
Specification of the PFS File Format
version 1.5

March 28, 2021

1 Introduction

This document contains a detailed specification of the pfs file format. PFS
file format is intended to store in particular high-dynamic range images, but
it is also flexible enough to store additional data, like depth map or motion
flow. To learn how PFS format can be useful and why it is different from
existing image formats, see a list of Frequently Asked Questions of the PFS
tools package. Information in this section should be sufficient to implement
pfs compatible reader or writer.

2 Copyright

Copyright (c) 2003 Rafal Mantiuk and Grzegorz Krawczyk
Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with no In-
variant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled ”GNU Free Documentation
License”.

3 Change History

� 1.0 (15.12.2004 RM) — Original version

� 1.1 (14.02.2005 RM) — Colon ’:’ is no longer allowed in the name of a
tag; Added a conceptual UML data-model

1



Figure 1: A conceptual UML data model of the pfs-stream

� 1.2 (16.03.2006 RM) — Fixed typos (thanks to grendelkhan)

� 1.3 (16.08.2006 RM) — Added a list of registered channel names; added
comments on endianness)

� 1.4 (28.06.2007 RM) — Fixed column-/row-major ambiguity (thanks
to Matt)

� 1.5 (06.08.2007 RM) — Specified maximum string lengths and valid
value ranges. Added suggestion to prepend custom channel names with
”x”. (thanks to Martin)

� 1.6 (03.10.2008 RM) — Added a new tag ’BITDEPTH’

4 General Structure

A pfs-stream is a byte-stream that contains one or more frames. Each frame
is stored in the pfs-stream right after another frame, without any markers or
separators between them. End of file indicates that there are no more frames
in the pfs-stream.

A conceptual data model of the pfs stream is shown in Figure 1. A
pfs-stream can contain any number of frames, which include any number of
channels. Both frame and channel has an associated tag-container, which
can contain any number of tags (name=value pairs).

A structure of a single frame is shown in Table 1. A frame encoded in
the pfs format consists of a text header followed by binary data. The header
contains information on frame size, number of channels and tags. Data items
in the header are separated by end of line (EOL) characters. Note that only
a unix-type EOL character is allowed (a single character of the ASCII code
10). MSDOS-type EOL is not allowed. To avoid portability problems, use C

2



string “\x0a” instead of “\n”. Note that the header ends with a ENDH string,
which is not followed by an EOL character. This prevents C formated IO
functions, like fscanf, from reading both the EOL character and first bytes
of binary data that happen to have the values of white spaces.

The binary data part of a frame follows text header and holds a 2D array
of floating points for each channel. The structure of a channel is described
in the next section.

5 Channels

Channels are two-dimensional arrays of floating point numbers, which can
contain anything from color data to motion flow and depth (z-buffer) infor-
mation. Channels are written in a stream in the same order as they are listed
in the header. Note that no assumption can be made on the order of channels
— it may differ from file to file and some applications may even reverse that
order.

For the sake of performance, channel data are encoded in binary format.
Each cell (pixel) of an array should be encoded as a IEEE Standard 754
Floating Point Number. Fortunately, this representation is used by CPU for
most architectures, including Intel-based PC’s, so it is enough to store the
values in memory as a C ’float’ type and then write them to an IO stream.
An array should be encoded in a stream in a row major order — all cells
of the first row are followed by the cells of the second row and so on. The
encoding starts from the top left corner. The bytes should be encoded in the
little-endian order (LSB), which is appropriate for the x86 platform1.

This version of the pfs format specification defines the following channels:

X — X color component of the CIE XYZ color space. See comments below.

Y — Y color component of the CIE XYZ color space. See comments below.

Z — Z color component of the CIE XYZ color space. See comments below.

DEPTH — Depth channel. Format of the depth information is currently
not standardized.

ALPHA — Alpha channel that encodes transparency. The values should
be in the range from 0 to 1.

1Current implementation of the pfs library does not handle big-endian system, so the
pfs files generated on x86 and powerPC platforms are not compatible

3



Data Type Description

PFS1¶ Constant identifier
width height¶ int int Width and height of each

channel (1–65535)
channelCount¶ int Number of channels (1–

1024)
frameTagCount¶ int Number of tags associated

with the frame (0–1024)
for i=1:frameTagCount

tagName=tagValue¶ string string An i-th tag: name=value
pair (max length of
strcat(string, string)

- 1023)
for i=1:channelCount

channelName¶ string Name of the i-th channel
(max string length – 32)

channelTagCount¶ int Number of tags associated
with i-th channel (0–1024)

for j=1:channelTagCount
tagName=tagValue¶ string string An i-th tag: name=value

pair (max length of
strcat(string, string)

- 1023)
ENDH Signalizes the end of the

header
for i=1:channelCount

channelData bin-float [w][h] Row-major array of 32-bit
floating points

Table 1: A structure of pfs-frame. Bold font denotes literal strings. ’¶’ is a
unix-type end of line character (ASCII code 10). Types: int – integer value
given as string; string – a string of one or more characters (1-byte ASCII);
bin-float [w][h] – a row major array of 32-bit floating point numbers in binary
format. The range of valid values and maximum string lengths are given in
the parenthesis in the “description” column.

4



If other information than color, depth and alpha needs to be stored in a
channel, a custom name starting with a lower-case ”x” letter should be used.
If you think that a particular channel name should be registered in this doc-
ument, feel free to suggest it on the pfstools@googlegroups.com discussion
group.

Color information must be represented in CIE XYZ (2◦ standard observer)
color space. Depending on the value of the LUMINANCE tag, color data
are linear (RELATIVE – linearly related to luminance), linear and calibrated
(ABSOLUTE – the values of Y channel represent luminance in cd/m2), or
non-linear (DISPLAY – gamma-corrected). The preferred representation is
a ’linear and calibrated’. ’non-linear’ is only a temporary representation
used before data is written to low dynamic range image files (PNG, JPG) or
displayed. For more information refer to the next section — 6. The channels
must be named using upper case letters: ’X’, ’Y’ and ’Z’. For color images,
all three X, Y and Z channels must be given. It is enough to include ’Y’
channel for gray-level images.

6 Tags

pfs format allows for storing tags, which are ’name=value’ pairs. Tags are
robust mechanism for specifying additional information within a pfs-stream.
Both the name and value should be a text string, i.e. if a floating point
number is to be stored, it should be converted into a text string. The name
must not contain ’=’ and ’:’ character (some programs use notation ’chan-
nel name:tag name’ to assign a tag to the channel). Spaces in front of and
after ’=’ are allowed, although they will not be skipped and they will be
interpreted as a part of name or value strings. Tags can be associated with a
frame or separate channel, depending how they are placed in the text header
of the pfs frame (see Table 1). Each tag associated with a single frame or
channel must have an unique name. There is no limit to the number of tags.

In general, tags can be used to store any user defined data, but there are
also several tags that are reserved and are part of the pfs format. Those tags
let precisely define content of the pfs stream. The reserved tags are listed
below:

LUMINANCE specifies a photometric content of the XYZ color channels
or Y luminance channel alone. LUMINANCE tag distinguishes be-
tween different methods of storing lumiance data. This tag must be
associated with a frame and the frame must contain either all XYZ
channels or Y channel. Possible values are: ABSOLUTE, RELATIVE,
and DISPLAY.

5



ABSOLUTE Set the LUMINANCE tag to this value if the high-
dynamic range data is calibrated. Y channel should contain abso-
lute luminance values given in cd/m2. Note that luminance values
must be ≥ 0 for calibrated content.

RELATIVE High-dynamic range data is of RELATIVE LUMINANCE
if it is not calibrated, that is Y channel data is proportional to lu-
minance, but nothing is known about absolute value of luminance.
This is the case of most of the high-dynamic range images available
on Internet.

DISPLAY If the data comes from low-dynamic range file and no col-
orimetric information is provided in ICC profile, the data is simply
given in pixel values of an unknown display device. This is the
worst case, but also most common as most of the low-dynamic
range formats (jpeg, png, tiff) do not contain any data that can
be used to recover luminance values. The values of the Y channel
can range from 0 to 1 and are already gamma corrected.

If the LUMINANCE tag is not specified in the pfs-stream, RELATIVE
is assumed.

Example: LUMINANCE=ABSOLUTE

VISUAL CONTENT tag specifies visual content of the XYZ color chan-
nels or Y luminance channel alone. If an image was captured as
high-dynamic range photograph, it has one-to-one correspondence with
the real word, therefore its VISUAL CONTENT is MEASUREMENT.
However, if the same image has been tone mapped (or gamut mapped)
it still resembles appearance of the real word scene, but it has no longer
one-to-one correspondence. In this case its VISUAL CONTENT is
RENDERING. This tag is typically set to rendering after tone map-
ping of high-dynamic range images. This tag must be associated with a
frame and the frame must contain either all XYZ channels or Y channel.

MEASUREMENT Set VISUAL CONTENT tag to MEASUREMENT
if the image has one-to-one correspondence with the real word, i.e.
it contains measured data.

RENDERING Set VISUAL CONTENT to RENDERING if the image
has the same appearance as the real world scene, but there is no
photometric correspondence.

If the tag is not specified in the pfs-stream, MEASUREMENT is as-
sumed. If LUMINANCE tag is set to DISPLAY, the VISUAL CONTENT

6



is assumed to be RENDERING.

Example: VISUAL CONTENT=RENDERING

WHITE Y defines the value of channel Y that is perceived as reference
white. The value should be given in units of an Y channel. If LUMI-
NANCE=ABSOLUTE, the white point is given in cd/m2. The value
of this tag should be a single floating point number in a text format.

Example: WHITE Y=100

WHITE x, WHITE y tags define relative coordinates of color that is per-
ceived as reference white. The value of those tags must be a floating
point number in a text format. The value is given as a relative col-
orimatric coordinates of the CIE XYZ space (2◦ standard observer)
y = Y/(X + Y + Z) and x = X/(X + Y + Z).

If the tag is not specified, D65 white point is assumed: x = 0.3127 y =
0.3290

Example: WHITE x=0.3457 WHITE y=0.3585

FILE NAME contains a string with the name of a source file. This can be
used to locate the origin of a frame.

Example: FILE NAME=my sequence frame 0000.hdr

BITDEPTH specifies the number of bits, that are required to store a single
channel in a display-referred image (LUMINANCE=DISPLAY) with-
out quality loss. The number should be from 1 to 32.

Example: BITDEPTH=16

7 Discussion

The structure of pfs files is a compromise between simplicity and robustness
and (as well) between portability and performance. Therefore a small header
is stored in text format as this is the easiest to decode on different platforms.
Storing image data as text would result in too much overhead and thus binary
format is used. Since parsing a file is typically more difficult to implement
than writing it, pfs format tries to make parsing files as easy as possible.
This is why sizes of all variable length structures are given first and then
actual data follows.

7


