], matches. However, example is unlikely in practice.

>>> Q_weir_rectangular_full_Ackers(h1=0.9, h2=0.6, b=5)
9.251938159899948
fluids.open_flow.Q_weir_rectangular_full_SIA(h1, h2, b)[source]

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [R535] as reproduced in [R536].

Flow rate is given by:

\[Q = \frac{2}{3}\sqrt{2}\left(0.615 + \frac{0.000615}{h_1+0.0016}\right) b\sqrt{g} h_1 +0.5\left(\frac{h_1}{h_1+h_2}\right)^2b\sqrt{g} h_1^{1.5}\]
Parameters

h1 : float

Height of the fluid above the crest of the weir [m]

h2 : float

Height of the fluid below the crest of the weir [m]

b : float

Width of the channel section [m]

Returns

Q : float

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

0.025 < h < 0.8 m b > 0.3 m h2 > 0.3 m h1/h2 < 1

References

R535(1,2)

Normen für Wassermessungen: bei Durchführung von Abnahmeversuchen an Wasserkraftmaschinen. SIA, 1924.

R536(1,2,3)

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

Example compares terribly with the Ackers expression - probable error in [R536]. DO NOT USE.

>>> Q_weir_rectangular_full_SIA(h1=0.3, h2=0.4, b=2)
1.1875825055400384
fluids.open_flow.Q_weir_rectangular_full_Rehbock(h1, h2, b)[source]

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [R538] as reproduced in [R539].

Flow rate is given by:

\[Q = \frac{2}{3}\sqrt{2}\left(0.602 + 0.0832\frac{h_1}{h_2}\right) b\sqrt{g} (h_1 +0.00125)^{1.5}\]
Parameters

h1 : float

Height of the fluid above the crest of the weir [m]

h2 : float

Height of the fluid below the crest of the weir [m]

b : float

Width of the channel section [m]

Returns

Q : float

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

0.03 m < h1 < 0.75 m b > 0.3 m h2 > 0.3 m h1/h2 < 1

References

R538(1,2)

King, H. W., Floyd A. Nagler, A. Streiff, R. L. Parshall, W. S. Pardoe, R. E. Ballester, Gardner S. Williams, Th Rehbock, Erik G. W. Lindquist, and Clemens Herschel. “Discussion of ‘Precise Weir Measurements.’” Transactions of the American Society of Civil Engineers 93, no. 1 (January 1929): 1111-78.

R539(1,2)

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

>>> Q_weir_rectangular_full_Rehbock(h1=0.3, h2=0.4, b=2)
0.6486856330601333
fluids.open_flow.Q_weir_rectangular_full_Kindsvater_Carter(h1, h2, b)[source]

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [R540] as reproduced in [R541].

Flow rate is given by:

\[Q = \frac{2}{3}\sqrt{2}\left(0.602 + 0.0832\frac{h_1}{h_2}\right) b\sqrt{g} (h_1 +0.00125)^{1.5}\]
Parameters

h1 : float

Height of the fluid above the crest of the weir [m]

h2 : float

Height of the fluid below the crest of the weir [m]

b : float

Width of the channel section [m]

Returns

Q : float

Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

h1 > 0.03 m b > 0.15 m h2 > 0.1 m h1/h2 < 2

References

R540(1,2)

Kindsvater, Carl E., and Rolland W. Carter. “Discharge Characteristics of Rectangular Thin-Plate Weirs.” Journal of the Hydraulics Division 83, no. 6 (December 1957): 1-36.

R541(1,2)

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

Examples

>>> Q_weir_rectangular_full_Kindsvater_Carter(h1=0.3, h2=0.4, b=2)
0.641560300081563
fluids.open_flow.V_Manning(Rh, S, n)[source]

Predicts the average velocity of a flow across an open channel of hydraulic radius Rh and slope S, given the Manning roughness coefficient n.

Flow rate is given by:

\[V = \frac{1}{n} R_h^{2/3} S^{0.5}\]
Parameters

Rh : float

Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]

S : float

Slope of the channel, m/m [-]

n : float

Manning roughness coefficient [s/m^(1/3)]

Returns

V : float

Average velocity of the channel [m/s]

Notes

This is equation is often given in imperial units multiplied by 1.49.

References

R542

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

R543(1,2)

Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.

Examples

Example is from [R543], matches.

>>> V_Manning(0.2859, 0.005236, 0.03)
1.0467781958118971
fluids.open_flow.n_Manning_to_C_Chezy(n, Rh)[source]

Converts a Manning roughness coefficient to a Chezy coefficient, given the hydraulic radius of the channel.

\[C = \frac{1}{n}R_h^{1/6}\]
Parameters

n : float

Manning roughness coefficient [s/m^(1/3)]

Rh : float

Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]

Returns

C : float

Chezy coefficient [m^0.5/s]

References

R544

Chow, Ven Te. Open-Channel Hydraulics. New York: McGraw-Hill, 1959.

Examples

Custom example, checked.

>>> n_Manning_to_C_Chezy(0.05, Rh=5)
26.15320972023661
fluids.open_flow.C_Chezy_to_n_Manning(C, Rh)[source]

Converts a Chezy coefficient to a Manning roughness coefficient, given the hydraulic radius of the channel.

\[n = \frac{1}{C}R_h^{1/6}\]
Parameters

C : float

Chezy coefficient [m^0.5/s]

Rh : float

Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]

Returns

n : float

Manning roughness coefficient [s/m^(1/3)]

References

R545

Chow, Ven Te. Open-Channel Hydraulics. New York: McGraw-Hill, 1959.

Examples

Custom example, checked.

>>> C_Chezy_to_n_Manning(26.15, Rh=5)
0.05000613713238358
fluids.open_flow.V_Chezy(Rh, S, C)[source]

Predicts the average velocity of a flow across an open channel of hydraulic radius Rh and slope S, given the Chezy coefficient C.

Flow rate is given by:

\[V = C\sqrt{S R_h}\]
Parameters

Rh : float

Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]

S : float

Slope of the channel, m/m [-]

C : float

Chezy coefficient [m^0.5/s]

Returns

V : float

Average velocity of the channel [m/s]

References

R546

Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984.

R547

Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.

R548

Chow, Ven Te. Open-Channel Hydraulics. New York: McGraw-Hill, 1959.

Examples

Custom example, checked.

>>> V_Chezy(Rh=5, S=0.001, C=26.153)
1.8492963648371776