Source code for fluids.control_valve

# -*- coding: utf-8 -*-
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.'''

from __future__ import division
from math import log10
from scipy.constants import R

__all__ = ['size_control_valve_l', 'size_control_valve_g', 'cavitation_index',
           'FF_critical_pressure_ratio_l', 'is_choked_turbulent_l', 
           'is_choked_turbulent_g', 'Reynolds_valve', 
           'loss_coefficient_piping', 'Reynolds_factor']

N1 = 0.1 # m^3/hr, kPa
N2 = 1.6E-3 # mm
N4 = 7.07E-2 # m^3/hr, m^2/s
N5 = 1.8E-3 # mm
N6 = 3.16 # kg/hr, kPa, kg/m^3
N7 = 4.82 # m^3/hr kPa K
N8 = 1.10 # kPa kg/hr K
#N9 = 2.60E1 # m^3/hr kPa K at 15 deg C
N9 = 2.46E1 # m^3/hr kPa K at 0 deg C
N18 = 8.65E-1 # mm
N19 = 2.5 # mm
#N22 = 1.84E1 # m^3/hr kPa K at 15 deg C
N27 = 7.75E-1 # kg/hr kPa K at 0 deg C
N32 = 1.4E2 # mm


rho0 = 999.10329075702327 # Water at 288.15 K


[docs]def cavitation_index(P1, P2, Psat): r'''Calculates the cavitation index of a valve with upstream and downstream absolute pressures `P1` and `P2` for a fluid with a vapor pressure `Psat`. .. math:: \sigma = \frac{P_1 - P_{sat}}{P_1 - P_2} Parameters ---------- P1 : float Absolute pressure upstream of the valve [Pa] P2 : float Absolute pressure downstream of the valve [Pa] Psat : float Saturation pressure of the liquid at inlet temperature [Pa] Returns ------- sigma : float Cavitation index of the valve [-] Notes ----- Larger values are safer. Models for adjusting cavitation indexes provided by the manufacturer to the user's conditions are available, making use of scaling the pressure differences and size differences. Values can be calculated for incipient cavitation, constant cavitation, maximum vibration cavitation, incipient damage, and choking cavitation. Has also been defined as: .. math:: \sigma = \frac{P_2 - P_{sat}}{P_1 - P_2} Another definition and notation series is: .. math:: K = xF = \frac{1}{\sigma} = \frac{P_1 - P_2}{P_1 - P_{sat}} Examples -------- >>> cavitation_index(1E6, 8E5, 2E5) 4.0 References ---------- .. [1] ISA. "RP75.23 Considerations for Evaluating Control Valve Cavitation." 1995. ''' return (P1 - Psat)/(P1 - P2)
[docs]def FF_critical_pressure_ratio_l(Psat, Pc): r'''Calculates FF, the liquid critical pressure ratio factor, for use in IEC 60534 liquid valve sizing calculations. .. math:: F_F = 0.96 - 0.28\sqrt{\frac{P_{sat}}{P_c}} Parameters ---------- Psat : float Saturation pressure of the liquid at inlet temperature [Pa] Pc : float Critical pressure of the liquid [Pa] Returns ------- FF : float Liquid critical pressure ratio factor [-] Examples -------- From [1]_, matching example. >>> FF_critical_pressure_ratio_l(70100.0, 22120000.0) 0.9442375225233299 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' return 0.96 - 0.28*(Psat/Pc)**0.5
[docs]def is_choked_turbulent_l(dP, P1, Psat, FF, FL=None, FLP=None, FP=None): r'''Calculates if a liquid flow in IEC 60534 calculations is critical or not, for use in IEC 60534 liquid valve sizing calculations. Either FL may be provided or FLP and FP, depending on the calculation process. .. math:: \Delta P > F_L^2(P_1 - F_F P_{sat}) \Delta P >= \left(\frac{F_{LP}}{F_P}\right)^2(P_1 - F_F P_{sat}) Parameters ---------- dP : float Differential pressure across the valve, with reducer/expanders [Pa] P1 : float Pressure of the fluid before the valve and reducers/expanders [Pa] Psat : float Saturation pressure of the fluid at inlet temperature [Pa] FF : float Liquid critical pressure ratio factor [-] FL : float, optional Liquid pressure recovery factor of a control valve without attached fittings [-] FLP : float, optional Combined liquid pressure recovery factor with piping geometry factor, for a control valve with attached fittings [-] FP : float, optional Piping geometry factor [-] Returns ------- choked : bool Whether or not the flow is choked [-] Examples -------- >>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.9) False >>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.6) True References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' if FLP and FP: return dP >= (FLP/FP)**2*(P1-FF*Psat) elif FL: return dP >= FL**2*(P1-FF*Psat) else: raise Exception('Either (FLP and FP) or FL is needed')
[docs]def is_choked_turbulent_g(x, Fgamma, xT=None, xTP=None): r'''Calculates if a gas flow in IEC 60534 calculations is critical or not, for use in IEC 60534 gas valve sizing calculations. Either xT or xTP must be provided, depending on the calculation process. .. math:: x \ge F_\gamma x_T x \ge F_\gamma x_{TP} Parameters ---------- x : float Differential pressure over inlet pressure, [-] Fgamma : float Specific heat ratio factor [-] xT : float, optional Pressure difference ratio factor of a valve without fittings at choked flow [-] xTP : float Pressure difference ratio factor of a valve with fittings at choked flow [-] Returns ------- choked : bool Whether or not the flow is choked [-] Examples -------- Example 3, compressible flow, non-choked with attached fittings: >>> is_choked_turbulent_g(0.544, 0.929, 0.6) False >>> is_choked_turbulent_g(0.544, 0.929, xTP=0.625) False References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' if xT: return x >= Fgamma*xT elif xTP: return x >= Fgamma*xTP else: raise Exception('Either xT or xTP is needed')
[docs]def Reynolds_valve(nu, Q, D1, FL, Fd, C): r'''Calculates Reynolds number of a control valve for a liquid or gas flowing through it at a specified Q, for a specified D1, FL, Fd, C, and with kinematic viscosity `nu` according to IEC 60534 calculations. .. math:: Re_v = \frac{N_4 F_d Q}{\nu \sqrt{C F_L}}\left(\frac{F_L^2 C^2} {N_2D^4} +1\right)^{1/4} Parameters ---------- nu : float Kinematic viscosity, [m^2/s] Q : float Volumetric flow rate of the fluid [m^3/s] D1 : float Diameter of the pipe before the valve [m] FL : float, optional Liquid pressure recovery factor of a control valve without attached fittings [] Fd : float Valve style modifier [-] C : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] Returns ------- Rev : float Valve reynolds number [-] Examples -------- >>> Reynolds_valve(3.26e-07, 360, 150.0, 0.9, 0.46, 165) 2966984.7525455453 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' return N4*Fd*Q/nu/(C*FL)**0.5*(FL**2*C**2/(N2*D1**4) + 1)**0.25
[docs]def loss_coefficient_piping(d, D1=None, D2=None): r'''Calculates the sum of loss coefficients from possible inlet/outlet reducers/expanders around a control valve according to IEC 60534 calculations. .. math:: \Sigma \xi = \xi_1 + \xi_2 + \xi_{B1} - \xi_{B2} \xi_1 = 0.5\left[1 -\left(\frac{d}{D_1}\right)^2\right]^2 \xi_2 = 1.0\left[1 -\left(\frac{d}{D_2}\right)^2\right]^2 \xi_{B1} = 1 - \left(\frac{d}{D_1}\right)^4 \xi_{B2} = 1 - \left(\frac{d}{D_2}\right)^4 Parameters ---------- d : float Diameter of the valve [m] D1 : float Diameter of the pipe before the valve [m] D2 : float Diameter of the pipe after the valve [m] Returns ------- loss : float Sum of the four loss coefficients [-] Examples -------- In example 3, non-choked compressible flow with fittings: >>> loss_coefficient_piping(0.05, 0.08, 0.1) 0.6580810546875 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' loss = 0. if D1: loss += 1. - (d/D1)**4 # Inlet flow energy loss += 0.5*(1. - (d/D1)**2)**2 # Inlet reducer if D2: loss += 1.0*(1. - (d/D2)**2)**2 # Outlet reducer (expander) loss -= 1. - (d/D2)**4 # Outlet flow energy return loss
[docs]def Reynolds_factor(FL, C, d, Rev, full_trim=True): r'''Calculates the Reynolds number factor `FR` for a valve with a Reynolds number `Rev`, diameter `d`, flow coefficient `C`, liquid pressure recovery factor `FL`, and with either full or reduced trim, all according to IEC 60534 calculations. If full trim: .. math:: F_{R,1a} = 1 + \left(\frac{0.33F_L^{0.5}}{n_1^{0.25}}\right)\log_{10} \left(\frac{Re_v}{10000}\right) F_{R,2} = \min(\frac{0.026}{F_L}\sqrt{n_1 Re_v},\; 1) n_1 = \frac{N_2}{\left(\frac{C}{d^2}\right)^2} F_R = F_{R,2} \text{ if Rev < 10 else } \min(F_{R,1a}, F_{R,2}) Otherwise : .. math:: F_{R,3a} = 1 + \left(\frac{0.33F_L^{0.5}}{n_2^{0.25}}\right)\log_{10} \left(\frac{Re_v}{10000}\right) F_{R,4} = \frac{0.026}{F_L}\sqrt{n_2 Re_v} n_2 = 1 + N_{32}\left(\frac{C}{d}\right)^{2/3} F_R = F_{R,4} \text{ if Rev < 10 else } \min(F_{R,3a}, F_{R,4}) Parameters ---------- FL : float Liquid pressure recovery factor of a control valve without attached fittings [] C : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] d : float Diameter of the valve [m] Rev : float Valve reynolds number [-] full_trim : bool Whether or not the valve has full trim Returns ------- FR : float Reynolds number factor for laminar or transitional flow [] Examples -------- In Example 4, compressible flow with small flow trim sized for gas flow (Cv in the problem was converted to Kv here to make FR match with N32, N2): >>> Reynolds_factor(FL=0.98, C=0.015483, d=15., Rev=1202., full_trim=False) 0.7148753122302025 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' if full_trim: n1 = N2/(min(C/d**2, 0.04))**2 # C/d**2 must not exceed 0.04 FR_1a = 1 + (0.33*FL**0.5)/n1**0.25*log10(Rev/10000.) FR_2 = 0.026/FL*(n1*Rev)**0.5 if Rev < 10: FR = FR_2 else: FR = min(FR_2, FR_1a) else: n2 = 1 + N32*(C/d**2)**(2/3.) FR_3a = 1 + (0.33*FL**0.5)/n2**0.25*log10(Rev/10000.) FR_4 = min(0.026/FL*(n2*Rev)**0.5, 1) if Rev < 10: FR = FR_4 else: FR = min(FR_3a, FR_4) return FR
[docs]def size_control_valve_l(rho, Psat, Pc, mu, P1, P2, Q, D1, D2, d, FL, Fd): r'''Calculates flow coefficient of a control valve passing a liquid according to IEC 60534. Uses a large number of inputs in SI units. Note the return value is not standard SI. All parameters are required. This sizing model does not officially apply to liquid mixtures, slurries, non-Newtonian fluids, or liquid-solid conveyance systems. For details of the calculations, consult [1]_. Parameters ---------- rho : float Density of the liquid at the inlet [kg/m^3] Psat : float Saturation pressure of the fluid at inlet temperature [Pa] Pc : float Critical pressure of the fluid [Pa] mu : float Viscosity of the fluid [Pa*s] P1 : float Inlet pressure of the fluid before valves and reducers [Pa] P2 : float Outlet pressure of the fluid after valves and reducers [Pa] Q : float Volumetric flow rate of the fluid [m^3/s] D1 : float Diameter of the pipe before the valve [m] D2 : float Diameter of the pipe after the valve [m] d : float Diameter of the valve [m] FL : float Liquid pressure recovery factor of a control valve without attached fittings [] Fd : float Valve style modifier [] Returns ------- C : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] Examples -------- From [1]_, matching example 1 for a globe, parabolic plug, flow-to-open valve. >>> size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4, ... P1=680E3, P2=220E3, Q=0.1, D1=0.15, D2=0.15, d=0.15, ... FL=0.9, Fd=0.46) 164.9954763704956 From [1]_, matching example 2 for a ball, segmented ball, flow-to-open valve. >>> size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4, ... P1=680E3, P2=220E3, Q=0.1, D1=0.1, D2=0.1, d=0.1, ... FL=0.6, Fd=0.98) 238.05817216710483 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' # Pa to kPa, according to constants in standard P1, P2, Psat, Pc = P1/1000., P2/1000., Psat/1000., Pc/1000. # m to mm, according to constants in standard D1, D2, d = D1*1000., D2*1000., d*1000. Q = Q*3600. # m^3/s to m^3/hr, according to constants in standard nu = mu/rho # kinematic viscosity used in standard dP = P1 - P2 FF = FF_critical_pressure_ratio_l(Psat=Psat, Pc=Pc) choked = is_choked_turbulent_l(dP=dP, P1=P1, Psat=Psat, FF=FF, FL=FL) if choked: # Choked flow, equation 3 C = Q/N1/FL*(rho/rho0/(P1-FF*Psat))**0.5 else: # non-choked flow, eq 1 C = Q/N1*(rho/rho0/dP)**0.5 Rev = Reynolds_valve(nu=nu, Q=Q, D1=D1, FL=FL, Fd=Fd, C=C) if Rev > 10000 and (D1 != d or D2 != d): # liquid, using Fp and FLP FP = 1 Ci = C def iterate_piping_turbulent(Ci): loss = loss_coefficient_piping(d, D1, D2) FP = (1 + loss/N2*(Ci/d**2)**2)**-0.5 loss_upstream = loss_coefficient_piping(d, D1) FLP = FL*(1 + FL**2/N2*loss_upstream*(Ci/d**2)**2)**-0.5 choked = is_choked_turbulent_l(dP, P1, Psat, FF, FLP=FLP, FP=FP) if choked: # Choked flow with piping, equation 4 C = Q/N1/FLP*(rho/rho0/(P1-FF*Psat))**0.5 else: # Non-Choked flow with piping, equation 4 C = Q/N1/FP*(rho/rho0/dP)**0.5 if Ci/C < 0.99: C = iterate_piping_turbulent(C) return C C = iterate_piping_turbulent(Ci) elif Rev <= 10000: # Laminar def iterate_piping_laminar(C): Ci = 1.3*C Rev = Reynolds_valve(nu=nu, Q=Q, D1=D1, FL=FL, Fd=Fd, C=Ci) if Ci/d**2 > 0.016*N18: FR = Reynolds_factor(FL=FL, C=Ci, d=d, Rev=Rev, full_trim=False) else: FR = Reynolds_factor(FL=FL, C=Ci, d=d, Rev=Rev, full_trim=True) if C/FR >= Ci: Ci = iterate_piping_laminar(Ci) # pragma: no cover return Ci C = iterate_piping_laminar(C) return C
[docs]def size_control_valve_g(T, MW, mu, gamma, Z, P1, P2, Q, D1, D2, d, FL, Fd, xT): r'''Calculates flow coefficient of a control valve passing a gas according to IEC 60534. Uses a large number of inputs in SI units. Note the return value is not standard SI. All parameters are required. For details of the calculations, consult [1]_. Note the inlet gas flow conditions. Parameters ---------- T : float Temperature of the gas at the inlet [K] MW : float Molecular weight of the gas [g/mol] mu : float Viscosity of the fluid at inlet conditions [Pa*s] gamma : float Specific heat capacity ratio [-] Z : float Compressibility factor at inlet conditions, [-] P1 : float Inlet pressure of the gas before valves and reducers [Pa] P2 : float Outlet pressure of the gas after valves and reducers [Pa] Q : float Volumetric flow rate of the gas at *273.15 K* and 1 atm specifically [m^3/s] D1 : float Diameter of the pipe before the valve [m] D2 : float Diameter of the pipe after the valve [m] d : float Diameter of the valve [m] FL : float Liquid pressure recovery factor of a control valve without attached fittings [-] Fd : float Valve style modifier [-] xT : float Pressure difference ratio factor of a valve without fittings at choked flow [-] Returns ------- C : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] Examples -------- From [1]_, matching example 3 for non-choked gas flow with attached fittings and a rotary, eccentric plug, flow-to-open control valve: >>> size_control_valve_g(T=433., MW=44.01, mu=1.4665E-4, gamma=1.30, ... Z=0.988, P1=680E3, P2=310E3, Q=38/36., D1=0.08, D2=0.1, d=0.05, ... FL=0.85, Fd=0.42, xT=0.60) 72.58664545391052 From [1]_, roughly matching example 4 for a small flow trim sized tapered needle plug valve. Difference is 3% and explained by the difference in algorithms used. >>> size_control_valve_g(T=320., MW=39.95, mu=5.625E-5, gamma=1.67, Z=1.0, ... P1=2.8E5, P2=1.3E5, Q=0.46/3600., D1=0.015, D2=0.015, d=0.015, FL=0.98, ... Fd=0.07, xT=0.8) 0.016498765335995726 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' # Pa to kPa, according to constants in standard P1, P2 = P1/1000., P2/1000. # m to mm, according to constants in standard D1, D2, d = D1*1000., D2*1000., d*1000. Q = Q*3600. # m^3/s to m^3/hr, according to constants in standard # Convert dynamic viscosity to kinematic viscosity Vm = Z*R*T/(P1*1000) rho = (Vm)**-1*MW/1000. nu = mu/rho # kinematic viscosity used in standard dP = P1 - P2 Fgamma = gamma/1.40 x = dP/P1 Y = max(1 - x/(3*Fgamma*xT), 2/3.) choked = is_choked_turbulent_g(x, Fgamma, xT) if choked: # Choked, and flow coefficient from eq 14a C = Q/(N9*P1*Y)*(MW*T*Z/xT/Fgamma)**0.5 else: # Non-choked, and flow coefficient from eq 8a C = Q/(N9*P1*Y)*(MW*T*Z/x)**0.5 Rev = Reynolds_valve(nu=nu, Q=Q, D1=D1, FL=FL, Fd=Fd, C=C) if Rev > 10000 and (D1 != d or D2 != d): # gas, using xTP and FLP FP = 1. def iterate_piping_coef(Ci): loss = loss_coefficient_piping(d, D1, D2) FP = (1. + loss/N2*(Ci/d**2)**2)**-0.5 loss_upstream = loss_coefficient_piping(d, D1) xTP = xT/FP**2/(1 + xT*loss_upstream/N5*(Ci/d**2)**2) choked = is_choked_turbulent_g(x, Fgamma, xTP=xTP) if choked: # Choked flow with piping, equation 17a C = Q/(N9*FP*P1*Y)*(MW*T*Z/xTP/Fgamma)**0.5 else: # Non-choked flow with piping, equation 11a C = Q/(N9*FP*P1*Y)*(MW*T*Z/x)**0.5 if Ci/C < 0.99: C = iterate_piping_coef(C) return C C = iterate_piping_coef(C) elif Rev <= 10000: # Laminar; def iterate_piping_laminar(C): Ci = 1.3*C Rev = Reynolds_valve(nu=nu, Q=Q, D1=D1, FL=FL, Fd=Fd, C=Ci) if Ci/d**2 > 0.016*N18: FR = Reynolds_factor(FL=FL, C=Ci, d=d, Rev=Rev, full_trim=False) else: FR = Reynolds_factor(FL=FL, C=Ci, d=d, Rev=Rev, full_trim=True) if C/FR >= Ci: Ci = iterate_piping_laminar(Ci) return Ci C = iterate_piping_laminar(C) return C