Source code for ase.io.vasp

"""
This module contains functionality for reading and writing an ASE
Atoms object in VASP POSCAR format.

"""

import os
import re

import numpy as np

import ase.units

from ase import Atoms
from ase.utils import reader, writer
from ase.io.utils import ImageIterator, ImageChunk

__all__ = [
    'read_vasp', 'read_vasp_out', 'iread_vasp_out', 'read_vasp_xdatcar',
    'read_vasp_xml', 'write_vasp', 'write_vasp_xdatcar'
]

# Denotes end of Ionic step for OUTCAR reading
_OUTCAR_SCF_DELIM = 'FREE ENERGIE OF THE ION-ELECTRON SYSTEM'


def get_atomtypes(fname):
    """Given a file name, get the atomic symbols.

    The function can get this information from OUTCAR and POTCAR
    format files.  The files can also be compressed with gzip or
    bzip2.

    """
    atomtypes = []
    if fname.find('.gz') != -1:
        import gzip
        f = gzip.open(fname)
    elif fname.find('.bz2') != -1:
        import bz2
        f = bz2.BZ2File(fname)
    else:
        f = open(fname)
    for line in f:
        if line.find('TITEL') != -1:
            atomtypes.append(line.split()[3].split('_')[0].split('.')[0])
    return atomtypes


def atomtypes_outpot(posfname, numsyms):
    """Try to retrieve chemical symbols from OUTCAR or POTCAR

    If getting atomtypes from the first line in POSCAR/CONTCAR fails, it might
    be possible to find the data in OUTCAR or POTCAR, if these files exist.

    posfname -- The filename of the POSCAR/CONTCAR file we're trying to read

    numsyms -- The number of symbols we must find

    """
    import os.path as op
    import glob

    # First check files with exactly same name except POTCAR/OUTCAR instead
    # of POSCAR/CONTCAR.
    fnames = [
        posfname.replace('POSCAR', 'POTCAR').replace('CONTCAR', 'POTCAR')
    ]
    fnames.append(
        posfname.replace('POSCAR', 'OUTCAR').replace('CONTCAR', 'OUTCAR'))
    # Try the same but with compressed files
    fsc = []
    for fn in fnames:
        fsc.append(fn + '.gz')
        fsc.append(fn + '.bz2')
    for f in fsc:
        fnames.append(f)
    # Finally try anything with POTCAR or OUTCAR in the name
    vaspdir = op.dirname(posfname)
    fs = glob.glob(vaspdir + '*POTCAR*')
    for f in fs:
        fnames.append(f)
    fs = glob.glob(vaspdir + '*OUTCAR*')
    for f in fs:
        fnames.append(f)

    tried = []
    files_in_dir = os.listdir('.')
    for fn in fnames:
        if fn in files_in_dir:
            tried.append(fn)
            at = get_atomtypes(fn)
            if len(at) == numsyms:
                return at

    raise IOError('Could not determine chemical symbols. Tried files ' +
                  str(tried))


def get_atomtypes_from_formula(formula):
    """Return atom types from chemical formula (optionally prepended
    with and underscore).
    """
    from ase.symbols import string2symbols
    symbols = string2symbols(formula.split('_')[0])
    atomtypes = [symbols[0]]
    for s in symbols[1:]:
        if s != atomtypes[-1]:
            atomtypes.append(s)
    return atomtypes


[docs]@reader def read_vasp(filename='CONTCAR'): """Import POSCAR/CONTCAR type file. Reads unitcell, atom positions and constraints from the POSCAR/CONTCAR file and tries to read atom types from POSCAR/CONTCAR header, if this fails the atom types are read from OUTCAR or POTCAR file. """ from ase.constraints import FixAtoms, FixScaled from ase.data import chemical_symbols fd = filename # The first line is in principle a comment line, however in VASP # 4.x a common convention is to have it contain the atom symbols, # eg. "Ag Ge" in the same order as later in the file (and POTCAR # for the full vasp run). In the VASP 5.x format this information # is found on the fifth line. Thus we save the first line and use # it in case we later detect that we're reading a VASP 4.x format # file. line1 = fd.readline() lattice_constant = float(fd.readline().split()[0]) # Now the lattice vectors a = [] for ii in range(3): s = fd.readline().split() floatvect = float(s[0]), float(s[1]), float(s[2]) a.append(floatvect) basis_vectors = np.array(a) * lattice_constant # Number of atoms. Again this must be in the same order as # in the first line # or in the POTCAR or OUTCAR file atom_symbols = [] numofatoms = fd.readline().split() # Check whether we have a VASP 4.x or 5.x format file. If the # format is 5.x, use the fifth line to provide information about # the atomic symbols. vasp5 = False try: int(numofatoms[0]) except ValueError: vasp5 = True atomtypes = numofatoms numofatoms = fd.readline().split() # check for comments in numofatoms line and get rid of them if necessary commentcheck = np.array(['!' in s for s in numofatoms]) if commentcheck.any(): # only keep the elements up to the first including a '!': numofatoms = numofatoms[:np.arange(len(numofatoms))[commentcheck][0]] if not vasp5: # Split the comment line (first in the file) into words and # try to compose a list of chemical symbols from ase.formula import Formula import re atomtypes = [] for word in line1.split(): word_without_delims = re.sub(r"-|_|,|\.|=|[0-9]|^", "", word) if len(word_without_delims) < 1: continue try: atomtypes.extend(list(Formula(word_without_delims))) except ValueError: # print(atomtype, e, 'is comment') pass # Now the list of chemical symbols atomtypes must be formed. # For example: atomtypes = ['Pd', 'C', 'O'] numsyms = len(numofatoms) if len(atomtypes) < numsyms: # First line in POSCAR/CONTCAR didn't contain enough symbols. # Sometimes the first line in POSCAR/CONTCAR is of the form # "CoP3_In-3.pos". Check for this case and extract atom types if len(atomtypes) == 1 and '_' in atomtypes[0]: atomtypes = get_atomtypes_from_formula(atomtypes[0]) else: atomtypes = atomtypes_outpot(fd.name, numsyms) else: try: for atype in atomtypes[:numsyms]: if atype not in chemical_symbols: raise KeyError except KeyError: atomtypes = atomtypes_outpot(fd.name, numsyms) for i, num in enumerate(numofatoms): numofatoms[i] = int(num) [atom_symbols.append(atomtypes[i]) for na in range(numofatoms[i])] # Check if Selective dynamics is switched on sdyn = fd.readline() selective_dynamics = sdyn[0].lower() == 's' # Check if atom coordinates are cartesian or direct if selective_dynamics: ac_type = fd.readline() else: ac_type = sdyn cartesian = ac_type[0].lower() == 'c' or ac_type[0].lower() == 'k' tot_natoms = sum(numofatoms) atoms_pos = np.empty((tot_natoms, 3)) if selective_dynamics: selective_flags = np.empty((tot_natoms, 3), dtype=bool) for atom in range(tot_natoms): ac = fd.readline().split() atoms_pos[atom] = (float(ac[0]), float(ac[1]), float(ac[2])) if selective_dynamics: curflag = [] for flag in ac[3:6]: curflag.append(flag == 'F') selective_flags[atom] = curflag if cartesian: atoms_pos *= lattice_constant atoms = Atoms(symbols=atom_symbols, cell=basis_vectors, pbc=True) if cartesian: atoms.set_positions(atoms_pos) else: atoms.set_scaled_positions(atoms_pos) if selective_dynamics: constraints = [] indices = [] for ind, sflags in enumerate(selective_flags): if sflags.any() and not sflags.all(): constraints.append(FixScaled(atoms.get_cell(), ind, sflags)) elif sflags.all(): indices.append(ind) if indices: constraints.append(FixAtoms(indices)) if constraints: atoms.set_constraint(constraints) return atoms
class OUTCARChunk(ImageChunk): def __init__(self, lines, header_data): self.lines = lines self.header_data = header_data def build(self): return _read_outcar_frame(self.lines, self.header_data) def _read_outcar_frame(lines, header_data): from ase.calculators.singlepoint import (SinglePointDFTCalculator, SinglePointKPoint) mag_x = None mag_y = None mag_z = None magmoms = None magmom = None stress = None efermi = None symbols = header_data['symbols'] constraints = header_data['constraints'] natoms = header_data['natoms'] # nkpts = header_data['nkpts'] nbands = header_data['nbands'] kpt_weights = header_data['kpt_weights'] ibzkpts = header_data['ibzkpts'] atoms = Atoms(symbols=symbols, pbc=True, constraint=constraints) cl = _outcar_check_line # Aliasing spinc = 0 # Spin component kpts = [] forces = np.zeros((natoms, 3)) positions = np.zeros((natoms, 3)) f_n = np.zeros(nbands) # kpt occupations eps_n = np.zeros(nbands) # kpt eigenvalues # Parse each atoms object for n, line in enumerate(lines): line = line.strip() if 'direct lattice vectors' in line: cell = [] for i in range(3): parts = cl(lines[n + i + 1]).split() cell += [list(map(float, parts[0:3]))] atoms.set_cell(cell) elif 'magnetization (x)' in line: # Magnetization in both collinear and non-collinear nskip = 4 # Skip some lines mag_x = [ float(cl(lines[n + i + nskip]).split()[-1]) for i in range(natoms) ] # XXX: !!!Uncomment these lines when non-collinear spin is supported!!! # Remember to check that format fits! # elif 'magnetization (y)' in line: # # Non-collinear spin # nskip = 4 # Skip some lines # mag_y = [float(cl(lines[n + i + nskip]).split()[-1]) # for i in range(natoms)] # elif 'magnetization (z)' in line: # # Non-collinear spin # nskip = 4 # Skip some lines # mag_z = [float(cl(lines[n + i + nskip]).split()[-1]) # for i in range(natoms)] elif 'number of electron' in line: parts = cl(line).split() if len(parts) > 5 and parts[0].strip() != "NELECT": i = parts.index('magnetization') + 1 magmom = parts[i:] if len(magmom) == 1: # Collinear spin magmom = float(magmom[0]) # !Uncomment these lines when non-collinear spin is supported! # Remember to check that format fits! # else: # # Non-collinear spin # # Make a (3,) dim array # magmom = np.array(list(map(float, magmom))) elif 'in kB ' in line: stress = -np.asarray([float(a) for a in cl(line).split()[2:]]) stress = stress[[0, 1, 2, 4, 5, 3]] * 1e-1 * ase.units.GPa elif 'POSITION ' in line: nskip = 2 for i in range(natoms): parts = list(map(float, cl(lines[n + i + nskip]).split())) positions[i] = parts[0:3] forces[i] = parts[3:6] atoms.set_positions(positions, apply_constraint=False) elif 'E-fermi :' in line: parts = line.split() efermi = float(parts[2]) elif 'spin component' in line: # Update spin component for kpts # Make spin be in [0, 1], VASP writes 1 or 2 tmp = int(line.split()[-1]) - 1 if tmp < spinc: # if NWRITE=3, we write KPTS after every electronic step, # so we just reset it, since we went from spin=2 to spin=1 # in the same ionic step. # XXX: Only read it at last electronic step kpts = [] spinc = tmp elif 'k-point ' in line: if 'plane waves' in line: # Can happen if we still have part of header continue # Parse all kpts and bands parts = line.split() ikpt = int(parts[1]) - 1 # Make kpt idx start from 0 w = kpt_weights[ikpt] nskip = 2 for i in range(nbands): parts = lines[n + i + nskip].split() eps_n[i] = float(parts[1]) f_n[i] = float(parts[2]) kpts.append(SinglePointKPoint(w, spinc, ikpt, eps_n=eps_n, f_n=f_n)) elif _OUTCAR_SCF_DELIM in line: # Last section before next ionic step nskip = 2 parts = cl(lines[n + nskip]).strip().split() energy_free = float(parts[4]) # Force consistent nskip = 4 parts = cl(lines[n + nskip]).strip().split() energy_zero = float(parts[6]) # Extrapolated to 0 K # For debugging # assert len(kpts) == 0 or len(kpts) == (spinc + 1) * nkpts if mag_x is not None: if mag_y is not None: # Non-collinear assert len(mag_x) == len(mag_y) == len(mag_z) magmoms = np.zeros((len(atoms), 3)) magmoms[:, 0] = mag_x magmoms[:, 1] = mag_y magmoms[:, 2] = mag_z else: # Collinear magmoms = np.array(mag_x) atoms.calc = SinglePointDFTCalculator(atoms, energy=energy_zero, free_energy=energy_free, ibzkpts=ibzkpts, forces=forces, efermi=efermi, magmom=magmom, magmoms=magmoms, stress=stress) atoms.calc.name = 'vasp' atoms.calc.kpts = kpts return atoms def _outcar_check_line(line): """Auxiliary check line function for OUTCAR numeric formatting. See issue #179, https://gitlab.com/ase/ase/issues/179 Only call in cases we need the numeric values """ if re.search('[0-9]-[0-9]', line): line = re.sub('([0-9])-([0-9])', r'\1 -\2', line) return line def _read_outcar_header(fd): # Get the directory of the OUTCAR we are reading wdir = os.path.dirname(fd.name) # Try and see if we can get constraints if os.path.isfile(os.path.join(wdir, 'CONTCAR')): constraints = read_vasp(os.path.join(wdir, 'CONTCAR')).constraints elif os.path.isfile(os.path.join(wdir, 'POSCAR')): constraints = read_vasp(os.path.join(wdir, 'POSCAR')).constraints else: constraints = None cl = _outcar_check_line # Aliasing species = [] natoms = 0 species_num = [] symbols = [] nkpts = 0 nbands = 0 kpt_weights = [] ibzkpts = [] # Get atomic species for line in fd: line = line.strip() if 'POTCAR:' in line: temp = line.split()[2] for c in ['.', '_', '1']: if c in temp: temp = temp[0:temp.find(c)] species += [temp] elif 'ions per type' in line: species = species[:len(species) // 2] parts = cl(line).split() ntypes = min(len(parts) - 4, len(species)) for ispecies in range(ntypes): species_num += [int(parts[ispecies + 4])] natoms += species_num[-1] for iatom in range(species_num[-1]): symbols += [species[ispecies]] elif 'NKPTS' in line: parts = cl(line).split() nkpts = int(parts[3]) nbands = int(parts[-1]) elif 'k-points in reciprocal lattice and weights' in line: # Get kpoint weights for _ in range(nkpts): parts = next(fd).strip().split() ibzkpts.append(list(map(float, parts[0:3]))) kpt_weights.append(float(parts[-1])) elif 'Iteration' in line: # Start of SCF cycle header_data = dict(natoms=natoms, symbols=symbols, constraints=constraints, nkpts=nkpts, nbands=nbands, kpt_weights=np.array(kpt_weights), ibzkpts=np.array(ibzkpts)) return header_data # Incomplete OUTCAR, we can't determine atoms raise IOError('Incomplete OUTCAR') def outcarchunks(fd): # First we get header info header_data = _read_outcar_header(fd) while True: try: # Build chunk which contains 1 complete atoms object lines = [] while True: line = next(fd) lines.append(line) if _OUTCAR_SCF_DELIM in line: # Add 4 more lines to include energy for _ in range(4): lines.append(next(fd)) break except StopIteration: # End of file return yield OUTCARChunk(lines, header_data) def iread_vasp_out(filename, index=-1): """Import OUTCAR type file, as a generator.""" it = ImageIterator(outcarchunks) return it(filename, index=index)
[docs]@reader def read_vasp_out(filename='OUTCAR', index=-1): """Import OUTCAR type file. Reads unitcell, atom positions, energies, and forces from the OUTCAR file and attempts to read constraints (if any) from CONTCAR/POSCAR, if present. """ # "filename" is actually a file-descriptor thanks to @reader g = iread_vasp_out(filename, index=index) # Code borrowed from formats.py:read if isinstance(index, (slice, str)): # Return list of atoms return list(g) else: # Return single atoms object return next(g)
[docs]@reader def read_vasp_xdatcar(filename='XDATCAR', index=-1): """Import XDATCAR file Reads all positions from the XDATCAR and returns a list of Atoms objects. Useful for viewing optimizations runs from VASP5.x Constraints ARE NOT stored in the XDATCAR, and as such, Atoms objects retrieved from the XDATCAR will not have constraints set. """ fd = filename # @reader decorator ensures this is a file descriptor images = list() cell = np.eye(3) atomic_formula = str() while True: comment_line = fd.readline() if "Direct configuration=" not in comment_line: try: lattice_constant = float(fd.readline()) except Exception: # XXX: When would this happen? break xx = [float(x) for x in fd.readline().split()] yy = [float(y) for y in fd.readline().split()] zz = [float(z) for z in fd.readline().split()] cell = np.array([xx, yy, zz]) * lattice_constant symbols = fd.readline().split() numbers = [int(n) for n in fd.readline().split()] total = sum(numbers) atomic_formula = ''.join('{:s}{:d}'.format(sym, numbers[n]) for n, sym in enumerate(symbols)) fd.readline() coords = [ np.array(fd.readline().split(), np.float) for ii in range(total) ] image = Atoms(atomic_formula, cell=cell, pbc=True) image.set_scaled_positions(np.array(coords)) images.append(image) if not index: return images else: return images[index]
def __get_xml_parameter(par): """An auxiliary function that enables convenient extraction of parameter values from a vasprun.xml file with proper type handling. """ def to_bool(b): if b == 'T': return True else: return False to_type = {'int': int, 'logical': to_bool, 'string': str, 'float': float} text = par.text if text is None: text = '' # Float parameters do not have a 'type' attrib var_type = to_type[par.attrib.get('type', 'float')] try: if par.tag == 'v': return list(map(var_type, text.split())) else: return var_type(text.strip()) except ValueError: # Vasp can sometimes write "*****" due to overflow return None
[docs]def read_vasp_xml(filename='vasprun.xml', index=-1): """Parse vasprun.xml file. Reads unit cell, atom positions, energies, forces, and constraints from vasprun.xml file """ import xml.etree.ElementTree as ET from ase.constraints import FixAtoms, FixScaled from ase.calculators.singlepoint import (SinglePointDFTCalculator, SinglePointKPoint) from ase.units import GPa from collections import OrderedDict tree = ET.iterparse(filename, events=['start', 'end']) atoms_init = None calculation = [] ibz_kpts = None kpt_weights = None parameters = OrderedDict() try: for event, elem in tree: if event == 'end': if elem.tag == 'kpoints': for subelem in elem.iter(tag='generation'): kpts_params = OrderedDict() parameters['kpoints_generation'] = kpts_params for par in subelem.iter(): if par.tag in ['v', 'i']: parname = par.attrib['name'].lower() kpts_params[parname] = __get_xml_parameter(par) kpts = elem.findall("varray[@name='kpointlist']/v") ibz_kpts = np.zeros((len(kpts), 3)) for i, kpt in enumerate(kpts): ibz_kpts[i] = [float(val) for val in kpt.text.split()] kpt_weights = elem.findall('varray[@name="weights"]/v') kpt_weights = [float(val.text) for val in kpt_weights] elif elem.tag == 'parameters': for par in elem.iter(): if par.tag in ['v', 'i']: parname = par.attrib['name'].lower() parameters[parname] = __get_xml_parameter(par) elif elem.tag == 'atominfo': species = [] for entry in elem.find("array[@name='atoms']/set"): species.append(entry[0].text.strip()) natoms = len(species) elif (elem.tag == 'structure' and elem.attrib.get('name') == 'initialpos'): cell_init = np.zeros((3, 3), dtype=float) for i, v in enumerate( elem.find("crystal/varray[@name='basis']")): cell_init[i] = np.array( [float(val) for val in v.text.split()]) scpos_init = np.zeros((natoms, 3), dtype=float) for i, v in enumerate( elem.find("varray[@name='positions']")): scpos_init[i] = np.array( [float(val) for val in v.text.split()]) constraints = [] fixed_indices = [] for i, entry in enumerate( elem.findall("varray[@name='selective']/v")): flags = (np.array( entry.text.split() == np.array(['F', 'F', 'F']))) if flags.all(): fixed_indices.append(i) elif flags.any(): constraints.append(FixScaled(cell_init, i, flags)) if fixed_indices: constraints.append(FixAtoms(fixed_indices)) atoms_init = Atoms(species, cell=cell_init, scaled_positions=scpos_init, constraint=constraints, pbc=True) elif elem.tag == 'dipole': dblock = elem.find('v[@name="dipole"]') if dblock is not None: dipole = np.array( [float(val) for val in dblock.text.split()]) elif event == 'start' and elem.tag == 'calculation': calculation.append(elem) except ET.ParseError as parse_error: if atoms_init is None: raise parse_error if calculation and calculation[-1].find('energy') is None: calculation = calculation[:-1] if not calculation: yield atoms_init if calculation: if isinstance(index, int): steps = [calculation[index]] else: steps = calculation[index] else: steps = [] for step in steps: # Workaround for VASP bug, e_0_energy contains the wrong value # in calculation/energy, but calculation/scstep/energy does not # include classical VDW corrections. So, first calculate # e_0_energy - e_fr_energy from calculation/scstep/energy, then # apply that correction to e_fr_energy from calculation/energy. lastscf = step.findall('scstep/energy')[-1] dipoles = step.findall('scstep/dipole') if dipoles: lastdipole = dipoles[-1] else: lastdipole = None de = (float(lastscf.find('i[@name="e_0_energy"]').text) - float(lastscf.find('i[@name="e_fr_energy"]').text)) free_energy = float(step.find('energy/i[@name="e_fr_energy"]').text) energy = free_energy + de cell = np.zeros((3, 3), dtype=float) for i, vector in enumerate( step.find('structure/crystal/varray[@name="basis"]')): cell[i] = np.array([float(val) for val in vector.text.split()]) scpos = np.zeros((natoms, 3), dtype=float) for i, vector in enumerate( step.find('structure/varray[@name="positions"]')): scpos[i] = np.array([float(val) for val in vector.text.split()]) forces = None fblocks = step.find('varray[@name="forces"]') if fblocks is not None: forces = np.zeros((natoms, 3), dtype=float) for i, vector in enumerate(fblocks): forces[i] = np.array( [float(val) for val in vector.text.split()]) stress = None sblocks = step.find('varray[@name="stress"]') if sblocks is not None: stress = np.zeros((3, 3), dtype=float) for i, vector in enumerate(sblocks): stress[i] = np.array( [float(val) for val in vector.text.split()]) stress *= -0.1 * GPa stress = stress.reshape(9)[[0, 4, 8, 5, 2, 1]] dipole = None if lastdipole is not None: dblock = lastdipole.find('v[@name="dipole"]') if dblock is not None: dipole = np.zeros((1, 3), dtype=float) dipole = np.array([float(val) for val in dblock.text.split()]) dblock = step.find('dipole/v[@name="dipole"]') if dblock is not None: dipole = np.zeros((1, 3), dtype=float) dipole = np.array([float(val) for val in dblock.text.split()]) efermi = step.find('dos/i[@name="efermi"]') if efermi is not None: efermi = float(efermi.text) kpoints = [] for ikpt in range(1, len(ibz_kpts) + 1): kblocks = step.findall( 'eigenvalues/array/set/set/set[@comment="kpoint %d"]' % ikpt) if kblocks is not None: for spin, kpoint in enumerate(kblocks): eigenvals = kpoint.findall('r') eps_n = np.zeros(len(eigenvals)) f_n = np.zeros(len(eigenvals)) for j, val in enumerate(eigenvals): val = val.text.split() eps_n[j] = float(val[0]) f_n[j] = float(val[1]) if len(kblocks) == 1: f_n *= 2 kpoints.append( SinglePointKPoint(kpt_weights[ikpt - 1], spin, ikpt, eps_n, f_n)) if len(kpoints) == 0: kpoints = None atoms = atoms_init.copy() atoms.set_cell(cell) atoms.set_scaled_positions(scpos) atoms.calc = SinglePointDFTCalculator(atoms, energy=energy, forces=forces, stress=stress, free_energy=free_energy, ibzkpts=ibz_kpts, efermi=efermi, dipole=dipole) atoms.calc.name = 'vasp' atoms.calc.kpts = kpoints atoms.calc.parameters = parameters yield atoms
[docs]@writer def write_vasp_xdatcar(fd, images, label=None): """Write VASP MD trajectory (XDATCAR) file Only Vasp 5 format is supported (for consistency with read_vasp_xdatcar) Args: fd (str, fp): Output file images (iterable of Atoms): Atoms images to write. These must have consistent atom order and lattice vectors - this will not be checked. label (str): Text for first line of file. If empty, default to list of elements. """ images = iter(images) image = next(images) if not isinstance(image, Atoms): raise TypeError("images should be a sequence of Atoms objects.") symbol_count = _symbol_count_from_symbols(image.get_chemical_symbols()) if label is None: label = ' '.join([s for s, _ in symbol_count]) fd.write(label + '\n') # Not using lattice constants, set it to 1 fd.write(' 1\n') # Lattice vectors; use first image float_string = '{:11.6f}' for row_i in range(3): fd.write(' ') fd.write(' '.join(float_string.format(x) for x in image.cell[row_i])) fd.write('\n') _write_symbol_count(fd, symbol_count) _write_xdatcar_config(fd, image, index=1) for i, image in enumerate(images): # Index is off by 2: 1-indexed file vs 0-indexed Python; # and we already wrote the first block. _write_xdatcar_config(fd, image, i + 2)
def _write_xdatcar_config(fd, atoms, index): """Write a block of positions for XDATCAR file Args: fd (fd): writeable Python file descriptor atoms (ase.Atoms): Atoms to write index (int): configuration number written to block header """ fd.write("Direct configuration={:6d}\n".format(index)) float_string = '{:11.8f}' scaled_positions = atoms.get_scaled_positions() for row in scaled_positions: fd.write(' ') fd.write(' '.join([float_string.format(x) for x in row])) fd.write('\n') def _symbol_count_from_symbols(symbols): """Reduce list of chemical symbols into compact VASP notation args: symbols (iterable of str) returns: list of pairs [(el1, c1), (el2, c2), ...] """ sc = [] psym = symbols[0] count = 0 for sym in symbols: if sym != psym: sc.append((psym, count)) psym = sym count = 1 else: count += 1 sc.append((psym, count)) return sc def _write_symbol_count(fd, sc, vasp5=True): """Write the symbols and numbers block for POSCAR or XDATCAR Args: f (fd): Descriptor for writable file sc (list of 2-tuple): list of paired elements and counts vasp5 (bool): if False, omit symbols and only write counts e.g. if sc is [(Sn, 4), (S, 6)] then write:: Sn S 4 6 """ if vasp5: for sym, _ in sc: fd.write(' {:3s}'.format(sym)) fd.write('\n') for _, count in sc: fd.write(' {:3d}'.format(count)) fd.write('\n')
[docs]@writer def write_vasp(filename, atoms, label=None, direct=False, sort=None, symbol_count=None, long_format=True, vasp5=False, ignore_constraints=False): """Method to write VASP position (POSCAR/CONTCAR) files. Writes label, scalefactor, unitcell, # of various kinds of atoms, positions in cartesian or scaled coordinates (Direct), and constraints to file. Cartesian coordinates is default and default label is the atomic species, e.g. 'C N H Cu'. """ from ase.constraints import FixAtoms, FixScaled, FixedPlane, FixedLine fd = filename # @writer decorator ensures this arg is a file descriptor if isinstance(atoms, (list, tuple)): if len(atoms) > 1: raise RuntimeError('Don\'t know how to save more than ' + 'one image to VASP input') else: atoms = atoms[0] # Check lattice vectors are finite if np.any(atoms.get_cell_lengths_and_angles() == 0.): raise RuntimeError( 'Lattice vectors must be finite and not coincident. ' 'At least one lattice length or angle is zero.') # Write atom positions in scaled or cartesian coordinates if direct: coord = atoms.get_scaled_positions() else: coord = atoms.get_positions() constraints = atoms.constraints and not ignore_constraints if constraints: sflags = np.zeros((len(atoms), 3), dtype=bool) for constr in atoms.constraints: if isinstance(constr, FixScaled): sflags[constr.a] = constr.mask elif isinstance(constr, FixAtoms): sflags[constr.index] = [True, True, True] elif isinstance(constr, FixedPlane): mask = np.all(np.abs(np.cross(constr.dir, atoms.cell)) < 1e-5, axis=1) if sum(mask) != 1: raise RuntimeError( 'VASP requires that the direction of FixedPlane ' 'constraints is parallel with one of the cell axis') sflags[constr.a] = mask elif isinstance(constr, FixedLine): mask = np.all(np.abs(np.cross(constr.dir, atoms.cell)) < 1e-5, axis=1) if sum(mask) != 1: raise RuntimeError( 'VASP requires that the direction of FixedLine ' 'constraints is parallel with one of the cell axis') sflags[constr.a] = ~mask if sort: ind = np.argsort(atoms.get_chemical_symbols()) symbols = np.array(atoms.get_chemical_symbols())[ind] coord = coord[ind] if constraints: sflags = sflags[ind] else: symbols = atoms.get_chemical_symbols() # Create a list sc of (symbol, count) pairs if symbol_count: sc = symbol_count else: sc = _symbol_count_from_symbols(symbols) # Create the label if label is None: label = '' for sym, c in sc: label += '%2s ' % sym fd.write(label + '\n') # Write unitcell in real coordinates and adapt to VASP convention # for unit cell # ase Atoms doesn't store the lattice constant separately, so always # write 1.0. fd.write('%19.16f\n' % 1.0) if long_format: latt_form = ' %21.16f' else: latt_form = ' %11.6f' for vec in atoms.get_cell(): fd.write(' ') for el in vec: fd.write(latt_form % el) fd.write('\n') # Write out symbols (if VASP 5.x) and counts of atoms _write_symbol_count(fd, sc, vasp5=vasp5) if constraints: fd.write('Selective dynamics\n') if direct: fd.write('Direct\n') else: fd.write('Cartesian\n') if long_format: cform = ' %19.16f' else: cform = ' %9.6f' for iatom, atom in enumerate(coord): for dcoord in atom: fd.write(cform % dcoord) if constraints: for flag in sflags[iatom]: if flag: s = 'F' else: s = 'T' fd.write('%4s' % s) fd.write('\n')