Mailfromd mail filter

version 8.14, 11 August 2022

Sergey Poznyakoff.




Published by the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA

Copyright (©) 20052022 Sergey Poznyakoff

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.



Dedico aquest treball a Lluis Llach, per obrir els nous horitzons.






Short Contents

Preface. . ..o e 1
1 Introduction to mailfromd.............. ... .. ... ..... )
2 Building the Package. .. ... .. ... . . i 9
3 Tutorial .. ... 13
4 Mail Filtering Language . . .......... .. ... ... 51
5  The MFL Library Functions. .. ............... ... ..... 111
6  Using the GNU Emacs MFL Mode . .................... 197
7  Configuring mailfromd ......... ..., 201
8 Mailfromd Command Line Syntax...................... 213
9  Using mailfromd with Various MTAs ................... 221
10 calloutd . ..ovvi ittt e 227
11 mfdbtool ... .o 235
12 mtasim — atestingtool ....... ... .. ... . L L. 237
13 Pmilter multiplexer program. .......................... 247
14 HowtoReportaBug.......... ... . . i, 255
A GaCODYZ - v v vt e 257
B Time and Date Formats .......... .. ... ... ... . ... 259
C  Upgrading . . .. .ov i e 263
D GNU Free Documentation License .. .................... 275

Concept Index . .. oot e 283






Table of Contents

Preface..... ... . 1
Short history of mailfromd...........couiuuiiiiiiiiiiiii i, 1
Acknowledgments. . ... ... 3

1 Introduction to mailfromd....................... 5
1.1 Typographical conventions............ ..o, 5)
1.2 Overview of Mailfromd ........ ... ... .. i i, 6
1.3 Sender Address Verification. ............. ... .o .. 6

1.3.1 Limitations of Sender Address Verification ................. 7
1.4 Controlling Mail Sending Rate. ............. ... ..., 8
1.5 SPF, DKIM, and others ............... i 8

2 Building the Package............................ 9

3 Tutorial........... ... . ... . ... ... 13
3.1 Start Up .o 13
3.2 Simplest Configurations .......... ..., 15
3.3 Conditional Execution..............c.ooiiiiiiiiiiiaia. 16
3.4 Functions and Modules. ..., 17
3.5 Domain Name System ...........coooiiiiiiiiiiiiiiiniiea.n. 18
3.6 Checking Sender Address. ..., 18
3.7 SMTP Timeouts ... ..ovti et 19
3.8 Avoiding Verification Loops. ... 20
3.9 HELO Domain ...........ooiiiiiiiiiiiiiiieeeenn, 22
3.10 SMTP RSET and Milter Abort Handling ..................... 23
3.11 Controlling Number of Recipients............................. 24
3.12 Sending Rate..........oiiiii i 25
313 Greylisting . ... 27
3.14 Local Account Verification................ ... ..o, 30
3.15 Databases...... ..o 31

3.15.1 Database Formats......... ... i i 31
3.15.2 Basic Database Operations ..................c.cooviu... 32
3.15.3 Database Maintenance. ............coooiiiiiiiiiio... 33
3.16 Testing Filter Scripts........ouuiiiiiiiiiiiii . 33
317 Run Mode . ... 35
3.17.1 The Top of a Script File..............o i, 36
3.17.2 Parsing Command Line Arguments ...................... 37
3.18 Logging and Debugging ........... ... i, 40
3.19 Runtime Errors ......... . 45

3.20 Notes and Cautions ......ooviiii e 48

iii



iv

4

Mail Filtering Language....................... 51
4.1 COmMINENES. . ottt ettt ettt e 51
4.2 Pragmatic comments ............. i i 52

4.2.1 Pragma pPrereq. ... ..oeeeeiiii e 52
4.2.2 Pragma stacksize ......... ... 52
4.2.3 Pragma IregeX. . ..ottt 54
4.2.4 Pragma dbprop....... ..o 55
4.2.5 Pragma greylist...... .o 55
4.2.6 Pragma miltermacros..............oo il 55
4.2.7 Pragma provide-callout ............. ... ...l 95
4.3 Data Types ... 56
4.4 NUMDETS . .o e 56
4.5 Literals. .. ... 56
4.6 Here Documents......... ... o8
4.7 Sendmail Macros . ...... ..o 59
4.8 ConStants ... e 59
4.8.1 Built-in constants. ... 60
4.9 Variables. ... 62
4.9.1 Predefined Variables...............cooiiiiiiiiii ... 63
4.10 Back references. . ... 65
411 Handlers . ... ... e 66
4.12 The ‘begin’ and ‘end’ special handlers........................ 71
413 Functions . .......oooi i e 72
4.13.1 Some Useful Functions............. ... 76
414 EXPressions .. ...ttt 78
4.14.1 Constant Expressions............oooiiiiiiiiiiiiii.. 78
4.14.2 Function Calls...... ... i 78
4.14.3 Concatenation. ........ ..o, 78
4.14.4  Arithmetic Operations...........ccoiiiiiiiiiiiean.. 79
4.14.5 Bitwise shifts...... .. o 79
4.14.6 Relational Expressions..........c.oooiiiiiiiiiiiiii.. 79
4.14.7 Special CompariSons. ..........cooviiiiiiiiiii .. 79
4.14.8 Boolean EXpressions...........oooiiiiiiiiinenninnniinn. 80
4.14.9 Operator Precedence ...t . 81
4.14.10 Type Casting.......couuiiuiiiii i 82
4.15 Variable and Constant Shadowing ............................ 82
416 Statements. . ...t 85
4.16.1 Action Statements.......... ... i 85
4.16.2 Variable Assignments.............cooiiiiiiiiiiiii., 87
4.16.3 The pass statement ............ ... ...l 87
4.16.4 The echostatement ...............cciiiiiiieeeeiiininnn. 87
4.17 Conditional Statements..............cooiiiiiiiiiiiiiiii 88
4.18 Loop Statements .........ouutieite i 89
4.19 Exceptional Conditions.............ooiiiiiii ... 92
4.19.1 Built-in Exceptions......... ... i 92
4.19.2 User-defined Exceptions ............. ..., 94
4.19.3 Exception Handling ........... ... ... o il 94

4.20 Sender Verification TestS ...t 97



421 Modules . ... 101

4.21.1 Declaring Modules........... ... i 101
4.21.2  Scope of Visibility ... 102
4.21.3 Require and Import ... i 102
4.22 MFL Preprocessor. ... . ..ottt 103
4.23 Example of a Filter Script File .............................. 106
4.24 Reserved WordS. ...t 108
The MFL Library Functions................. 111
5.1 Sendmail Macro Access Functions ............................ 111
5.2 The sed function........ ..., 112
5.3 String Manipulation Functions.............. ... ... .. ... ... 113
5.4 String formatting. ... 117
5.5 Character Type ... e 119
5.6 I/O functions ...........oouiiiii 120
5.7 Filtering functions......... ... . i 126
5.7.1 Filters and Filter Pipes.............oo it 127
5.8 Email processing functions............... ... 130
5.9 Envelope Modification Functions.............................. 131
5.10 Header Modification Functions .............................. 132
5.11 Body Modification Functions............... .. ... ..., 134
5.12  Message Modification Queue ................. ..o i 134
5.13 Mail Header Functions .......... ..., 136
5.14 Mail Body Functions.......... .o i 137
5.15 EOM Functions...........c.oouiiiiiiiiiiieeiaiiann, 137
5.16 Current Message Functions............ ... ..o oot 137
5.17 Mailbox Functions ........ ... oo i i 138
5.18 Message Functions ........ ... 139
5.18.1 Header functions ........... ..ot 140
5.18.2 Message body functions ............. ... . oL 141
5.18.3 MIME functions......... ..o, 142
5.18.4 Message digest functions............. ... oL 143
5.19 Quarantine Functions .......... ... ... . i i 145
5.20 SMTP Callout Functions.................oooiiiiiiia.. 145
5.21 Compatibility Callout Functions............................. 146
5.22 Internet address manipulation functions .................. ... 147
5.23 DNS Functions........ ..o 148
0.23.1  dnS_qUeTY .. vvt it e 149
5.23.2  Simplified DNS functions................. ..., 150
5.24 Geolocation functions ...............oiiiiiiiiiii 154
5.24.1 Legacy geoip SUPPOIt....ovvviinniiiii i 156
5.25 Database Functions ............ ... i i 157
5.26  System functions............ ... i 160
5.27 System User Database................cooiiiii i, 162
5.28 Sieve Interface ........ ... 163
5.29 Interfaces to Third-Party Programs.......................... 165
5.29.1 SpamASSaSSIIl . ... 166

5.29.2 DSPAM ... 168



vi

5.29.2.1 DSPAM Operation Modes and Flags. .............. 170
5.29.2.2 DSPAM Class and Source Bits..................... 171
5.29.2.3 DSPAM Global Variables.......................... 171
5.20.3 ClamAV ... 172
5.30 Rate limiting functions........... ... ... i i 173
5.31 Greylisting functions ......... ... i 174
5.32 Special Test Functions.......... ... ... ... 174
5.33 Mail Sending Functions ............ ... ... i 175
5.34 Blacklisting Functions............. ... . i 178
5.35 SPF Functions . ........ ..o, 179
5.36 DKIM .. ... 183
5.36.1 Setting up a DKIM record.............c.ooiiiiiiaa.. 189
5.37 Sockmap Functions........... .. i i 190
5.38 National Language Support Functions....................... 191
5.39 Syslog Interface ...........c i 193
5.40 Debugging Functions............. ... oo i i 193
Using the GNU Emacs MFL Mode ......... 197
Configuring mailfromd ........................ 201
7.1 Special Configuration Data Types ....................oi... 202
7.2 Base Mailfromd Configuration..................... ... 202
7.3 DNS Resolver Configuration................ooooiiiiiiin.. 203
7.4 Server Configuration ........... .. ..o i, 204
7.5 Milter Connection Configuration.............................. 205
7.6 Logging and Debugging configuration......................... 206
7.7 Timeout Configuration .......... ... ... .. 206
7.8 Call-out Configuration............. ..., 208
7.9 Privilege Configuration............ ... i il 209
7.10 Database Configuration ................coiiii ... 209
7.11 Runtime Constants Configuration ........................... 210
7.12 Standard Mailutils Statements.............. ... ... .. ..., 210
Mailfromd Command Line Syntax............ 213
8.1 Command Line Options..........cooiiiiiiiiii .. 213
8.1.1 Operation Modifiers.......... ... ... 213
8.1.2 General Settings....... .o 213
8.1.3 Preprocessor Options........ ..., 215
8.1.4 Timeout Control ........ ... . . i i 215
8.1.5 Logging and Debugging Options......................... 215
8.1.6 Informational Options............ ..., 218
8.2  Starting and Stopping......... ..o 218
Using mailfromd with Various MTAs........ 221
9.1 Using mailfromd with Sendmail. ........... ... ... ... ... .. 221
9.2 Using mailfromd with MeTAL. ... ... ... i i 222

9.3 Using mailfromd with Postfix .......... ... ... ... .. ... ..., 224



10 calloutd.......oouiiiiiiiiii i 227
10.1 Calloutd Configuration..............coiiiiiiiiiiiieiie... 227
10.1.1 calloutd General Setup...........ccoooiiiiiiiii.. 228
10.1.2 The server statement...................ooiiiiiiiL. 228
10.1.3 calloutd logging..........oviiiiiiiiiiiiiian.. 229

10.2 Calloutd Command-Line Options......................o.... 230
10.3 The Callout Protocol......... ... i i 232
11 mfdbtool ... ... ... 235
11.1  Invoking mfdbtool ... ...t 235
11.2  Configuring mfdbtool .. ...ttt 236
12 mtasim — a testing tool ..................... 237
12.1 mtasim interactive mode mode ........... ... ... .. ... . 237
12.2 mtasimexpect commands ............... ... . i i, 241
12.3 Trace Files. ... oo 242
12.4 Daemon Mode . ... 242
12.5 Summary of the mtasim Administrative Commands.......... 242
12.6 mtasim command line options .............. ... ... o L. 244
13 Pmilter multiplexer program............... 247
13.1 Pmult Configuration ......... ... 247
13.1.1 Multiplexer Configuration............................... 248
13.1.2 Translating MeTA1 macros. ...........cooiiiiiiiiio... 248
13.1.3 Pmult Client Configuration. ............................ 251
13.1.4 Debugging Pmult.......... ... . ... i 252

13.2 Pmult Example ... 253
13.3 Pmult Invocation............ oo 253
14 How to Report aBug....................... 255
Appendix A Gacopyz.......................... 257
Appendix B Time and Date Formats.......... 259
Appendix C Upgrading......................... 263
C.1 Upgrading from 8.13 to 8.14 ..., 263
C.2 Upgrading from 8.7 t0 8.8. ... .ot 264
C.3 Upgrading from 8510 8.6.... ..o, 264
C.4 Upgrading from 8.2 t0 8.3 (or 8.4).......coiiiiiiiiiiiia.. 264
C.5 Upgrading from 7.0 t0 8.0t 265
C.6 Upgrading from 6.0 to 7.0 266
C.7 Upgrading from 5.x t0 6.0.... ...t 267
C.8 Upgrading from 5.0 to 5. 1. 268

C.9 Upgrading from 4.4 t0 5.0 ..ot 269

vii



viii

C.10 Upgrading from 4.3.xt0 4.4. ..o, 270
C.11 Upgrading from 4.2 t0 4.3.X ... covveiniiii i 270
C.12 Upgrading from 4.1 t04.2. ... 271
C.13 Upgrading from 4.0 to 4.1.....coo i 271
C.14 Upgrading from 3.1.x to 4.0. ... 271
C.15 Upgrading from 3.0.x t0 3.1.....oovviiiiiiii i 272
C.16 Upgrading from 2.x t0 3.0.X. ..ot 273
C.17 Upgrading from 1.X t0 2.X .. ovviniiiii it 273

Appendix D GNU Free Documentation License .. 275
D.1 ADDENDUM: How to use this License for your documents. .. 281

Concept Index ............... . ... i 283



Preface

Simple Mail Transfer Protocol (SMTP) which is the standard for email transmissions across
the Internet was designed in the good old days when nobody could even think of the
possibility of e-mail being abused to send tons of unsolicited messages of dubious contents.
Therefore it lacks mechanisms that could have prevented this abuse (spamming), or at least
could have made it difficult. Attempts to introduce such mechanisms (such as SMTP-AUTH
extension (http://tools.ietf.org/html/rfc2554)) are being made, but they are not in
wide use yet and, probably, their introduction will not be enough to stop the e-mail abuse.
Spamming is today’s grim reality and developers spend lots of time and efforts designing
new protection measures against it. Mailfromd is one of such attempts.

The package is designed to work with any MTA supporting ‘Milter’ or ‘Pmilter’ pro-
tocol, such as ‘Sendmail’, ‘MeTA1’ or ‘Postfix’. It allows you to:

e Control whether messages come from trustworthy senders, using so called callout or
Sender Address Verification (see Section 1.3 [SAV], page 6) mechanism.

e Prevent emails coming from forged addresses by use of SPF mechanism (see Section 5.35
[SPF Functions|, page 179).

e Limit connection and/or sending rates (see Section 1.4 [Rate Limit], page 8).
e Use black-, white- and greylisting techniques.

e Invoke external programs or other mail filters.

Short history of mailfromd.

The idea of the utility appeared in 2005, and its first version appeared soon afterward. Back
then it was a simple implementation of Sender Address Verification (see Section 1.3 [SAV],
page 6) for ‘Sendmail’ (hence its name — mailfromd) with rudimentary tuning possibilities.

After a short run on my mail servers, I discovered that the utility was not flexible enough.
It took less than a month to implement a configuration file that allowed the user to control
program and data flow during the ‘envfrom’ SMTP state. The new version, 1.0, appeared
in June, 2005.

Next major release, 1.2 (1.1 contained mostly bugfixes), appeared two months later, and
introduced mail sending rate control (see Section 1.4 [Rate Limit|, page 8).

The program evolved during the next year, and the version 2.0 was released in Septem-
ber, 2006. This version was a major change in the main idea of the program. Configuration
file become a flexible filter script allowing the operator to control almost all SMTP states.
The program supplied in the script file was compiled into a pseudo-code at startup, this
code being subsequently evaluated each time the filter was invoked. This caused a con-
siderable speed-up in comparison with the previous versions, where the run-time evaluator
was traversing the parse tree. This version also introduced (implicitly, at the time), two
separate data types for the entities declared in the script, which also played its role in the
speed improvement (in the previous versions all data were considered strings). Lots of im-
provements were made in the filter language (MFL, see Chapter 4 [MFL], page 51) itself,
such as user-defined functions, the switch statement, the catch statement for handling
run-time errors, etc. The set of built-in functions extended considerably. A testsuite (using
DejaGNU) was introduced in this version.


http://tools.ietf.org/html/rfc2554
http://tools.ietf.org/html/rfc2554

2 Mailfromd Manual

During this initial development period the limitations imposed by 1ibmilter implemen-
tation became obvious. Finally, I felt they were stopping further development, and decided
that mailfromd should use its own ‘Milter’ implementation. This new library, 1ibgacopyz
was the main new feature of the 3.0 release, which was released in November, 2006. An-
other major feature was the ——dump-macros option and macros to rc.mailfromd script,
that were intended to facilitate the configuration on ‘Sendmail’ side.

The development of 3.z (more properly, 3.1.x) series concentrated mainly on bug-fixes,
while the main development was done on the next branch.

The version 4.0 appeared on May 12, 2007. A full list of changes in this release is
more than 500 lines long, so it is impractical to list them here. In particular, this version
introduced lots of new features in MFL syntax and the library of useful MFL functions.
The runtime engine was also improved, in particular, stack space become expandable which
eliminated many run-time errors. This version also provided a foundation for MFL module
system. The code generation was re-implemented to facilitate introduction of object files
in future versions. Another new features in this release include SPF support and mtasim
utility — an MTA simulator designed for testing mailfromd scripts (see Chapter 12 [mtasim],
page 237). The test suite in this version was made portable by rewriting it in Autotest.

Another big leap forward was the 5.0 release, which appeared on December 26, 2008.
It largely enriched a set of available functions (61 new functions were introduced, which
amounts to 41% of all the available functions in 5.0 release) and introduced several im-
provements in the MFL itself. Among others, function aliases and optional arguments in
user-defined functions were introduced in this release. The new “run operation mode” al-
lowed to execute arbitrary MFL functions from the command line. This release also raised
the Mailutils version requirements to at least 2.0.

Version 6.0, which was released in on 12 December, 2009, introduced a full-fledged mod-
ular system, akin to that of Python, and quite a few improvements to the language. such
as explicit type casts, concatenation operator, static variables, etc.

Starting from version 7.0, the focus of further development of mailfromd has shifted.
While previously it had been regarded as a mail-filtering server, since then it was developed
as a system for extending MTA functionality in the broad sense, mail filtering being only
one of features it provides.

Version 7.0 makes the MFL syntax more consistent and the language itself more powerful.
For example, it is no longer necessary to use prefixes before variables to dereference them.
The new ‘try--catch’ construct allows for elegant handling of exceptions and errors. User-
defined exceptions provide a way for programming complex loops and recursions with non-
local exits.

This version introduces a concept of dedicated callout server. This allows mailfromd to
defer verifications for a later time if the remote server does not response within a reasonably
short period of time (see Section 3.7 [SMTP Timeouts], page 19).

Six years later the version 8.0 was released. This version was a major rewrite of the
mailfromd codebase. It introduced a separate callout daemon that made it possible to
separate the mailfromd server machine from machines performing callout checks. The MFL
language was extended by a number of built-in functions.

Since version 8.3 (2017-11-02) mailfromd uses ‘adns’ for DNS queries.

! https://wuw. gnu.org/software/adns


https://www.gnu.org/software/adns

Preface 3

The version 8.7 released in July, 2020 introduced DKIM support.

Acknowledgments

Many people need to be thanked for their assistance in developing and debugging
mailfromd. After S. C. Johnson, I can say that this program “owes much to a most
stimulating collection of users, who have goaded me beyond my inclination, and frequently
beyond my ability in their endless search for "one more feature".  Their irritating
unwillingness to learn how to do things my way has usually led to my doing things their
way; most of the time, they have been right.”

A real test for a program like mailfromd cannot be done but in conditions of production
environment. A decision to try it in these conditions is by no means an easy one, it requires
courage and good faith in the intentions and abilities of the author. To begin with, I would
like to thank my contributors for these virtues.

Jan Rafaj has intrepidly been using mailfromd since its early releases and invested lots
of efforts in improving the program and its documentation. He is the author of many of the
MFL library functions, shipped with the package. Some of his ideas are still waiting in my
implementation queue, while new ones are consistently arriving.

Peter Markeloff patiently tested every mailfromd release and helped discover and fix
many bugs.

Zeus Panchenko contributed many ideas and gave lots of helpful comments. He offered
invaluable help in debugging and testing mailfromd on FreeBSD platform.

Sergey Afonin proposed many improvements and new ideas. He also invested a lot of
his time in finding bugs and testing bugfixes.

John McEleney and Ben McKeegan contributed the token bucket filter implementation
(see [TBF], page 26).

Con Tassios helped to find and fix various bugs and contributed the new implementation
of the greylist function (see [greylisting types|, page 28).

The following people (in alphabetical order) provided bug reports and helpful comments
for various versions of the program: Alan Dobkin, Brent Spencer, Jeff Ballard, Nacho
Gonzélez Lépez, Phil Miller, Simon Christian, Thomas Lynch.






1 Introduction to mailfromd

Mailfromd is a general-purpose mail filtering daemon and a suite of accompanying utilities
for Sendmail', MeTA1%, Postfix® or any other MTA that supports Milter (or Pmilter)
protocol. It is able to filter both incoming and outgoing messages using a filter program,
written in mail filtering language (MFL). The daemon interfaces with the MTA using Milter
protocol.

The name mailfromd can be thought of as an abbreviation for ‘Mail Filtering and
Runtime Modification’ Daemon, with an ‘o’ for itself. Historically, it stemmed from the
fact that the original implementation was a simple filter implementing the sender address
verification technique. Since then the program has changed dramatically, and now it is
actually a language translator and run-time evaluator providing a set of built-in and library
functions for filtering electronic mail.

The first part of this manual is an overview, describing the features mailfromd offers in
general.

The second part is a tutorial, which provides an introduction for those who have not
used mailfromd previously. It moves from topic to topic in a logical, progressive order,
building on information already explained. It offers only the principal information needed
to master basic practical usage of mailfromd, while omitting many subtleties.

The other parts are meant to be used as a reference for those who know mailfromd
well enough, but need to look up some notions from time to time. Each chapter presents
everything that needs to be said about a specific topic.

The manual assumes that the reader has a good knowledge of the SMTP protocol and
the mail transport system he uses (Sendmail , Postfix or MeTA1).

1.1 Typographical conventions

This manual is written using Texinfo, the GNU documentation formatting language. The
same set of Texinfo source files is used to produce both the printed and online versions of
the documentation. Because of this, the typographical conventions may be slightly different
than in other books you may have read.

Examples you would type at the command line are preceded by the common shell primary
prompt, ‘¢’. The command itself is printed in this font, and the output it produces ‘in
this font’, for example:

$ mailfromd --version
mailfromd (mailfromd 8.14)

In the text, the command names are printed like this, command line options are
displayed in this font. Some notions are emphasized like this, and if a point needs to
be made strongly, it is done this way. The first occurrence of a new term is usually its
definition and appears in the same font as the previous occurrence of “definition” in this
sentence. File names are indicated like this: /path/to/ourfile.

L See http://wuw.sendmail.org
2 See http://www.metal.org
3 See http://wuw.postfix.org


http://www.sendmail.org
http://www.meta1.org
http://www.postfix.org

6 Mailfromd Manual

The variable names are represented like this, keywords and fragments of program text
are written in this font.

1.2 Overview of Mailfromd

In contrast to the most existing milter filters, mailfromd does not implement any default
filtering policies. Instead, it depends entirely on a filter script, supplied to it by the admin-
istrator. The script, written in a specialized and simple to use language, called MFL (see
Chapter 4 [MFL], page 51), is supposed to run a set of tests and to decide whether the mes-
sage should be accepted by the MTA or not. To perform the tests, the script can examine
the values of Sendmail macros, use an extensive set of built-in and library functions, and
invoke user-defined functions.

1.3 Sender Address Verification.

Sender address verification, or callout, is one of the basic mail verification techniques,
implemented by mailfromd. It consists in probing each MX server for the given address,
until one of them gives a definite (positive or negative) reply. Using this technique you
can block a sender address if it is not deliverable, thereby cutting off a large amount of
spam. It can also be useful to block mail for undeliverable recipients, for example on a
mail relay host that does not have a list of all the valid recipient addresses. This prevents
undeliverable junk mail from entering the queue, so that your MTA doesn’t have to waste
resources trying to send ‘MAILER-DAEMON’ messages back.

Let’s illustrate how it works on an example:

Suppose that the user ‘<jsmith@somedomain.net>’ is trying to send mail to one of
your local users. The remote machine connects to your MTA and issues MAIL FROM:
<jsmith@somedomain.net> command. However, your MTA does not have to take its word
for it, so it uses mailfromd to verify the sender address validity. Mailfromd strips the
domain name from the address (‘somedomain.net’) and queries DNS about ‘MX’ records
for that domain. Suppose, it receives the following list

10 relayl.somedomain.net
20 relay2.somedomain.net

It then connects to first MX server, using SMTP protocol, as if it were going to send a
message to ‘<jsmith@somedomain.net>’. This is called sending a probe message. If the
server accepts the recipient address, the mailfromd accepts the incoming mail. Otherwise,
if the server rejects the address, the mail is rejected as well. If the MX server cannot be
connected, mailfromd selects next server from the list and continues this process until it
finds the answer or the list of servers is exhausted.

The probe message is like a normal mail except that no data are ever being sent. The
probe message transaction in our example might look as follows (‘S:’ meaning messages
sent by remote MTA, ‘C:” meaning those sent by mailfromd):

C: HELO mydomain.net

: 220 0K, nice to meet you

: MAIL FROM: <>

: 220 <>: Sender 0K

: RCPT TO: <jsmith@somedomain.net>

Qunnawm



Chapter 1: Introduction to mailfromd 7

S: 220 <jsmith@remote.net>: Recipient 0K
C: QUIT

Probe messages are never delivered, deferred or bounced; they are always discarded.

The described method of address verification is called a standard method throughout
this document. Mailfromd also implements a method we call strict. When using strict
method, mailfromd first resolves IP address of sender machine to a fully qualified domain
name. Then it obtains ‘MX’ records for this machine, and then proceeds with probing as
described above.

So, the difference between the two methods is in the set of ‘MX’ records that are being
probed: standard method queries ‘MX’s based on the sender email domain, strict method
works with ‘MX’s for the sender IP address.

Strict method allows to cut off much larger amount of spam, although it does have
many drawbacks. Returning to our example above, consider the following situation:
‘<jsmith@somedomain.net>  is a perfectly normal address, but it is being used by a
spammer from some other domain, say ‘otherdomain.com’. The standard method is not
able to cope with such cases, whereas the strict one is.

An alert reader will ask: what happens if mailfromd is not able to get a definite answer
from any of MX servers? Actually, it depends entirely on how you will instruct it to act in
this case, but the general practice is to return temporary failure, which will urge the remote
party to retry sending their message later.

After receiving a definite answer, mailfromd will cache it in its database, so that next
time your MTA receives a message from that address (or from the sender IP/email address
pair, for strict method), it will not waste its time trying to reach MX servers again. The
records remain in the cache database for a certain time, after which they are discarded.

1.3.1 Limitations of Sender Address Verification

Before deciding whether and how to use sender address verification, you should be aware of
its limitations.

Both standard and strict methods suffer from the following limitations:

e The sender verification methods will perform poorly on highly loaded sites. The traf-
fic and/or resource usage overhead may not be feasible for you. However, you may
experiment with various mailfromd options to find an optimal configuration.

e Some sites may blacklist your MTA if it probes them too often. Mailfromd eliminates
this drawback by using a cache database, which keeps results of the recent callouts.

e When verifying the remote address, no attempt to actually deliver the message is made.
If MTA accepts the address, mailfromd assumes it is OK. However in reality, a mail
for a remote address can bounce after the nearest MTA accepts the recipient address.

This drawback can often be avoided by combining sender address verification with
greylisting (see Section 3.13 [Greylisting], page 27).

e If the remote server rejects the address, no attempt is being made to discern between
various reasons for rejection (client rejected, ‘HELO rejected’, ‘MAIL FROM rejected,
etc.)

e Some major sites such as ‘yahoo.com’ do not reject unknown addresses in reply to the
‘RCPT TO’ command, but report a delivery failure in response to end of ‘DATA’ after a



8 Mailfromd Manual

message is transferred. Of course, sender address verification does not work with such
sites. However, a combination of address verification and greylisting (see Section 3.13
[Greylisting], page 27) may be a good choice in such cases.

In addition, strict verification breaks forward mail delivery. This is obvious, since mail
forwarding is based on delivering unmodified message to another location, so the sender
address domain will most probably not be the same as that of the MTA doing the forwarding.

1.4 Controlling Mail Sending Rate.

Mail Sending Rate for a given identity is defined as the number of messages with this
identity received within a predefined interval of time.

MFL offers a set of functions for limiting mail sending rate (see Section 5.30 [Rate limiting
functions|, page 173), and for controlling broader rate aspects, such as data transfer rates
(see [TBF], page 26).

1.5 SPF, DKIM, and others

Sender Policy Framework, or SPF for short, is an extension to SMTP protocol that allows to
identify forged identities supplied with the MAIL FROM and HELO commands. The framework
is explained in detail in RFC 4408 (http://tools.ietf.org/html/rfc4408) and on the
SPF Project Site (http://www.openspf.org/).

Mailfromd provides a set of functions for using SPF to control mail flow. These are
described in Section 5.35 [SPF Functions]|, page 179.

DomainKeys Identified Mail (DKIM) is an email authentication method designed to
detect forged sender addresses in emails. Mailfromd supports both DKIM signing and
verification. See Section 5.36 [DKIM], page 183, for a detailed description of these features.

Mailfromd also provides support for several third-party spam-abatement programs, in
particular SpamAssassin, ClamAV, and DSPAM. These are discussed in Section 5.29 [Inter-
faces to Third-Party Programs], page 165.


http://tools.ietf.org/html/rfc4408
http://www.openspf.org/

2 Building the Package

This chapter contains a detailed list of steps you need to undertake in order to configure
and build the package.

1. Make sure you have the necessary software installed.
To build mailfromd you will need to have following packages on your machine:
A. GNU mailutils version 3.3 or newer.

GNU mailutils is a general-purpose library for handling electronic mail. It is avail-
able from http://mailutils.org.

B. GNU adns library, version 1.5.1 or newer.

GNU adns is an advanced DNS client library. The recent version can be down-
loaded from http://www.chiark.greenend.org.uk/"ian/adns/adns.tar.
gz. Visit http://www.gnu.org/software/adns, for more information.

C. A DBM library. Mailfromd is able to link with any flavor of DBM supported by
GNU mailutils. As of version 8.14 it will refuse to build without DBM. By default,
configure will try to find the best implementation installed on your machine
(preference is given to Berkeley DB) and will use it. You can, however, explicitly
specify which implementation you want to use. To do so, use the —-with-dbm
configure option. Its argument specifies the type of database to use. It must be
one of the types supported by GNU mailutils. At the time of this writing, these

are:
bdb Berkeley DB (versions 2 to 6).
gdbm GNU DBM.

ke Kyoto Cabinet

te Tokyo Cabinet

ndbm NDBM

To check what database types are supported by your version of mailutils, run the
following command:

$ mailutils dbd gdbm kc tc ndbm

For backward compatibility, configure accepts the following two options:

--with-gdbm
Same as --with-dbm=gdbm.

--with-berkeley-db
Same as --with-dbm=bdb.

For Sendmail users, it often makes sense to configure mailfromd to use the same
database flavor as sendmail. The following table will help you do that. The
column ‘DB type’ lists types of DBM databases supported by mailfromd. The
column ‘confMAPDEF’ lists the value of confMAPDEF Sendmail configuration macro
corresponding to that database type. The column ‘configure option’ contains
the corresponding option to configure.


http://mailutils.org
http://www.chiark.greenend.org.uk/~ian/adns/adns.tar.gz
http://www.chiark.greenend.org.uk/~ian/adns/adns.tar.gz
http://www.gnu.org/software/adns

10

2.

Mailfromd Manual

DB type confMAPDEF configure option
NDBM -NNDBM —-—with-dbm=ndbm
Berkeley DB -NNEWDB --with-dbm=bdb
GDBM N/A --with-dbm=gdbm

Decide what user privileges will be used to run mailfromd

After startup, the program drops root privileges. By default, it switches to the priv-
ileges of user ‘mail’, group ‘mail’. If there is no such user on your system, or you
wish to use another user account for this purpose, override it using DEFAULT_USER
environment variable. For example for mailfromd to run as user ‘nobody’, use

./configure DEFAULT_USER=nobody
The user name can also be changed at run-time (see [~user], page 214).

Decide where to install mailfromd and where its filter script and data files will be
located.

As usual, the default value for the installation prefix is /usr/local. If it does not suit
you, specify another location using ——prefix option, e.g.: ‘~-prefix=/usr’.

During installation phase, the build system will install several files. These files are:

prefix/sbin/mailfromd
Main daemon. See Chapter 8 [mailfromd], page 213.

prefix/etc/mailfromd.mf
Default main filter script file. It is installed only if it is not already there.
Thus, if you are upgrading to a newer version of mailfromd, your old script
file will be preserved with all your changes.

See Chapter 4 [MFL], page 51, for a description of the mail filtering lan-
guage.

prefix/share/mailfromd/8.14/*.mf
MFL modules. See Section 4.21 [Modules], page 101.

prefix/info/mailfromd.infox*
Documentation files.

prefix/bin/mtasim
MTA simulator program for testing mailfromd scripts. See Chapter 12
[mtasim|, page 237.

prefix/sbin/pmult
Pmilter multiplexor for MeTA1. See Chapter 13 [pmult], page 247. It is
build only if MeTA1 version ‘PreAlpha29.0’ or newer is installed on the
system. You may disable it by using the --disable-pmilter command
line option.

When testing for MeTA1 presence, configure assumes its default location.
If it is not found there, inform configure about its actual location by using
the following option:

--enable-pmilter=prefix

where prefix stands for the MeTA1 installation prefix.



Chapter 2: Building the Package 11

It is advisable to use the same settings for file name prefixes as those you used when
configuring mailutils. In particular, try to use the same --sysconfdir, since it will
facilitate configuring the whole system.

Another important point is location of local state directory, i.e. a directory where
mailfromd keeps its data files (e.g. communication socket, PID-file and database files).
By default, its full name is localstatedir/mailfromd. You can change it by set-
ting DEFAULT_STATE_DIR configuration variable. This value can be changed at run-
time using the state-directory configuration statement (see Section 7.2 [conf-base],
page 202).

4. Select default communication socket. This is the socket used to communicate with
MTA, in the usual Milter port notation (see [milter port specification], page 202). If
the socket name does not begin with a protocol or directory separator, it is assumed to
be a UNIX socket, located in the local state directory. The default value is mailfrom,
which is equivalent to unix:localstatedir/mailfromd/mailfrom.

To alter this, use DEFAULT_SOCKET environment variable, e.g.:
./configure DEFAULT_SOCKET=inet:999@localhost

The communication socket can be changed at run time using --port command line
option (see [-port], page 214) or the listen configuration statement (see Section 7.4
[conf-server]|, page 204).

5. Select default expiration interval. Expiration interval defines the period of time dur-
ing which a record in the mailfromd database is considered valid. It is described in
more detail in Section 3.15 [Databases|, page 31. The default value is 86400 seconds,
i.e. 24 hours. It is OK for most sites. If, however, you wish to change it, use DE-
FAULT_EXPIRE_INTERVAL environment variable.

The DEFAULT_EXPIRE_RATES_INTERVAL variable sets default expiration time for mail
rate database (see Section 5.30 [Rate limiting functions|, page 173).

Expiration settings can be changed at run time using database statement in the
mailfromd configuration file (see Section 7.10 [conf-database], page 209).

6. Select a syslog implementation to use.

Mailfromd uses syslog for diagnostics output. The default syslog implementation
on most systems (most notably, on GNU/Linux) uses blocking AF_UNIX SOCK_DGRAM
sockets. As a result, when an application calls syslog(), and syslogd is not responding
and the socket buffers get full, the application will hang.

For mailfromd, as for any daemon, it is more important that it continue to run, than
that it continue to log. For this purpose, mailfromd is shipped with a non-blocking
syslog implementation by Simon Kelley. This implementation, instead of blocking,
buffers log lines in memory. When the buffer log overflows, some lines are lost, but the
daemon continues to run. When lines are lost, this fact is logged with a message of the
form:

async_syslog overflow: 5 log entries lost

To enable this implementation, configure the package with --enable-syslog-async
option, e.g.:

./configure --enable-syslog-async



12

Mailfromd Manual

Additionally, you can instruct mailfromd to use asynchronous syslog by default. To
do so, set DEFAULT_SYSLOG_ASYNC to 1, as shown in example below:

./configure --enable-syslog-async DEFAULT_SYSLOG_ASYNC=1

You will be able to override these defaults at run-time by using the --logger command
line option (see Section 3.18 [Logging and Debugging], page 40).

Run configure with all the desired options.
For example, the following command:
./configure DEFAULT_SOCKET=inet:999@localhost --with-berkeley-db=3

will configure the package to use Berkeley DB database, version 2, and
‘inet:999@localhost’ as the default communication socket.
At the end of its run configure will print a concise summary of its configuration
settings. It looks like that (with the long lines being split for readability):
3ok ok o Kok Kok K ok Kok K oK K oK KK ok K ok KK ok K ok K ok K sk ok oK ok Kk ok ok Kok sk ok K ok sk ok sk Kok sk ok K ok ko
Mailfromd configured with the following settings:

Mailutils version........... ..., 3.15

External preproCesSOr..........c..uoeeeuenn. /usr/bin/m4 -s
DBM version.........ouiiiiiiiiinnnnnnnn. Berkeley DB v. 3
Default user........... ... ... mail

State directory.................. L.
$(localstatedir)/$ (PACKAGE)

Socket. ... i mailfrom
Expiration interval....................... 86400
Compile asynchronous syslog............... no
Readline (for mtasim)..................... yes
Documentation rendition type.............. PROCOF
Enable pmilter support.................... no
Enable GeoIP support...................... no
Enable GeoIP2 support..................... no
Enable DSPAM support...................... no
Enable DKIM support............. ... ... ... yes
IPV6 support.........ccoiiiiiiiiiiiinn.. yes

3k 3k >k 5k >k 3k 3k 3k 5k %k 5k >k 3k 3k 5k 5k >k 3k 3k 5k 3k >k 5k >k 3k 3k 5k 5k >k 3k >k 5k 5k >k 5k >k 3k 3k 5k 5k >k 5k >k 3k 3k 3k 5k %k 5k >k 3k 3k %k 5k >k >k >k %k 5k %k >k %k %k >k %k 5k %k

Make sure these settings satisfy your needs. If they do not, reconfigure the package
with the right options.

8. Run make.

9. Run make install.

10.
11.
12.

Make sure localstatedir/mailfromd has the right owner and mode.
Examine filter script file (sysconfdir/mailfromd.mf) and edit it, if necessary.

If you are upgrading from an earlier release of Mailfromd, refer to Appendix C [Up-
grading], page 263, for detailed instructions.



13

3 Tutorial

This chapter contains a tutorial introduction, guiding you through various mailfromd con-
figurations, starting from the simplest ones and proceeding up to more advanced forms. It
omits most complicated details, concentrating mainly on the common practical tasks.

If you are familiar to mailfromd, you can skip this chapter and go directly to the next
one (see Chapter 4 [MFL], page 51), which contains detailed discussion of the mail filtering
language and mailfromd interaction with the Mail Transport Agent.

3.1 Start Up

The mailfromd utility runs as a standalone daemon program and listens on a prede-
fined communication channel for requests from the Mail Transfer Agent (MTA, for short).
When processing each message, the MTA installs communication with mailfromd, and goes
through several states, collecting the necessary data from the sender. At each state it sends
the relevant information to mailfromd, and waits for it to reply. The mailfromd filter
receives the message data through Sendmail macros and runs a handler program defined
for the given state. The result of this run is a response code, that it returns to the MTA.
The following response codes are defined:

continue Continue message processing.

accept Accept this message for delivery. After receiving this code the MTA continues
processing this message without further consulting mailfromd filter.

reject Reject this message. The message processing stops at this stage, and the sender
receives the reject reply (‘6xx’ reply code). No further mailfromd handlers are
called for this message.

discard  Silently discard the message. This means that MTA will continue processing
this message as if it were going to deliver it, but will discard it after receiving.
No further interaction with mailfromd occurs.

tempfail Temporarily reject the message. The message processing stops at this stage,
and the sender receives the ‘temporary failure’ reply (‘4xx’ reply code). No
further mailfromd handlers are called for this message.

The instructions on how to process the message are supplied to mailfromd in its filter
script file. It is normally called /usr/local/etc/mailfromd.mf (but can be located else-
where, see Chapter 8 [Invocation], page 213) and contains a set of milter state handlers, or
subroutines to be executed in various SMTP states. Each interaction state can be supplied
its own handling procedure. A missing procedure implies continue response code.

The filter script can define up to nine milter state handlers, called after the names of
milter states: ‘connect’, ‘helo’, ‘envfrom’, ‘envrcpt’, ‘data’, ‘header’, ‘eoh’, ‘body’, and
‘eom’. The ‘data’ handler is invoked only if MTA uses Milter protocol version 3 or later.
Two special handlers are available for initialization and clean-up purposes: ‘begin’ is called
before the processing starts, and ‘end’ is called after it is finished. The diagram below shows
the control flow when processing an SMTP transaction. Lines marked with C: show SMTP

commands issued by the remote machine (the client), those marked with ‘=’ show called



14 Mailfromd Manual

handlers with their arguments. An ‘[R]’ appearing at the start of a line indicates that this
part of the transaction can be repeated any number of times:

= begin()
= connect (hostname, family, port, ‘IP address’)
C: HELO domain
helo(domain)
for each message transaction
do
C: MAIL FROM sender
= envfrom(sender)
(R] RCPT TO recipient
envrcpt (recipient)

42

DATA

data()

header: value

header (header, value)

[R]

b2y

I

eoh()

[R] body-line

/* Collect lines into blocks blk of
* at most len bytes and for each
* such block call:
*/

body(blk, len)

A R

eom()

y 2

done
= end()

Figure 3.1: Mailfromd Control Flow

This control flow is maintained for as long as each called handler returns continue (see
Section 4.16.1 [Actions], page 85). Otherwise, if any handler returns accept or discard,
the message processing continues, but no other handler is called. In the case of accept, the
MTA will accept the message for delivery, in the case of discard it will silently discard it.

If any of the handlers returns reject or tempfail, the result depends on the handler.
If this code is returned by envrcpt handler, it causes this particular recipient address to be
rejected. When returned by any other handler, it causes the whole message will be rejected.

The reject and tempfail actions executed by helo handler do not take effect immedi-
ately. Instead, their action is deferred until the next SMTP command from the client, which
is usually MAIL FROM.



Chapter 3: Tutorial 15

3.2 Simplest Configurations

The mailfromd script file contains a series of declarations of the handler procedures. Each
declaration has the form:

prog name
do

done
where prog, do and done are the keywords, and name is the state name for this handler.

The dots in the above example represent the actual code, or a set of commands, instructing
mailfromd how to process the message.

For example, the declaration:

prog envfrom
do

accept
done

installs a handler for ‘envfrom’ state, which always approves the message for delivery,
without any further interaction with mailfromd.

The word accept in the above example is an action. Action is a special language
statement that instructs the run-time engine to stop execution of the program and to
return a response code to the Sendmail. There are five actions, one for each response code:
continue, accept, reject, discard, and tempfail. Among these, reject and discard
can optionally take one to three arguments. There are two ways of supplying the arguments.

In the first form, called literal or traditional notation, the arguments are supplied as
additional words after the action name, separated by whitespace. The first argument is
a three-digit RFC 2821 reply code. It must begin with ‘6’ for reject and with ‘4’ for
tempfail. If two arguments are supplied, the second argument must be either an extended
reply code (RFC 1893/2034) or a textual string to be returned along with the SMTP reply.
Finally, if all three arguments are supplied, then the second one must be an extended reply
code and the third one must supply the textual string. The following examples illustrate
all possible ways of using the reject statement in literal notation:

reject

reject 503

reject 503 5.0.0

reject 503 "Need HELO command"
reject 503 5.0.0 "Need HELO command"

Please note the quotes around the textual string.

Another form for these action is called functional notation, because it resembles the
function syntax. When used in this form, the action word is followed by a parenthesized
group of exactly three arguments, separated by commas. The meaning and ordering of the
argument is the same as in literal form. Any of three arguments may be absent, in which
case it will be replaced by the default value. To illustrate this, here are the statements from
the previous example, written in functional notation:



16 Mailfromd Manual

reject(,,)

reject(503,,)

reject (503, 5.0.0)

reject(503,, "Need HELO command")
reject (503, 5.0.0, "Need HELO command")

3.3 Conditional Execution

Programs consisting of a single action are rarely useful. In most cases you will want to
do some checking and decide whether to process the message depending on its result. For
example, if you do not want to accept messages from the address ‘<badguy@some.net>’,
you could write the following program:

prog envirom
do
if $f = "badguy@some.net"
reject
else
accept
fi
done

This example illustrates several important concepts. First or all, $£f in the third line is a
Sendmail macro reference. Sendmail macros are referenced the same way as in sendmail. cf,
with the only difference that curly braces around macro names are optional, even if the name
consists of several letters. The value of a macro reference is always a string.

The equality operator (‘=") compares its left and right arguments and evaluates to true if
the two strings are exactly the same, or to false otherwise. Apart from equality, you can use
the regular relational operators: ‘!=’, >, ‘>=" ‘<’ and ‘<=". Notice that string comparison
in mailfromd is always case sensitive. To do case-insensitive comparison, translate both
operands to upper or lower case (See [tolower|, page 115, and see [toupper], page 115).

The if statement decides what actions to execute depending on the value its condition
evaluates to. Its usual form is:

if expression then-body [else else-body] fi

The then-body is executed if the expression evaluates to true (i.e. to any non-zero
value). The optional else-body is executed if the expression yields false (i.e. zero). Both
then-body and else-body can contain other if statements, their nesting depth is not limited.
To facilitate writing complex conditional statements, the elif keyword can be used to
introduce alternative conditions, for example:



Chapter 3: Tutorial 17

prog envirom

do
if $f = "badguy@some.net"
reject
elif $f = "other@domain.com"
tempfail 470 "Please try again later"
else
accept
fi
done

See [switch], page 88, for more elaborate forms of conditional branching.

3.4 Functions and Modules

As any programming language, MFL supports a concept of function, i.e. a body of code
that is assigned a unique name and can be invoked elsewhere as many times as needed.

All functions have a definition that introduces types and names of the formal parameters
and the result type, if the function is to return a meaningful value (function definitions in
MFL are discussed in detail in see [User-defined], page 73).

A function is invoked using a special construct, a function call:
name (arg-list)

where name is the function name, and arg-list is a comma-separated list of expressions. Each
expression in arg-list is evaluated, and its type is compared with that of the corresponding
formal argument. If the types differ, the expression is converted to the formal argument
type. Finally, a copy of its value is passed to the function as a corresponding argument.
The order in which the expressions are evaluated is not defined. The compiler checks that
the number of elements in arg-list match the number of mandatory arguments for function
name.

If the function does not deliver a result, it should only be called as a statement.
Functions may be recursive, even mutually recursive.

Mailfromd comes with a rich set of predefined functions for various purposes. There are
two basic function classes: built-in functions, that are implemented by the MFL runtime
environment in mailfromd, and library functions, that are implemented in MFL. The built-
in functions are always available and no preparatory work is needed before calling them. In
contrast, the library functions are defined in modules, special MFL source files that contain
functions designed for a particular task. In order to access a library function, you must first
require a module it is defined in. This is done using require statement. For example, the
function hostname looks up in the DNS the name corresponding to the IP address specified
as its argument. This function is defined in module dns.mf, so before calling it you must
require this module:

require dns

The require statement takes a single argument: the name of the requested module (without
the ‘.mf’ suffix). It looks up the module on disk and loads it if it is available.

For more information about the module system See Section 4.21 [Modules|, page 101.



18 Mailfromd Manual

3.5 Domain Name System

Site administrators often do not wish to accept mail from hosts that do not have a proper
reverse delegation in the Domain Name System. In the previous section we introduced the
library function hostname, that looks up in the DNS the name corresponding to the IP
address specified as its argument. If there is no corresponding name, the function returns
its argument unchanged. This can be used to test if the IP was resolved, as illustrated in
the example below:

require ’dns’

prog envfrom
do
if hostname($client_addr) = $client_addr
reject
fi
done
The #require dns statement loads the module dns.mf, after which the definition of
hostname becomes available.

A similar function, resolve, which resolves the symbolic name to the corresponding IP
address is provided in the same dns.mf module.

3.6 Checking Sender Address

A special language construct is provided for verification of sender addresses (callout):

on poll $f do
when success:
accept
when not_found or failure:
reject 550 5.1.0 "Sender validity not confirmed"
when temp_failure:
tempfail 450 4.1.0 "Try again later"
done

The on poll construct runs standard verification (see [standard verification], page 6)
for the email address specified as its argument (in the example above it is the value of the
Sendmail macro ‘$£’). The check can result in the following conditions:

success The address exists.

not_found
The address does not exist.

failure  Some error of permanent nature occurred during the check. The existence of
the address cannot be verified.

temp_failure
Some temporary failure occurred during the check. The existence of the address
cannot be verified at the moment.

The when branches of the on poll statement introduce statements, that are executed
depending on the actual return condition. If any condition occurs that is not handled



Chapter 3: Tutorial 19

within the on block, the run-time evaluator will signal an exception' and return temporary
failure, therefore it is advisable to always handle all four conditions. In fact, the condition
handling shown in the above example is preferable for most normal configurations: the mail
is accepted if the sender address is proved to exist and rejected otherwise. If a temporary
failure occurs, the remote party is urged to retry the transaction some time later.

The poll statement itself has a number of options that control the type of the verifica-
tion. These are discussed in detail in [poll], page 100.

It is worth noticing that there is one special email address which is always available on
any host, it is the null address ‘<>’ used in error reporting. It is of no use verifying its
existence:

prog envfrom
do
lf $f == "n
accept
else
on poll $f do
when success:
accept
when not_found or failure:
reject 550 5.1.0 "Sender validity not confirmed"
when temp_failure:
tempfail 450 4.1.0 "Try again later"
done
fi
done

3.7 SMTP Timeouts

When using polling functions, it is important to take into account possible delays, which
can occur in SMTP transactions. Such delays may be due to low network bandwidth or high
load on the remote server. Some sites impose them willingly, as a spam-fighting measure.

Ideally the callout verification should use the timeout values defined in the RFC 2822,
but this is impossible in practice, because it would cause a timeout escalation, which consists
in propagating delays encountered in a callout SMTP session back to the remote client whose
session initiated the callout.

Consider, for example, the following scenario. An MFL script performs a callout on
‘envfrom’ stage. The remote server is overloaded and delays heavily in responding, so that
the initial response arrives 3 minutes after establishing the connection, and processing the
‘EHLO’ command takes another 3 minutes. These delays are OK according to the RFC,
which imposes a 5 minute limit for each stage, but while waiting for the remote reply our
SMTP server remains in the ‘envfrom’ state with the client waiting for a response to its
‘MATIL’ command more than 6 minutes, which is intolerable, because of the same 5 minute
limit. Thus, the client will almost certainly break the session.

1 For more information about exceptions and their handling, please refer to Section 4.19 [Exceptions],
page 92.



20 Mailfromd Manual

To avoid this, mailfromd uses a special instance, called callout server, which is respon-
sible for running callout SMTP sessions asynchronously. The usual sender verification is
performed using so-called soft timeout values, which are set to values short enough to not
disturb the incoming session (e.g. a timeout for ‘HELO’ response is 3 seconds, instead of
5 minutes). If this verification yields a definite answer, that answer is stored in the cache
database and returned to the calling procedure immediately. If, however, the verification is
aborted due to a timeout, the caller procedure is returned an ‘e_temp_failure’ exception,
and the callout is scheduled for processing by a callout server. This exception normally
causes the milter session to return a temporary error to the sender, urging it to retry the
connection later.

In the meantime, the callout server runs the sender verification again using another set
of timeouts, called hard timeouts, which are normally much longer than ‘soft’ ones (they
default to the values required by RFC 2822). If it gets a definitive result (e.g. ‘email found’
or ‘email not found’), the server stores it in the cache database. If the callout ends due to
a timeout, a ‘not_found’ result is stored in the database.

Some time later, the remote server retries the delivery, and the mailfromd script is run
again. This time, the callout function will immediately obtain the already cached result
from the database and proceed accordingly. If the callout server has not finished the request
by the time the sender retries the connection, the latter is again returned a temporary error,
and the process continues until the callout is finished.

Usually, callout server is just another instance of mailfromd itself, which is started
automatically to perform scheduled SMTP callouts. It is also possible to set up a separate
callout server on another machine. This is discussed in Chapter 10 [calloutd], page 227.

For a detailed information about callout timeouts and their configuration, see Section 7.7
[conf-timeout], page 206.

For a description of how to configure mailfromd to use callout servers, see Section 7.4
[conf-server], page 204.

3.8 Avoiding Verification Loops

An envfrom program consisting only of the on poll statement will work smoothly for
incoming mails, but will create infinite loops for outgoing mails. This is because upon
sending an outgoing message mailfromd will start the verification procedure, which will
initiate an SMTP transaction with the same mail server that runs it. This transaction
will in turn trigger execution of on poll statement, etc. ad infinitum. To avoid this,
any properly written filter script should not run the verification procedure on the email
addresses in those domains that are relayed by the server it runs on. This can be achieved
using relayed function. The function returns true if its argument is contained in one of
the predefined domain list files. These files correspond to Sendmail plain text files used in F
class definition forms (see Sendmail Installation and Operation Guide, chapter 5.3), i.e. they
contain one domain name per line, with empty lines and lines started with ‘#” being ignored.
The domain files consulted by relayed function are defined in the relayed-domain-file
configuration file statement (see Section 7.2 [conf-base], page 202):

relayed-domain-file (/etc/mail/local-host-names,
/etc/mail/relay-domains) ;



Chapter 3: Tutorial 21

or:

relayed-domain-file /etc/mail/local-host-names;
relayed-domain-file /etc/mail/relay-domains;

The above example declares two domain list files, most commonly used in Sendmail

installations to keep hostnames of the server? and names of the domains, relayed by this
3
server®.

Given all this, we can improve our filter program:

require ’dns’

prog envfrom
do
lf $f == nn
accept
elif relayed(hostname(${client_addr}))
accept
else
on poll $f do
when success:
accept
when not_found or failure:
reject 550 5.1.0 "Sender validity not confirmed"
when temp_failure:
tempfail 450 4.1.0 "Try again later"
done
fi
done
If you feel that your Sendmail’s relayed domains are not restrictive enough for mailfromd
filters (for example you are relaying mails from some third-party servers), you can use a
database of trusted mail server addresses. If the number of such servers is small enough, a
single ‘or’ statement can be used, e.g.:

elif ${client_addr} = "10.10.10.1"

or ${client_addr} = "192.168.11.7"
accept

otherwise, if the servers’ IP addresses fall within one or several CIDRs, you can use the
match_cidr function (see Section 5.22 [Internet address manipulation functions]|, page 147),
e.g.:
elif match_cidr (${client_addr}, "199.232.0.0/16")
accept

or combine both methods. Finally, you can keep a DBM database of relayed addresses and
use dbmap or dbget function for checking (see Section 5.25 [Database functions], page 157).

2 class ‘w’, see Sendmail Installation and Operation Guide, chapter 5.2.
3 in?
class ‘R



22 Mailfromd Manual

elif dbmap("%__statedir__/relay.db", ${client_addr})
accept

3.9 HELO Domain

Some of the mail filtering conditions may depend on the value of helo domain name, i.e.
the argument to the SMTP EHLO (or HELO) command. If you ever need such conditions,
take into account the following caveats. Firstly, although Sendmail passes the helo domain
in $s macro, it does not do this consistently. In fact, the $s macro is available only to the
helo handler, all other handlers won'’t see it, no matter what the value of the corresponding
Milter.macros.handler statement. So, if you wish to access its value from any handler,
other than helo, you will have to store it in a variable in the helo handler and then use
this variable value in the other handler. This approach is also recommended for another
MTAs. This brings us to the concept of variables in mailfromd scripts.

A variable is declared using the following syntax:
type name

where variable is the variable name and type is ‘string’, if the variable is to hold a string
value, and ‘number’, if it is supposed to have a numeric value.

A variable is assigned a value using the set statement:
set name expr
where expr is any valid MFL expression.

The set statement can occur within handler or function declarations as well as outside
of them.

There are two kinds of Mailfromd variables: global variables, that are visible to all han-
dlers and functions, and automatic variables, that are available only within the handler or
function where they are declared. For our purpose we need a global variable (See Section 4.9
[Variables], page 62, for detailed descriptions of both kinds of variables).

The following example illustrates an approach that allows to use the HELO domain name
in any handler:



Chapter 3: Tutorial 23

# Declare the helohost variable
string helohost

prog helo

do
# Save the host name for further use
set helohost $s

done

prog envirom
do
# Reject hosts claiming to be localhost
if helohost = "localhost"
reject 570 "Please specify real host name"
fi
done
Notice, that for this approach to work, your MTA must export the ‘s’ macro (e.g., in
case of Sendmail, the Milter.macros.helo statement in the sendmail.cf file must contain
‘s’. see Section 9.1 [Sendmail], page 221). This requirement can be removed by using the
handler argument of helo. Each mailfromd handler is given one or several arguments.
The exact number of arguments and their meaning are handler-specific and are described
in Section 4.11 [Handlers|, page 66, and Figure 3.1. The arguments are referenced by their
ordinal number, using the notation $n. The helo handler takes one argument, whose value
is the helo domain. Using this information, the helo handler from the example above can
be rewritten as follows:

prog helo

do
# Save the host name for further use
set helohost $1

done

3.10 SMTP RSET and Milter Abort Handling

In previous section we have used a global variable to hold certain information and share it
between handlers. In the majority of cases, such information is session specific, and becomes
invalid if the remote party issues the SMTP RSET command. Therefore, mailfromd clears
all global variables when it receives a Milter ‘abort’ request, which is normally generated
by this command.

However, you may need some variables that retain their values even across SMTP session
resets. In mailfromd terminology such variables are called precious. Precious variables are
declared by prefixing their declaration with the keyword precious. Consider, for example,
this snippet of code:

precious number rcpt_counter

prog envrcpt
do



24 Mailfromd Manual

set rcpt_counter rcpt_counter + 1
done

Here, the variable ‘rcpt_counter’ is declared as precious and its value is incremented
each time the ‘envrcpt’ handler is called. This way, ‘rcpt_counter’ will keep the total
number of SMTP RCPT commands issued during the session, no matter how many times it
was restarted using the RSET command.

3.11 Controlling Number of Recipients

Any MTA provides a way to limit the number of recipients per message. For example, in
Sendmail you may use the MaxRecipientsPerMessage option. However, such methods
are not flexible, so you are often better off using mailfromd for this purpose.

Mailfromd keeps the number of recipients collected so far in variable rcpt_count, which
can be controlled in envrcpt handler as shown in the example below:

prog envrcpt
do
if rcpt_count > 10
reject 550 5.7.1 "Too many recipients"
fi
done

This filter will accept no more than 10 recipients per message. You may achieve finer
granularity by using additional conditions. For example, the following code will allow any
number of recipients if the mail is coming from a domain relayed by the server, while limiting
it to 10 for incoming mail from other domains:

prog envrcpt
do
if not relayed(hostname($client_addr)) and rcpt_count > 10
reject 550 5.7.1 "Too many recipients"
fi
done

There are three important features to notice in the above code. First of all, it introduces
two boolean operators: and, which evaluates to true only if both left-side and right-side
expressions are true, and not, which reverses the value of its argument.

Secondly, the scope of an operation is determined by its precedence, or binding strength.
Not binds more tightly than and, so its scope is limited by the next expression between it
and and. Using parentheses to underline the operator scoping, the above if condition can
be rewritten as follows:

if (not (relayed(hostname($client_addr)))) and (Yrcpt_count > 10)

Finally, it is important to notice that all boolean expressions are computed using shortcut
evaluation. To understand what it is, let’s consider the following expression: x and y. Its
value is true only if both x and y are true. Now suppose that we evaluate the expression
from left to right and we find that x is false. This means that no matter what the value of

4 Sendmail (tm) Installation and Operation Guide, chapter 5.6, ‘0 -- Set Option’.



Chapter 3: Tutorial 25

y is, the resulting expression will be false, therefore there is no need to compute y at all.
So, the boolean shortcut evaluation works as follows:

x and y If x = false, do not evaluate y and return false.
xory If x = true, do not evaluate y and return true.

Thus, in the expression not relayed(hostname($client_addr)) and rcpt_count >
10, the value of the rcpt_count variable will be compared with ‘10’ only if the relayed
function yielded false.

To further enhance our sample filter, you may wish to make the reject output more
informative, to let the sender know what the recipient limit is. To do so, you can use the
concatenation operator ‘.’ (a dot):

set max_rcpt 10
prog envrcpt

do
if not relayed(hostname($client_addr)) and rcpt_count > 10
reject 550 5.7.1 "Too many recipients, max=" . max_rcpt
fi
done

When evaluating the third argument to reject, mailfromd will first convert max_rcpt to
string and then concatenate both strings together, producing string ‘Too many recipients,
max=10".

3.12 Sending Rate

We have introduced the notion of mail sending rate in Section 1.4 [Rate Limit], page 8.
Mailfromd keeps the computed rates in the special rate database (see Section 3.15 [Data-
bases|, page 31). Each record in this database consists of a key, for which the rate is
computed, and the rate value, in form of a double precision floating point number, repre-
senting average number of messages per second sent by this key within the last sampling
interval. In the simplest case, the sender email address can be used as a key, however we
recommend to use a conjunction email-sender_ip instead, so the actual email owner won’t
be blocked by actions of some spammer abusing his/her address.

Two functions are provided to control and update sending rates. The rateok function
takes three mandatory arguments:

bool rateok(string key, number interval, number threshold)

The key meaning is described above. The interval is the sampling interval, or the
number of seconds to which the actual sending rate value is converted. Remember that it is
stored internally as a floating point number, and thus cannot be directly used in mailfromd
filters, which operate only on integer numbers. To use the rate value, it is first converted to
messages per given interval, which is an integer number. For example, the rate 0.138888
brought to 1-hour interval gives 500 (messages per hour).

When the rateok function is called, it recomputes rate record for the given key. If the
new rate value converted to messages per given interval is less than threshold, the function
updates the database and returns True. Otherwise it returns False and does not update
the database.



26 Mailfromd Manual

This function must be required prior to use, by placing the following statement some-
where at the beginning of your script:

require rateok

For example, the following code limits the mail sending rate for each ‘email address’-
‘IP’ combination to 180 per hour. If the actual rate value exceeds this limit, the sender is
returned a temporary failure response:

require rateok

prog envirom

do
if not rateok($f . "-" . ${client_addr}, 3600, 180)
tempfail 450 4.7.0 "Mail sending rate exceeded. Try again later"
fi
done

Notice argument concatenation, used to produce the key.

It is often inconvenient to specify intervals in seconds, therefore a special interval
function is provided. It converts its argument, which is a textual string representing time
interval in English, to the corresponding number of seconds. Using this function, the func-
tion invocation would be:

rateok($f . "-" . ${client_addr}, interval("1 hour"), 180)

The interval function is described in [interval], page 114, and time intervals are dis-
cussed in [time interval specification], page 202.

The rateok function begins computing the rate as soon as it has collected enough data.
By default, it needs at least four mails. Since this may lead to a big number of false positives
(i.e. overestimated rates) at the beginning of sampling interval, there is a way to specify
a minimum number of samples rateok must collect before starting to actually compute
rates. This number of samples is given as the optional fourth argument to the function. For
example, the following call will always return True for the first 10 mails, no matter what
the actual rate:

rateok($f . "-" . ${client_addr}, interval("1 hour"), 180, 10)

The tbf_rate function allows to exercise more control over the mail rates. This function
implements a token bucket filter (TBF) algorithm.

The token bucket controls when the data can be transmitted based on the presence of
abstract entities called tokens in a container called bucket. Each token represents some
amount of data. The algorithm works as follows:

e A token is added to the bucket at a constant rate of 1 token per t microseconds.

e A bucket can hold at most m tokens. If a token arrives when the bucket is full, that
token is discarded.

e When n items of data arrive (e.g. n mails), n tokens are removed from the bucket and
the data are accepted.

e If fewer than n tokens are available, no tokens are removed from the bucket and the
data are not accepted.



Chapter 3: Tutorial 27

This algorithm allows to keep the data traffic at a constant rate t with bursts of up
to m data items. Such bursts occur when no data was being arrived for m*t or more
microseconds.

Mailfromd keeps buckets in a database ‘tbf’. Each bucket is identified by a unique key.
The tbf_rate function is defined as follows:

bool tbf_rate(string key, number n, number t, number m)

The key identifies the bucket to operate upon. The rest of arguments is described above.
The tbf_rate function returns ‘True’ if the algorithm allows to accept the data and ‘False’
otherwise.

Depending on how the actual arguments are selected the tbf _rate function can be used
to control various types of flow rates. For example, to control mail sending rate, assign the
arguments as follows: n to the number of mails and ¢t to the control interval in microseconds:

prog envfrom

do
if not tbf_rate($f . "-" . $client_addr, 1, 10000000, 20)
tempfail 450 4.7.0 "Mail sending rate exceeded. Try again later"
fi
done

The example above permits to send at most one mail each 10 seconds. The burst size is
set to 20.

Another use for the tbf_rate function is to limit the total delivered mail size per given
interval of time. To do so, the function must be used in prog eom handler, because it is the
only handler where the entire size of the message is known. The n argument must contain
the number of bytes in the email (or email bytes * number of recipients), and the t must be
set to the number of bytes per microsecond a given user is allowed to send. The m argument
must be large enough to accommodate a couple of large emails. E.g.:

prog eom
do
if not tbf_rate("$f-$client_addr",
message_size(current_message()),
10240%1000000, # At most 10 kb/sec
10%1024%1024)
tempfail 450 4.7.0 "Data sending rate exceeded. Try again later"
fi
done
See Section 5.30 [Rate limiting functions], page 173, for more information about rateok
and tbf_rate functions.

3.13 Greylisting

Greylisting is a simple method of defending against the spam proposed by Evan Harris.
In few words, it consists in recording the ‘sender IP’-‘sender email’-‘recipient email’
triplet of mail transactions. Each time the unknown triplet is seen, the corresponding
message is rejected with the tempfail code. If the mail is legitimate, this will make the
originating server retry the delivery later, until the destination eventually accepts it. If,



28 Mailfromd Manual

however, the mail is a spam, it will probably never be retried, so the users will not be
bothered by it. Even if the spammer will retry the delivery, the greylisting period will give
spam-detection systems, such as DNSBLs, enough time to detect and blacklist it, so by the
time the destination host starts accepting emails from this triplet, it will already be blocked
by other means.

You will find the detailed description of the method in The Next Step in the Spam
Control War: Greylisting (http://projects.puremagic.com/greylisting/whitepaper.
html), the original whitepaper by Evan Harris.

The mailfromd implementation of greylisting is based on greylist function. The func-
tion takes two arguments: the key, identifying the greylisting triplet, and the interval.
The function looks up the key in the greylisting database. If such a key is not found, a
new entry is created for it and the function returns true. If the key is found, greylist
returns false, if it was inserted to the database more than interval seconds ago, and
true otherwise. In other words, from the point of view of the greylisting algorithm, the
function returns true when the message delivery should be blocked. Thus, the simplest
implementation of the algorithm would be:

prog envrcpt
do
if greylist("${client_addr}-$f-${rcpt_addr}", interval("1l hour"))
tempfail 451 4.7.1 "You are greylisted"
fi
done

However, the message returned by this example, is not informative enough. In particular,
it does not tell when the message will be accepted. To help you produce more informative
messages, greylist function stores the number of seconds left to the end of the greylisting
period in the global variable greylist_seconds_left, so the above example could be
enhanced as follows:

prog envrcpt
do
set gltime interval("1 hour")
if greylist("${client_addr}-$f-${rcpt_addr}", gltime)
if greylist_seconds_left = gltime
tempfail 451 4.7.1
"You are greylisted for Ygltime seconds"
else
tempfail 451 4.7.1
"Still greylisted for Jgreylist_seconds_left seconds"
fi
fi
done

In real life you will have to avoid greylisting some messages, in particular those coming
from the ‘<>’ address and from the IP addresses in your relayed domain. It can easily be
done using the techniques described in previous sections and is left as an exercise to the
reader.


http://projects.puremagic.com/greylisting/whitepaper.html
http://projects.puremagic.com/greylisting/whitepaper.html
http://projects.puremagic.com/greylisting/whitepaper.html

Chapter 3: Tutorial 29

Mailfromd provides two implementations of greylisting primitives, which differ in the
information stored in the database. The one described above is called traditional. It
keeps in the database the time when the greylisting was activated for the given key, so the
greylisting function uses its second argument (interval) and the current timestamp to
decide whether the key is still greylisted.

The second implementation is called by the name of its inventor Con Tassios. This
implementation stores in the database the time when the greylisting period is set to ex-
pire, computed by the greylist when it is first called for the given key, using the formula
‘current_timestamp + interval’. Subsequent calls to greylist compare the current time-
stamp with the one stored in the database and ignore their second argument. This imple-
mentation is enabled by one of the following pragmas:

#pragma greylist con-tassios
or
#pragma greylist ct

When Con Tassios implementation is used, yet another function becomes available. The
function is_greylisted (see Section 5.31 [is_greylisted]|, page 174) returns ‘True’ if its
argument is greylisted and ‘False’ otherwise. It can be used to check for the greylisting
status without actually updating the database:

if is_greylisted("${client_addr}-$f-${rcpt_addr}")

fi

One special case is whitelisting, which is often used together with greylisting. To imple-
ment it, mailfromd provides the function dbmap, which takes two mandatory arguments:
dbmap(file, key) (it also allows an optional third argument, see [dbmap], page 158, for
more information on it). The first argument is the name of the DBM file where to search
for the key, the second one is the key to be searched. Assuming you keep your whitelist
database in file /var/run/whitelist.db, a more practical example will be:

prog envrcpt
do
set gltime interval("1l hour")

if not ($f = "" or relayed(hostname(${client_addr}))
or dbmap("/var/run/whitelist.db", ${client_addr}))
if greylist("${client_addr}-$f-${rcpt_addr}", gltime)
if greylist_seconds_left = gltime
tempfail 451 4.7.1
"You are greylisted for Ygltime seconds"
else
tempfail 451 4.7.1
"Still greylisted for %greylist_seconds_left seconds"
fi
fi
fi
done



30 Mailfromd Manual

3.14 Local Account Verification

In your filter script you may need to verify if the given user name is served by your mail
server, in other words, to verify if it represents a local account. Notice that in this context,
the word local does not necessarily mean that the account is local for the server running
mailfromd, it simply means any account whose mailbox is served by the mail servers using
mailfromd.

The validuser function may be used for this purpose. It takes one argument, the
user name, and returns true if this name corresponds to a local account. To verify this,
the function relies on libmuauth, a powerful authentication library shipped with GNU
mailutils. More precisely, it invokes a list of authorization functions. Each function is
responsible for looking up the user name in a particular source of information, such as
system passwd database, an SQL database, etc. The search is terminated when one of
the functions finds the name in question or the list is exhausted. In the former case, the
account is local, in the latter it is not. This concept is discussed in detail in see Section
“Authorization and Authentication Principles” in GNU Mailutils Manual). Here we will
give only some practical advices for implementing it in mailfromd filters.

The actual list of available authorization modules depends on your mailutils instal-
lation. Usually it includes, apart from traditional UNIX passwd database, the functions
for verifying PAM, RADIUS and SQL database accounts. Each of the authorization meth-
ods is configured using special configuration file statements. For the description of the
Mailutils configuration files, See Section “Mailutils Configuration File” in GNU Mailutils
Manual. You can obtain the template for mailfromd configuration by running mailfromd
--config-help.

For example, the following mailfromd. conf file:

auth {
authorization pam:system;

}

pam {
service mailfromd;

3

sets up the authorization using PAM and system passwd database. The name of PAM service
to use is ‘mailfromd’.

The function validuser is often used together with dbmap, as in the example below:

#pragma dbprop /etc/mail/aliases.db null

if dbmap("/etc/mail/aliases.db", localpart($rcpt_addr))
and validuser(localpart($rcpt_addr))

fi

For more information about dbmap function, see [dbmap], page 158. For a description of
dbprop pragma, see Section 5.25 [Database functions|, page 157.



Chapter 3: Tutorial 31

3.15 Databases

Some mailfromd functions use DBM databases to save their persistent state data. Each
database has a unique identifier, and is assigned several pieces of information for its mainte-
nance: the database file name and the expiration period, i.e. the time after which a record
is considered expired.

To obtain the list of available databases along with their preconfigured settings, run
mailfromd —-show-defaults. You will see an output similar to this:

version: 8.14

script file: /etc/mailfromd.mf

preprocessor: /usr/bin/m4 -s

user: mail

statedir: /var/run/mailfromd

socket: unix:/var/run/mailfromd/mailfrom
pidfile: /var/run/mailfromd/mailfromd.pid
default syslog: blocking

supported databases: gdbm, bdb

default database type: bdb

optional features: GeoIP

greylist database: /var/run/mailfromd/greylist.db
greylist expiration: 86400

tbf database: /var/run/mailfromd/tbf.db

tbf expiration: 86400

rate database: /var/run/mailfromd/rates.db

rate expiration: 86400

cache database: /var/run/mailfromd/mailfromd.db

cache positive expiration: 86400
cache negative expiration: 43200

The text below ‘optional features’ line describes the available built-in databases. No-
tice that the ‘cache’ database, in contrast to the rest of databases, has two expiration
periods associated with it. This is explained in the next subsection.

3.15.1 Database Formats

The version 8.14 runs the following database types (or formats):

‘cache’ Cache database keeps the information about external emails, obtained us-
ing sender verification functions (see Section 3.6 [Checking Sender Address],
page 18). The key entry to this database is an email address or email:sender-ip
string, for addresses checked using strict verification. The data its stores for
each key are:

1. Address validity. This field can be either success or not_found, meaning
the address is confirmed to exists or it is not.

2. The time when the entry was entered into the database. It is used to check
for expired entries.

The ‘cache’ database has two expiration periods: a positive expiration period,
that is applied to entries with the first field set to success, and a negative
expiration period, applied to entries marked as not_found.



32 Mailfromd Manual

‘rate’ The mail sending rate data, maintained by rate function (see Section 5.30 [Rate
limiting functions], page 173). A record consists of the following fields:

timestamp The time when the entry was entered into the database.

interval Interval during which the rate was measured (seconds).
count Number of mails sent during this interval.
‘tbf’ This database is maintained by tbf_rate function (see [TBF], page 26). Each

record represents a single bucket and consists of the following keys:

timestamp Timestamp of most recent token, as a 64-bit unsigned integer (mi-
croseconds resolution).

expirytime
Estimated time when this bucket expires (seconds since epoch).

tokens Number of tokens in the bucket (size_t).

‘greylist’
This database is maintained by greylist function (see Section 3.13 [Greylist-
ing], page 27). Each record holds only the timestamp. Its semantics depends
on the greylisting implementation in use (see [greylisting types|, page 28). In
traditional implementation, it is the time when the entry was entered into the
database. In Con Tassios implementation, it is the time when the greylisting
period expires.

3.15.2 Basic Database Operations
The mfdbtool utility is provided for performing various operations on the mailfromd data-
base.

To list the contents of a database, use --1ist option. When used without any arguments
it will list the ‘cache’ database:

$ mfdbtool --list

abrakat@mail.com success Thu Aug 24 15:28:58 2006
baccl@EDnet.NS.CA not_found Fri Aug 25 10:04:18 2006
bhzxhnyl@chello.pl not_found Fri Aug 25 10:11:57 2006

brqp@aaanet.ru:24.1.173.165 not_found Fri Aug 25 14:16:06 2006

You can also list data for any particular key or keys. To do so, give the keys as arguments
to mfdbtool:

$ mfdbtool --list abrakat@mail.com brqpQ@aaanet.ru:24.1.173.165
abrakat@mail.com success Thu Aug 24 15:28:58 2006
brqpQaaanet.ru:24.1.173.165 not_found Fri Aug 25 14:16:06 2006

To list another database, give its format identifier with the --format (-H) option. For
example, to list the ‘rate’ database:
$ mfdbtool --list --format=rate
sam@mail .net-62.12.4.3 Wed Sep 6 19:41:42 2006 139 3 0.0216 6.82e-06
axw@rame.com-59.39.165.172 Wed Sep 6 20:26:24 2006 0 1 N/A N/A
The --format option can be used with any database management option, described
below.



Chapter 3: Tutorial 33

Another useful operation you can do while listing ‘rate’ database is the prediction of
estimated time of sending, i.e. the time when the user will be able to send mail if currently
his mail sending rate has exceeded the limit. This is done using --predict option. The
option takes an argument, specifying the mail sending rate limit, e.g. (the second line is
split for readability):

$ mfdbtool --predict="180 per 1 minute"
ed@fae.net-21.10.1.2 Wed Sep 13 03:53:40 2006 0 1 N/A N/A; free to send
service@19.netlay.com-69.44.129.19 Wed Sep 13 15:46:07 2006 7 2

0.286 0.0224; in 46 sec. on Wed Sep 13 15:49:00 2006

Notice, that there is no need to use --1ist --format=rate along with this option, although
doing so is not an error.

To delete an entry from the database, use --delete option, for example: mfdbtool
--delete abrakat@mail.com. You can give any number of keys to delete in the command
line.

3.15.3 Database Maintenance

There are two principal operations of database management: expiration and compaction.
Expiration consists in removing expired entries from the database. In fact, it is rarely
needed, since the expired entries are removed in the process of normal mailfromd work.
Nevertheless, a special option is provided in case an explicit expiration is needed (for ex-
ample, before dumping the database to another format, to avoid transferring useless infor-
mation).

The command line option --expire instructs mfdbtool to delete expired entries from
the specified database. As usual, the database is specified using --format option. If it is
not given explicitly, ‘cache’ is assumed.

While removing expired entries the space they occupied is marked as free, so it can be
used by subsequent inserts. The database does not shrink after expiration is finished. To
actually return the unused space to the file system you should compact your database.

This is done by running mfdbtool --compact (and, optionally, specifying the database
to operate upon with --format option). Notice, that compacting a database needs roughly
as much disk space on the partition where the database resides as is currently used by the
database. Database compaction runs in three phases. First, the database is scanned and all
non-expired records are stored in the memory. Secondly, a temporary database is created
in the state directory and all the cached entries are flushed into it. This database is named
after the PID of the running mfdbtool process. Finally, the temporary database is renamed
to the source database.

Both --compact and --expire can be applied to all databases by combining them with
—--all. It is useful, for example, in crontab files. For example, I have the following monthly
job in my crontab:

011 * x /usr/bin/mfdbtool --compact --all

3.16 Testing Filter Scripts

It is important to check your filter script before actually starting to use it. There are several
ways to do so.



34 Mailfromd Manual

To test the syntax of your filter script, use the —-1int option. It will cause mailfromd to
exit immediately after attempting to compile the script file. If the compilation succeeds, the
program will exit with code 0. Otherwise, it will exit with error code 78 (‘configuration
error’). In the latter case, mailfromd will also print a diagnostic message, describing the
error along with the exact location where the error was diagnosed, for example:

mailfromd: /etc/mailfromd.mf:39: syntax error, unexpected reject

The error location is indicated by the name of the file and the number of the line when
the error occurred. By using the --location-column option you instruct mailfromd to
also print the column number. E.g. with this option the above error message may look like:

mailfromd: /etc/mailfromd.mf:39.12 syntax error, unexpected reject
Here, ‘39’ is the line and ‘12’ is the column number.

For complex scripts you may wish to obtain a listing of variables used in the script. This
can be achieved using --xref command line option:

The output it produces consists of four columns:

Variable name
Data type Either number or string.

Offset in data segment
Measured in words.

References A comma-separated list of locations where the variable was referenced. Each
location is represented as file:line. If several locations pertain to the same file,
the file name is listed only once.

Here is an example of the cross-reference output:

$ mailfromd --xref
Cross-references:

cache_used number 5 /etc/mailfromd.mf :48
clamav_virus_name string 9 /etc/mailfromd.mf:240,240

db string 15 /etc/mailfromd.mf:135,194,215
dns_record_ttl number 16 /etc/mailfromd.mf:136,172,173
ehlo_domain string 11

gltime number 13 /etc/mailfromd.mf:37,219,220,222,223
greylist_seconds_left number 1  /etc/mailfromd.mf:220,226,227
last_poll_host string 2

If the script passes syntax check, the next step is often to test if it works as you expect
it to. This is done with --test (-t) command line option. This option runs the envfrom
handler (or another one, see below) and prints the result of its execution.

When running your script in test mode, you will need to supply the values of Sendmail
macros it needs. You do this by placing the necessary assignments in the command line.
For example, this is how to supply initial values for f and client_addr macros:

$ mailfromd --test f=gray@gnu.org client_addr=127.0.0.1

You may also need to alter initial values of some global variables your script uses. To
do so, use -v (--variable) command line option. This option takes a single argument



Chapter 3: Tutorial 35

consisting of the variable name and its initial value, separated by an equals sign. For
example, here is how to change the value of ehlo_domain global variable:

$ mailfromd -v ehlo_domain=mydomain.org

The --test option is often useful in conjunction with options --debug, —-trace and
--transcript (see Section 3.18 [Logging and Debugging], page 40. The following example
shows what the author got while debugging the filter script described in Section 4.23 [Filter
Script Example], page 106:

$ mailfromd --test --debug=50 f=gray@gnu.org client_addr=127.0.0.1
MX 20 mx20.gnu.org

MX 10 mx10.gnu.org

MX 10 mx10.gnu.org

MX 20 mx20.gnu.org

getting cache info for gray@gnu.org

found status: success (0), time: Thu Sep 14 14:54:41 2006
getting rate info for gray@gnu.org-127.0.0.1

found time: 1158245710, interval: 29, count: 5, rate: 0.172414
rate for gray@gnu.org-127.0.0.1 is 0.162162

updating grayQ@gnu.org-127.0.0.1 rates

SET REPLY 450 4.7.0 Mail sending rate exceeded. Try again later
State envfrom: tempfail

To test any handler, other than ‘envfrom’, give its name as the argument to —-test
option. Since this argument is optional, it is important that it be given immediately after
the option, without any intervening white space, for example mailfromd --test=helo, or
mailfromd -thelo.

This method allows to test one handler at a time. To test the script as a whole, use
mtasim utility. When started it enters interactive mode, similar to that of sendmail -bs,
where it expects SMTP commands on its standard input and sends answers to the standard
output. The --port=auto command line option instructs it to start mailfromd and to create
a unique socket for communication with it. For the detailed description of the program and
the ways to use it, See Chapter 12 [mtasim], page 237.

3.17 Run Mode

Mailfromd provides a special option that allows to run arbitrary MFL scripts. This is an
experimental feature, intended for future use of MFL as a scripting language.

When given the --run command line option, mailfromd loads the script given in its
command line and executes a function called ‘main’.

The function main must be declared as:
func main(...) returns number

Mailfromd passes all command line arguments that follow the script name as arguments
to that function. When the function returns, its return value is used by mailfromd as exit
code.

As an example, suppose the file script.mf contains the following:

func main (...)
returns number



36 Mailfromd Manual

do
loop for number i 1,
while i <= $#,
set 1 i+ 1
do
echo "arg %i=" . $(i)
done
done

This function prints all its arguments (See [variadic functions|, page 74, for a detailed
description of functions with variable number of arguments). Now running:

$ mailfromd --run script.mf 1 file dest

displays the following;:

arg 1=1
arg 2=file
arg 3=dest

Note, that MFL does not have a direct equivalent of shell’s $0 argument. If your function
needs to know the name of the script that is being executed, use __file__ built-in constant
instead (see Section 4.8.1 [Built-in constants|, page 60.

You may name your start function with any name other than the default ‘main’. In this
case, give its name as an argument to the ——run option. This argument is optional, therefore
it must be separated from the option by an equals sign (with no whitespace from either
side). For example, given the command line below, mailfromd loads the file script.mf and
execute the function named ‘start’

$ mailfromd --run=start script.mf

3.17.1 The Top of a Script File

The --run option makes it possible to use mailfromd scripts as standalone programs. The
traditional way to do so was to set the executable bit on the script file and to begin the
script with the interpreter selector, i.e. the characters ‘#!’ followed by the name of the
mailfromd executable, e.g.:

#! /usr/sbin/mailfromd --run

This would cause the shell to invoke mailfromd with the command line constructed
from the ——run option, the name of the invoked script file itself, and any actual arguments
from the invocation. Once invoked, mailfromd would treat the initial ‘#!’ line as a usual
single-line comment (see Section 4.1 [Comments|, page 51).

However, the interpretation of the ‘#!’ by shells has various deficiencies, which depend
on the actual shell being used. For example, some shells pass any characters following the
whitespace after the interpreter name as a single argument, some others silently truncate
the command line after some number of characters, etc. This often make it impossible
to pass additional arguments to mailfromd. For example, a script which begins with the
following line would most probably fail to be executed properly:

#! /usr/sbin/mailfromd --no-config --run



Chapter 3: Tutorial 37

To compensate for these deficiencies and to allow for more complex invocation sequences,
mailfromd handles initial ‘#” in a special way. If the first line of a source file begins with
‘#1/ or ‘4! /’ (with a single space between ‘!’ and ‘/’), it is treated as a start of a multi-line
comment, which is closed by the two characters ‘!#’ on a line by themselves.

Thus, the correct way to begin a mailfromd script is:

#! /usr/sbin/mailfromd --run
T#

Using this feature, you can start the mailfromd with arbitrary shell code, provided it
ends with an exec statement invoking the interpreter itself. For example:

#!/bin/sh
exec /usr/sbin/mailfromd --no-config --run $0 $@
#

func main(...)

returns number
do

/* actual mfl code goes here */
done

Note the use of ‘80’ and ‘$@’ to pass the actual script file name and command line
arguments to mailfromd.

3.17.2 Parsing Command Line Arguments

A special function is provided to break (parse) options in command lines, and to check
for legal options. It uses the GNU getopt routines (see Section “Getopt” in The GNU C
Library Reference Manual).

string getopt (number argc, pointer argv, ...) [Built-in Function]
The getopt function parses the command line arguments, as supplied by argc and
argv. The argc argument is the argument count, and argv is an opaque data structure,
representing the array of arguments®. The operator vaptr (see [vaptr]|, page 39) is
provided to initialize this argument.

An argument that starts with ‘=’ (and is not exactly ‘=’ or ‘~=’), is an option element.
An argument that starts with a ‘-’ is called short or traditional option. The characters
of this element, except for the initial ‘=’ are option characters. Each option character
represents a separate option. An argument that starts with ‘==’ is called long or
GNU option. The characters of this element, except for the initial ‘==’ form the
option name.

Options may have arguments. The argument to a short option is supplied immediately
after the option character, or as the next word in command line. E.g., if option -f
takes a mandatory argument, then it may be given either as -farg or as -f arg. The
argument to a long option is either given immediately after it and separated from the
option name by an equals sign (as -—file=arg), or is given as the next word in the
command line (e.g. --file arg).

5 When MFL has array data type, the second argument will change to array of strings.



38

Mailfromd Manual

If the option argument is optional, i.e. it may not necessarily be given, then only the
first form is allowed (i.e. either ~farg or --file=arg.

The ‘==’ command line argument ends the option list. Any arguments following it
are not, considered options, even if they begin with a dash.

If getopt is called repeatedly, it returns successively each of the option characters
from each of the option elements (for short options) and each option name (for long
options). In this case, the actual arguments are supplied only to the first invocation.
Subsequent calls must be given two nulls as arguments. Such invocation instructs
getopt to use the values saved on the previous invocation.

When the function finds another option, it returns its character or name updating
the external variable optind (see below) so that the next call to getopt can resume
the scan with the following option.

When there are no more options left, or a ‘-=’ argument is encountered, getopt

returns an empty string. Then optind gives the index in argv of the first element
that is not an option.

The legitimate options and their characteristics are supplied in additional arguments
to getopt. Each such argument is a string consisting of two parts, separated by a
vertical bar (‘|’). Any one of these parts is optional, but at least one of them must be
present. The first part specifies short option character. If it is followed by a colon, this
character takes mandatory argument. If it is followed by two colons, this character
takes an optional argument. If only the first part is present, the ‘|’ separator may be
omitted. Examples:

llCll

"el" Short option -c.

uf: "

v Short option -f, taking a mandatory argument.
llf::ll

"fo Short option -f, taking an optional argument.

If the vertical bar is present and is followed by any characters, these characters specify
the name of a long option, synonymous to the short one, specified by the first part.
Any mandatory or optional arguments to the short option remain mandatory or
optional for the corresponding long option. Examples:

"f: [ file" Short option -f, or long option --file, requiring an argument.

"f::|file"  Short option -f, or long option --file, taking an optional argument.
In any of the above cases, if this option appears in the command line, getopt returns
its short option character.

To define a long option without a short equivalent, begin it with a bar, e.g.:

n | helpll

If this option is to take an argument, this is specified using the mechanism described

above, except that the short option character is replaced with a minus sign. For
example:

"-:[output"
Long option —-output, which takes a mandatory argument.



Chapter 3: Tutorial 39

"-::|output"
Long option --output, which takes an optional argument.

If an option is returned that has an argument in the command line, getopt stores
this argument in the variable optarg.

After each invocation, getopt sets the variable optind to the index of the next argv
element to be parsed. Thus, when the list of options is exhausted and the function
returned an empty string, optind contains the index of the the first element that is
not an option.

When getopt encounters an option that is not described in its arguments or if it
detects a missing option argument it prints an error message using mailfromd logging
facilities, stores the offending option in the variable optopt, and returns ‘7’.

If printing error message is not desired (e.g. the application is going to take care of
error messaging), it can be disabled by setting the variable opterr to ‘0’.

The third argument to getopt, called controlling argument, may be used to control
the behavior of the function. If it is a colon, it disables printing the error message for
unrecognized options and missing option arguments (as setting opterr to ‘0’ does).
In this case getopt returns ‘:’; instead of ‘?’ to indicate missing option argument.
If the controlling argument is a plus sign, or the environment variable POSIXLY_
CORRECT is set, then option processing stops as soon as a non-option argument is
encountered. By default, if options and non optional arguments are intermixed in
argv, getopt permutes them so that the options go first, followed by non-optional
arguments.

If the controlling argument is ‘~’, then each non-option element in argv is handled
as if it were the argument of an option with character code 1 (‘"\001"’, in MFL
notation. This can used by programs that are written to expect options and other
argv-elements in any order and that care about the ordering of the two.

Any other value of the controlling argument is handled as an option definition.

A special language construct is provided to supply the second argument (argv) to getopt
and similar functions:
vaptr (param)
where param is a positional parameter, from which to start the array of argv. For example:
func main(...)
returns number
do
set rc getopt($#, vaptr($1), "lhelp")

Here, vaptr($1) constructs the argv array from all the arguments, supplied to the
function main.

To illustrate the use of getopt function, let’s suppose you write a script that takes the
following options:
-f file
-—file=file
--output [=dir]
--help



40 Mailfromd Manual

Then, the corresponding getopt invocation will be:

func main(...)
returns number

do
loop for string rc getopt($#, vaptr($1l),
"f:|file", "-::|output", "h|help"),
while rc !'= "",
set rc getopt(0, 0)
do
switch rc
do
case "f":

set file optarg
case "output"
set output 1
set output_dir optarg
case "h"
help()
default:
return 1
done

3.18 Logging and Debugging

Depending on its operation mode, mailfromd tries to guess whether it is appropriate to
print its diagnostics and informational messages on standard error or to send them to syslog.
Standard error is assumed if the program is run with one of the following command line
options:

e ——test (see Section 3.16 [Testing Filter Scripts|, page 33)

e —-run (see Section 3.17 [Run Mode], page 35)

e —-lint (see Section 3.16 [Testing Filter Scripts|, page 33)

e --dump-code (see Section 8.1.5 [Logging and Debugging Options|, page 215)

e —-dump-grammar-trace (see Section 8.1.5 [Logging and Debugging Options|, page 215)

e —-dump-lex-trace (see Section 8.1.5 [Logging and Debugging Options|, page 215)

e —-dump-macros (see Section 8.1.5 [Logging and Debugging Options], page 215)

e —-dump-tree (see Section 8.1.5 [Logging and Debugging Options], page 215)

e ——xref or -—dump-xref) (see Section 3.16 [Testing Filter Scripts], page 33)

If none of these are used, mailfromd switches to syslog as soon as it finishes its startup.
There are two ways to communicate with the syslogd daemon: using the syslog function
from the system libc library, which is a blocking implementation in most cases, or via
internal, asynchronous, syslog implementation. Whether the latter is compiled in and which

implementation is used by default is determined when compiling the package, as described
in [syslog-async]|, page 11.



Chapter 3: Tutorial 41

The --logger command line option allows you to manually select the diagnostic channel:

--logger=stderr
Log everything to the standard error.

--logger=syslog
Log to syslog.

--logger=syslog:async
Log to syslog using the asynchronous syslog implementation.

Another way to select the diagnostic channel is by using the logger statement in the
configuration file. The statement takes the same argument as its command line counterpart.

The rest of details regarding diagnostic output are controlled by the logging configura-
tion statement.

The default syslog facility is ‘mail’; it can be changed using the --log-facility com-
mand line option or facility statement. Argument in both cases is a valid facility name,
i.e. one of: ‘user’, ‘daemon’, ‘auth’, ‘authpriv’, ‘mail’, and ‘local0Q’ through ‘local7?’.
The argument can be given in upper, lower or mixed cases, and it can be prefixed with
‘log_":

Another syslog-related parameter that can be configured is the tag, which identifies
mailfromd messages. The default tag is the program name. It is changed by the --log-
tag (-L command line option and the tag logging statement.

The following example configures both the syslog facility and tag:

logging {
facility local7;
tag "mfd";

}

As any other UNIX utility, mailfromd is very quiet unless it has something important to
communicate, such as, e.g. an error condition. A set of command line options is provided
for controlling the verbosity of its output.

The --trace option enables tracing Sendmail actions executed during message verifica-
tions. When this option is given, any accept, discard, continue, etc. triggered during
execution of your filter program will leave their traces in the log file. Here is an example of
how it looks like (syslog time stamp, tag and PID removed for readability):

k8DHxv09030656: /etc/mailfromd.mf:45: reject 550 5.1.1 Sender validity
not confirmed

This shows that while verifying the message with ID ‘k8DHxv09030656’ the reject action
was executed by filter script /etc/mailfromd.mf at line 45.

The use of message ID in the log deserves a special notice. The program will always
identify its log messages with the ‘Message-Id’, when it is available. Your responsibility
as an administrator is to make sure it is available by configuring your MTA to export the
macro ‘i’ to mailfromd. The rule of thumb is: make ‘i’ available to the very first handler
mailfromd executes. It is not necessary to export it to the rest of the handlers, since
mailfromd will cache it. For example, if your filter script contains ‘envfrom’ and ‘envrcpt’
handlers, export ‘i’ for ‘envfrom’. The exact instructions on how to ensure it depend on the
MTA you use. For ‘Sendmail’, refer to Section 9.1 [Sendmail], page 221. For MeTA1, see



42 Mailfromd Manual

Section 9.2 [MeTA1], page 222, and Section 13.1.2 [pmult-macros|, page 248. For ‘Postfix’,
see Section 9.3 [Postfix|, page 224.

To push log verbosity further, use the debug configuration statement (see Section 7.6
[conf-debug], page 206) or its command line equivalent, --debug (-d, see [-debug],
page 215). Its argument is a debugging level, whose syntax is described in http://
mailutils.org/wiki/Debug_level.

The debugging output is controlled by a set of levels, each of which can be set indepen-
dently of others. Each debug level consists of a category name, which identifies the part of
package for which additional debugging is desired, and a level number, which indicates how
verbose should its output be.

Valid debug levels are:

error Displays error conditions which are normally not reported, but passed to the
caller layers for handling.

trace0 through trace9
Ten levels of verbosity, trace0 producing less output, trace9 producing the
maximum amount of output.

prot Displays network protocol interaction, where applicable.

The overall debugging level is specified as a list of individual levels, delimited with
semicolons. Each individual level can be specified as one of:

lcategory  Disables all levels for the specified category.
category  Enables all levels for the specified category.

category.level
For this category, enables all levels from ‘error’ to level, inclusive.

category.=level
Enables only the given level in this category.

category.!level
Disables all levels from ‘error’ to level, inclusive, in this category.

category.!=level
Disables only the given level in this category.

category.levelA-level B
Enables all levels in the range from levelA to levelB, inclusive.

category.!levelA-level B
Disables all levels in the range from levelA to levelB, inclusive.

Additionally, a comma-separated list of level specifications is allowed after the dot. For
example, the following specification:

acl.prot, !=trace9, !trace2

enables in category acl all levels, except trace9, trace0, tracel, and trace2.


http://mailutils.org/wiki/Debug_level
http://mailutils.org/wiki/Debug_level

Chapter 3: Tutorial 43

Implementation and applicability of each level of debugging differs between various cat-
egories. Categories built-in to mailutils are described in http://mailutils.org/wiki/
Debug_level. Mailfromd introduces the following additional categories:

db

trace0 Detailed debugging info about expiration and compaction.
traceb List records being removed.
dns
trace8 Verbose information about attempted DNS queries and their re-
sults.
trace9 Enables ‘libadns’ internal debugging.
srvman
tracel Additional information about normal conditions, such as subpro-
cess exiting successfully or a remote party being allowed access by
ACL.
tracel Detailed transcript of server manager actions: startup, shutdown,
subprocess cleanups, etc.
traced Additional info about fd sets.
traced Individual subserver status information.
traced Subprocess registration.
pmult
tracel Verbosely list incoming connections, functions being executed and
erroneous conditions: missing headers in SMFIR_.CHGHEADER,
undefined macros, etc.
trace2 List milter requests being processed.
trace? List SMTP body content in SMFIR_REPLBODY requests.
error Verbosely list mild errors encountered: bad recipient addresses, etc.
callout
tracel Verification session transcript.
tracel MX servers checks.
traceb List emails being checked.
trace9 Additional info.
main
traceb Info about hostnames in relayed domain list
engine Debugging of the virtual engine.

traceb Message modification lists.


http://mailutils.org/wiki/Debug_level
http://mailutils.org/wiki/Debug_level

44

pp

prog

spf

Mailfromd Manual

traceb Debug message modification operations and Sendmail macros reg-
istered.

trace7 List SMTP stages (‘xxfi_x’ calls).

trace9 Cleanup calls.

Preprocessor.

tracel Show command line of the preprocessor being run.

trace8 Stack operations

trace9 Debug exception state save/restore operations.

error Mild errors.

trace0 List calls to  ‘spf_eval_record, ‘spf_test_record’,

‘spf_check_host_internal’, etc.

tracel General debug info.
traceb Explicitly list A records obtained when processing the ‘a’ SPF
mechanism.

Categories starting with ‘bi_’ debug built-in modules:

bi_db

bi_sa

bi_io

bi_mbox

bi_other

Database functions.

traced List database look-ups.

traceb Trace operations on the greylisting database.
SpamAssassin and ClamAV API.

tracel Report the findings of the ‘clamav’ function.
trace9 Trace payload in interactions with ‘spamd’.

I/O functions.

tracel Debug the following functions: open, spawn, write.
trace2 Report stderr redirection.
trace3 Report external commands being run.

Mailbox functions.
tracel Report opened mailboxes.
Other built-ins.

tracel Report results of checks for existence of usernames.

For example, the following invocation enables levels up to ‘trace2’ in category ‘engine’,
all levels in category ‘savsrv’ and levels up to ‘trace0Q’ in category ‘srvman’:

$ mailfromd --debug=’engine.trace2;savsrv;srvman.trace0’



Chapter 3: Tutorial 45

You need to have sufficient knowledge about mailfromd internal structure to use this
form of the --debug option.

To control the execution of the sender verification functions (see Section 5.20 [SMTP
Callout functions|, page 145), you may use --transcript (-X) command line option which
enables transcripts of SMTP sessions in the logs. Here is an example of the output produced
running mailfromd —-transcript:

k8DHx1Ca001774: RECV: 220 spf-jaill.us4.outblaze.com ESMTP Postfix
k8DHx1Ca001774: SEND: HELO mail.gnu.org.ua
k8DHx1Ca001774: RECV: 250 spf-jaill.us4.outblaze.com
k8DHx1Ca001774: SEND: MAIL FROM: <>
k8DHx1Ca001774: RECV: 250 Ok
k8DHx1Ca001774: SEND: RCPT TO: <t1lKmx17Q@malaysia.net>
k8DHx1Ca001774: RECV: 550 <>: No thank you rejected: Account
Unavailable: Possible Forgery
k8DHx1Ca001774: poll exited with status: not_found; sent
"RCPT TO: <t1lKmx17Q@malaysia.net>", got "550 <>: No thank you
rejected: Account Unavailable: Possible Forgery"
k8DHx1Ca001774: SEND: QUIT

3.19 Runtime Errors

A runtime error is a special condition encountered during execution of the filter program,
that makes further execution of the program impossible. There are two kinds of runtime
errors: fatal errors, and uncaught exceptions. Whenever a runtime error occurs, mailfromd
writes into the log file the following message:

RUNTIME ERROR near file:line: text

where file:line indicates approximate source file location where the error occurred and text
gives the textual description of the error.

Fatal runtime errors

Fatal runtime errors are caused by a condition that is impossible to fix at run time. For
version 8.14 these are:

Not enough memory
There is not enough memory for the execution of the program. Try to make
more memory available for mailfromd or to reduce its memory requirements
by rewriting your filter script.

Out of stack space; increase #pragma stacksize

Heap overrun; increase #pragma stacksize

memory chunk too big to fit into heap
These errors are reported when there is not enough space left on stack to per-
form the requested operation, and the attempt to resize the stack has failed.
Usually mailfromd expands the stack when the need arises (see [automatic
stack resizing], page 53). This runtime error indicates that there were no more
memory available for stack expansion. Try to make more memory available for
mailfromd or to reduce its memory requirements by rewriting your filter script.



46 Mailfromd Manual

Stack underflow
Program attempted to pop a value off the stack but the stack was already
empty. This indicates an internal error in the MFL compiler or mailfromd
runtime engine. If you ever encounter this error, please report it to
bug-mailfromd@gnu.org.ua. Include the log fragment (about 10-15 lines
before and after this log message) and your filter script. See Chapter 14
[Reporting Bugs|, page 255, for more information about bug reporting.

pc out of range
The program counter is out of allowed range. This is a severe error, indicat-
ing an internal inconsistency in mailfromd runtime engine. If you encounter
it, please report it to bug-mailfromd@gnu.org.ua. Include the log fragment
(about 10-15 lines before and after this log message) and your filter script. See
Chapter 14 [Reporting Bugs|, page 255, for more information about how to
report a bug.

Programmatic runtime errors

These indicate a programmatic error in your filter script, which the MFL compiler was
unable to discover at compilation stage:

Invalid exception number: n
The throw statement used a not existent exception number n. Fix the statement
and restart mailfromd. See [throw], page 97, for the information about throw
statement and see Section 4.19 [Exceptions|, page 92, for the list of available
exception codes.

No previous regular expression
You have used a back-reference (see Section 4.10 [Back references], page 65),
where there is no previous regular expression to refer to. Fix this line in your
code and restart the program.

Invalid back-reference number
You have used a back-reference (see Section 4.10 [Back references], page 65),
with a number greater than the number of available groups in the previous
regular expression. For example:

if $f matches "(.*)@gnu.org"
# Wrong: there is only one group in the regexp abovel!
set x \2

Fix your code and restart the daemon.

Uncaught exceptions

Another kind of runtime errors are uncaught exceptions, i.e. exceptional conditions for
which no handler was installed (See Section 4.19 [Exceptions]|, page 92, for information on
exceptions and on how to handle them). These errors mean that the programmer (i.e. you),
made no provision for some specific condition. For example, consider the following code:


mailto:bug-mailfromd@gnu.org.ua
mailto:bug-mailfromd@gnu.org.ua

Chapter 3: Tutorial 47

prog envirom
do
if $f mx matches "yahoo.com"
foo
fi
done
It is syntactically correct, but it overlooks the fact that mx matches may generate e_temp_
failure exception, if the underlying DNS query has timed out (see Section 4.14.7 [Special
comparisons|, page 79). If this happens, mailfromd has no instructions on what to do next
and reports an error. This can easily be fixed using a catch statement, e.g.:

prog envfrom
do
# Catch DNS errors
catch e_temp_failure or e_failure
do
tempfail 451 4.1.1 "MX verification failed"
done

if $f mx matches "yahoo.com"
foo()
fi
done

Another common case are undefined Sendmail macros. In this case the e_macroundef
exception is generated:

RUNTIME ERROR near foo.c:34: Macro not defined: {client_adr}

These can be caused either by misspelling the macro name (as in the example message
above) or by failing to export the required name in Sendmail milter configuration (see
[exporting macros|, page 221). This error should be fixed either in your source code or
in sendmail.cf file, but if you wish to provide a special handling for it, you can use the
following catch statement:

catch e_macroundef
do
done
Sometimes the location indicated with the runtime error message is not enough to trace
the origin of the error. For example, an error can be generated explicitly with throw
statement (see [throw], page 97):
RUNTIME ERROR near match_cidr.mf:30: invalid CIDR (text)

If you look in module match_cidr.mf, you will see the following code (line numbers
added for reference):

23 func match_cidr(string ipstr, string cidr) returns number

24 do

25  number netmask

26

27  if cidr matches ’~(([0-9]1{1,3}\.){3}[0-9]1{1,3})/([0-9]1[0-9]7)"



48 Mailfromd Manual

28 return inet_aton(ipstr) & len_to_netmask(\3) = inet_aton(\1)
29 else

30 throw invcidr "invalid CIDR (%cidr)"

31 fi

32 return O

33 done

Now, it is obvious that the value of cidr argument to match_cidr was wrong, but how
to find the caller that passed the wrong value to it? The special command line option
--stack-trace is provided for this. This option enables dumping stack traces when a fatal
error occurs. The traces contain information about function calls. Continuing our example,
using the —-stack-trace option you will see the following diagnostics:

RUNTIME ERROR near match_cidr.mf:30: invalid CIDR (127%)
mailfromd: Stack trace:

mailfromd: 0077: match_cidr.mf:30: match_cidr

mailfromd: 0096: test.mf:13: bar

mailfromd: 0110: mailfromd.mf:18: foo

mailfromd: Stack trace finishes

mailfromd: Execution of the configuration program was not finished

Each trace line describes one stack frame. The lines appear in the order of most recently
called to least recently called. Each frame consists of:

1. Value of the program counter at the time of its execution;
2. Source code location, if available;
3. Name of the function called.
Thus, the example above can be read as: “the function match_cidr was called by the
function bar in file test.mf at line 13. This function was called from the function bar, in

file test.mf at line 13. In its turn, bar was called by the function foo, in file mailfromd.mf
at line 18”.

Examining caller functions will help you localize the source of the error and fix it.

You can also request a stack trace any place in your code, by calling the stack_trace
function. This can be useful for debugging, or in your catch statements.

3.20 Notes and Cautions

This section discusses some potential culprits in the MFL.

It is important to execute special caution when writing format strings for sprintf (see
Section 5.4 [String formatting], page 117) and strftime (see [strftime], page 161) functions.
They use ‘%’ as a character introducing conversion specifiers, while the same character is
used to expand a MFL variable within a string. To prevent this misinterpretation, always
enclose format specification in single quotes (see [singe-vs-double|, page 57). To illustrate
this, let’s consider the following example:

echo sprintf ("Mail from %s", $f)

If a variable s is not declared, this line will produce the ‘Variable s is not defined’
error message, which will allow you to identify and fix the bug. The situation is considerably
worse if s is declared. In that case you will see no warning message, as the statement is



Chapter 3: Tutorial 49

perfectly valid, but at the run-time the variable s will be interpreted within the format
string, and its value will replace %s. To prevent this from happening, single quotes must be
used:

echo sprintf (’Mail from %s’, $£f)

This does not limit the functionality, since there is no need to fall back to variable
interpretation in format strings.

Yet another dangerous feature of the language is the way to refer to variable and constant
names within literal strings. To expand a variable or a constant the same notation is used
(See Section 4.9 [Variables|, page 62, and see Section 4.8 [Constants], page 59). Now, lets
consider the following code:

const x 2
string x "X"

prog envirom
do

echo "X is ¥%x"
done

Does %x in echo refers to the variable or to the constant? The correct answer is ‘to the
variable’. When executed, this code will print ‘X is X’.

As of version 8.14, mailfromd will always print a diagnostic message whenever it stumbles
upon a variable having the same name as a previously defined constant or vice versa. The
resolution of such name clashes is described in detail in See [variable-constant shadowing],
page 84.

Future versions of the program may provide a non-ambiguous way of referring to variables
and constants from literal strings.






o1

4 Mail Filtering Language

The mail filtering language, or MFL, is a special language designed for writing filter scripts.
It has a simple syntax, similar to that of Bourne shell. In contrast to the most existing
programming languages, MFL does not have any special terminating or separating characters
(like, e.g. newlines and semicolons in shell)'. All syntactical entities are separated by any
amount of white-space characters (i.e. spaces, tabulations or newlines).

The following sections describe MFL syntax in detail.

4.1 Comments

Two types of comments are allowed: C-style, enclosed between ‘/*’ and ‘*/’, and shell-style,
starting with ‘# character and extending up to the end of line:
/* This is
a comment. */
# And this too.

)

There are, however, several special cases, where the characters following ‘#" are not

ignored.

If the first line begins with ‘#!/’ or ‘#! /’, this is treated as a start of a multi-line
comment, which is closed by the characters ‘!'#’ on a line by themselves. This feature
allows for writing sophisticated scripts. See Section 3.17.1 [top-block], page 36, for a detailed
description.

If ‘#’ is followed by word ‘include’ (with optional whitespace between them), this state-
ment requires inclusion of the specified file, as in €. There are two forms of the ‘#include’
statement:

1. #include <file>
2. #include "file"

The quotes around file in the second form quotes are optional.

Both forms are equivalent if file is an absolute file name. Otherwise, the first form will
look for file in the include search path. The second one will look for it in the current working
directory first, and, if not found there, in the include search path.

The default include search path is:
prefix/share/mailfromd/8.14/include
prefix/share/mailfromd/include

/usr/share/mailfromd/include

Ll s

/usr/local/share/mailfromd/include

Where prefix is the installation prefix.
New directories can be appended in front of it using -I (--include) command line
option, or include-path configuration statement (see Section 7.2 [conf-base|, page 202).
For example, invoking

$ mailfromd -I/var/mailfromd -I/com/mailfromd

1 There are two noteworthy exceptions: require and from ... import statements, which must be termi-
nated with a period. See Section 4.21.3 [import], page 102.



52 Mailfromd Manual

creates the following include search path

1. /var/mailfromd
/com/mailfromd
prefix/share/mailfromd/8.14/include
prefix/share/mailfromd/include

/usr/share/mailfromd/include

AN ol S

/usr/local/share/mailfromd/include
Along with #include, there is also a special form #include_once, that has the same
syntax:

#include_once <file>
#include_once "file"

This form works exactly as #include, except that, if the file has already been included,
it will not be included again. As the name suggests, it will be included only once.

This form should be used to prevent re-inclusions of a code, which can cause problems
due to function redefinitions, variable reassignments etc.

A line in the form
#line number "identifier"

causes the MFL compiler to believe, for purposes of error diagnostics, that the line number
of the next source line is given by number and the current input file is named by identifier.
If the identifier is absent, the remembered file name does not change.

4.2 Pragmatic comments

If ‘4’ is immediately followed by word ‘pragma’ (with optional whitespace between them),
such a construct introduces a pragmatic comment, i.e. an instruction that controls some
configuration setting.

The available pragma types are described in the following subsections.

4.2.1 Pragma prereq

The #pragma prereq statement ensures that the correct mailfromd version is used to com-
pile the source file it appears in. It takes version number as its arguments and produces a
compilation error if the actual mailfromd version number is earlier than that. For example,
the following statement:

#pragma prereq 7.0.94

results in error if compiled with mailfromd version 7.0.93 or prior.

4.2.2 Pragma stacksize

The stacksize pragma sets the initial size of the run-time stack and may also define the
policy of its growing, in case it becomes full. The default stack size is 4096 words. You may
need to increase this number if your configuration program uses recursive functions or does
an excessive amount of string manipulations.



Chapter 4: Mail Filtering Language 53

stacksize size [incr [max]] [pragmal
Sets stack size to size units. Optional incr and max define stack growth policy (see
below). The default units are words. The following example sets the stack size to
7168 words:
#pragma stacksize 7168

The size may end with a unit size suffix:

Suffix Meaning

k Kiloword, i.e. 1024 words

m Megawords, i.e. 1048576 words
g Gigawords,

t Terawords (ouch!)

Table 4.1: Unit Size Suffix

File suffixes are case-insensitive, so the following two pragmas are equivalent and set
the stack size to 7x1048576 = 7340032 words:

#pragma stacksize 7m
#pragma stacksize 7M

When the MFL engine notices that there is no more stack space available, it attempts
to expand the stack. If this attempt succeeds, the operation continues. Otherwise, a
runtime error is reported and the execution of the filter stops.

The optional incr argument to #pragma stacksize defines growth policy for the stack.
Two growth policies are implemented: fixed increment policy, which expands stack in
a fixed number of expansion chunks, and exponential growth policy, which duplicates
the stack size until it is able to accommodate the needed number of words. The fixed
increment policy is the default. The default chunk size is 4096 words.

If incr is the word ‘twice’, the duplicate policy is selected. Otherwise incr must be a
positive number optionally suffixed with a size suffix (see above). This indicates the
expansion chunk size for the fixed increment policy.

The following example sets initial stack size to 10240, and expansion chunk size to
2048 words:

#pragma stacksize 10M 2K
The pragma below enables exponential stack growth policy:
#pragma stacksize 10240 twice

In this case, when the run-time evaluator hits the stack size limit, it expands the
stack to twice the size it had before. So, in the example above, the stack will be
sequentially expanded to the following sizes: 20480, 40960, 81920, 163840, etc.

The optional max argument defines the maximum size of the stack. If stack grows
beyond this limit, the execution of the script will be aborted.

If you are concerned about the execution time of your script, you may wish to avoid stack
reallocations. To help you find out the optimal stack size, each time the stack is expanded,
mailfromd issues a warning in its log file, which looks like this:

warning: stack segment expanded, new size=8192



54 Mailfromd Manual

You can use these messages to adjust your stack size configuration settings.

4.2.3 Pragma regex

The ‘#pragma regex’, controls compilation of regular expressions. You can use any number
of such pragma directives in your mailfromd.mf. The scope of ‘#pragma regex’ extends to
the next occurrence of this directive or to the end of the script file, whichever occurs first.

regex [push|pop| flags [pragmal
The optional push|pop parameter is one of the words ‘push’ or ‘pop’ and is discussed
in detail below. The flags parameter is a whitespace-separated list of regex flags.
Each regex-flag is a word specifying some regex feature. It can be preceded by ‘+’ to
enable this feature (this is the default), by ‘-’ to disable it or by ‘=’ to reset regex
flags to its value. Valid regex-flags are:

‘extended’
Use POSIX Extended Regular Expression syntax when interpreting regex.
If not set, POSIX Basic Regular Expression syntax is used.

‘icase’ Do not differentiate case. Subsequent regex searches will be case insensi-
tive.
‘newline’ Match-any-character operators don’t match a newline.

A non-matching list (‘[~...]") not containing a newline does not match
a newline.

Match-beginning-of-line operator (‘~’) matches the empty string imme-
diately after a newline.
Match-end-of-line operator (‘$’) matches the empty string immediately
before a newline.
For example, the following pragma enables POSIX extended, case insensitive matching
(a good thing to start your mailfromd.mf with):

#pragma regex +extended +icase

Optional modifiers ‘push’ and ‘pop’ can be used to maintain a stack of regex flags. The
statement

#pragma regex push [flags]
saves current regex flags on stack and then optionally modifies them as requested by flags.
The statement
#pragma regex pop [flags]
does the opposite: restores the current regex flags from the top of stack and applies flags
to it.
This statement is useful in module and include files to avoid disturbing user regex set-
tings. E.g.:
#pragma regex push +extended +icase

#pragma regex pop



Chapter 4: Mail Filtering Language 55

4.2.4 Pragma dbprop
dbprop pattern prop . .. [pragmal]
This pragma configures properties for a DBM database. See Section 5.25 [Database

functions], page 157, for its detailed description.

4.2.5 Pragma greylist

greylist type [pragmal
Selects the greylisting implementation to use. Allowed values for type are:
traditional
gray Use the traditional greylisting implementation. This is the default.

con-tassios
ct Use Con Tassios greylisting implementation.

See [greylisting types]|, page 28, for a detailed description of these greylisting imple-
mentations.

Notice, that this pragma can be used only once. A second use of this pragma would
constitute an error, because you cannot use both greylisting implementations in the same
program.

4.2.6 Pragma miltermacros

miltermacros handler macro . .. [pragmal]
Declare that the Milter stage handler uses MTA macro listed as the rest of arguments.
The handler must be a valid handler name (see Section 4.11 [Handlers], page 66).

The mailfromd parser collects the names of the macros referred to by a ‘$name’ con-
struct within a handler (see Section 4.7 [Sendmail Macros|, page 59) and declares them
automatically for corresponding handlers. It is, however, unable to track macros used in
functions called from handler as well as those referred to via getmacro and macro_defined
functions. Such macros should be declared using ‘#pragma miltermacros’.

During initial negotiation with the MTA, mailfromd will ask it to export the macro
names declared automatically or by using the ‘#pragma miltermacros’. The MTA is free to
honor or to ignore this request. In particular, Sendmail versions prior to 8.14.0 and Postfix
versions prior to 2.5 do not support this feature. If you use one of these, you will need to
export the needed macros explicitly in the MTA configuration. For more details, refer to
the section in Chapter 9 [MTA Configuration], page 221, corresponding to your MTA type.

4.2.7 Pragma provide-callout

The #pragma provide-callout statement is used in the callout module to inform
mailfromd that the module has been loaded.

Do not use this pragma.



56 Mailfromd Manual

4.3 Data Types

The mailfromd filter script language operates on entities of two types: numeric and string.

The numeric type is represented internally as a signed long integer. Depending on the
machine architecture, its size can vary. For example, on machines with Intel-based CPUs it
is 32 bits long.

A string is a string of characters of arbitrary length. Strings can contain any characters
except ASCII NUL.

There is also a generic pointer, which is designed to facilitate certain operations. It
appears only in body handler. See [body handler], page 69, for more information about it.

4.4 Numbers

A decimal number is any sequence of decimal digits, not beginning with ‘0’.
An octal number is ‘0’ followed by any number of octal digits (‘0 through ‘7’), for
example: 0340.

A hex number is ‘0%’ or ‘0X’ followed by any number of hex digits (‘0’ through ‘9’ and
‘a’ through ‘f’ or ‘A’ through ‘F’), for example: 0x3ef1.

4.5 Literals

A literal is any sequence of characters enclosed in single or double quotes.

After tempfail and reject actions two special kinds of literals are recognized: three-
digit numeric values represent RFC 2821 reply codes, and literals consisting of tree digit
groups separated by dots represent an extended reply code as per RFC 1893/2034. For
example:

510 # A reply code
5.7.1 # An extended reply code

Double-quoted strings

String literals enclosed in double quotation marks (double-quoted strings) are subject to
backslash interpretation, macro expansion, variable interpretation and back reference inter-
pretation.

Backslash interpretation is performed at compilation time. It consists in replacing the
following escape sequences with the corresponding single characters:

Sequence Replaced with

\a Audible bell character (ASCII 7)

\b Backspace character (ASCII 8)

\f Form-feed character (ASCII 12)

\n Newline character (ASCII 10)

\r Carriage return character (ASCII 13)

\t Horizontal tabulation character (ASCII 9)
\v Vertical tabulation character (ASCII 11)

Table 4.2: Backslash escapes



Chapter 4: Mail Filtering Language 57

In addition, the sequence ‘\newline’ has the same effect as ‘\n’, for example:

"a string with)\
embedded newline"
"a string with\n embedded newline"

Any escape sequence of the form ‘\xhh’, where h denotes any hex digit is replaced with
the character whose ASCII value is hh. For example:

"\x61nother" = "another"

Similarly, an escape sequence of the form ‘\Oooo’, where o is an octal digit, is replaced
with the character whose ASCII value is ooo.

Macro expansion and variable interpretation occur at run-time. During these phases
all Sendmail macros (see Section 4.7 [Sendmail Macros|, page 59), mailfromd variables
(see Section 4.9 [Variables], page 62), and constants (see Section 4.8 [Constants], page 59)
referenced in the string are replaced by their actual values. For example, if the Sendmail
macro f has the value ‘postmaster@gnu.org.ua’ and the variable last_ip has the value
127.0.0.1’, then the string?

"$f last connected from %last_ip;"
will be expanded to
"postmaster@gnu.org.ua last connected from 127.0.0.1;"

A back reference is a sequence ‘\d’, where d is a decimal number. It refers to the dth
parenthesized subexpression in the last matches statement®. Any back reference occurring
within a double-quoted string is replaced by the value of the corresponding subexpression.
See Section 4.14.7 [Special comparisons], page 79, for a detailed description of this process.
Back reference interpretation is performed at run time.

Single-quoted strings
Any characters enclosed in single quotation marks are read unmodified.

The following examples contain pairs of equivalent strings:

Implementation note: actually, the references are not interpreted within the string, instead, each such
string is split at compilation time into a series of concatenated atoms. Thus, our sample string will
actually be compiled as:

$f . " last connected from " . last_ip . ";"

See Section 4.14.3 [Concatenation], page 78, for a description of this construct. You can easily see how
various strings are interpreted by using --dump-tree option (see [-dump-tree], page 216). In this case,
it will produce:

CONCAT:
CONCAT:
CONCAT:
SYMBOL: £
CONSTANT: " last connected from "
VARIABLE last_ip (13)
CONSTANT: ";"

3 The subexpressions are numbered by the positions of their opening parentheses, left to right.



58 Mailfromd Manual

"a string"
’a string’

BN CLANOES
ANCEAVEE

Notice the last example. Single quotes are particularly useful in writing regular expres-
sions (see Section 4.14.7 [Special comparisons|, page 79).

4.6 Here Documents

Here-document is a special form of a string literal is, allowing to specify multiline strings
without having to use backslash escapes. The format of here-documents is:

<<[flags] word

word

The <<word construct instructs the parser to read all the following lines up to the line
containing only word, with possible trailing blanks. The lines thus read are concatenated
together into a single string. For example:

set str <<EOT
A multiline
string

EOT

The body of a here-document is interpreted the same way as double-quoted strings
(see [Double-quoted strings|, page 56). For example, if Sendmail macro £ has the value
jsmith@some.com and the variable count is set to 10, then the following string:

set s <<EOT

<$f> has tried to send %count mails.
Please see docs for more info.

EOT

will be expanded to:

<jsmith@some.com> has tried to send 10 mails.
Please see docs for more info.

If the word is quoted, either by enclosing it in single quote characters or by prepend-
ing it with a backslash, all interpretations and expansions within the document body are
suppressed. For example:

set s <<’EQT’

The following line is read verbatim:
<$f> has tried to send %count mails.
Please see docs for more info.

EOT

Optional flags in the here-document construct control the way leading white space is
handled. If flags is - (a dash), then all leading tab characters are stripped from input lines
and the line containing word. Furthermore, if - is followed by a single space, all leading



Chapter 4: Mail Filtering Language 59

whitespace is stripped from them. This allows here-documents within configuration scripts
to be indented in a natural fashion. Examples:
<<- TEXT
<$f> has tried to send %count mails.
Please see docs for more info.
TEXT

Here-documents are particularly useful with reject actions (see [reject], page 86.

4.7 Sendmail Macros

Sendmail macros are referenced exactly the same way they are in sendmail. cf configuration
file, i.e. ‘$name’, where name represents the macro name. Notice, that the notation is the
same for both single-character and multi-character macro names. For consistency with the
Sendmail configuration the ‘${name}’ notation is also accepted.

Another way to reference Sendmail macros is by using function getmacro (see Section 5.1
[Macro access|, page 111).

Sendmail macros evaluate to string values.

Notice, that to reference a macro, you must properly export it in your MTA configuration.

Attempt to reference a not exported macro will result in raising a e_macroundef exception
at the run time (see [uncaught exceptions|, page 46).

4.8 Constants

A constant is a symbolic name for an MFL value. Constants are defined using const
statement:

[qualifier] const name expr
where name is an identifier, and expr is any valid MFL expression evaluating immediately
to a constant literal or numeric value. Optional qualifier defines the scope of visibility for
that constant (see Section 4.21.2 [scope of visibility], page 102): either public or static.

Once defined, any appearance of name in the program text is replaced by its value. For

example:

const x 10/5

const text "X is "

defines the numeric constant ‘x’ with the value ‘5’, and the literal constant ‘text’ with the

value ‘X is .

A special construct is provided to define a series of numeric constants (an enumeration):
[qualifier] const
do
name0 [expr0]
namel [expri]

namelN [exprN]
done
Each exprN, if present, must evaluate to a constant numeric expression. The resulting value
will be assigned to constant nameN. If exprN is not supplied, the constant will be defined
to the value of the previous constant plus one. If expr0 is not supplied, 0 is assumed.



60 Mailfromd Manual

For example, consider the following statement
const

do

A
B
C 10
D

done
This defines ‘A’ to 0, ‘B’ to 1, ‘C’ to 10 and ‘D’ to 11.

As a matter of fact, exprN may also evaluate to a constant string expression, provided
that all expressions in the enumeration ‘const’ statement are provided. That is, the fol-
lowing is correct:

const
do
n one n
IItwoll
"three"
D "four"
done

Qw =

whereas the following is not:

const
do
A "one"
B
C "three"
D "four"
done

Trying to compile the latter example will produce:
mailfromd: filename:5.3: initializer element is not numeric

which means that mailfromd was trying to create constant ‘B’ with the value of ‘A’ incre-
mented by one, but was unable to do so, because the value in question was not numeric.

Constants can be used in normal MFL expressions as well as in literals. To expand a
constant within a literal string, prepend a percent sign to its name, e.g.:

echo "New %text %x" = "New X is 2"

This way of expanding constants creates an ambiguity if there happen to be a vari-
able of the same name as the constant. See [variable—constant clashes|, page 49, for more
information of this case and ways to handle it.

4.8.1 Built-in constants

Several constants are built into the MFL compiler. To discern them from user-defined ones,
their names start and end with two underscores (‘__’).

The following constants are defined in mailfromd version 8.14:

string __file__ [Built-in constant]
FExpands to the name of the current source file.



Chapter 4: Mail Filtering Language 61

string __function__ [Built-in constant]
Expands to the name of the current lexical context, i.e. the function or handler name.

string __git__ [Built-in constant]
This built-in constant is defined for alpha versions only. Its value is the Git tag of the
recent commit corresponding to that version of the package. If the release contains
some uncommitted changes, the value of the ‘__git__’ constant ends with the suffix
‘~dirty’.

number __line__
Expands to the current line number in the input source file.

[Built-in constant]

number __major__ [Built-in constant]
Expands to the major version number.

The following example uses __major__ constant to determine if some

version-dependent feature can be used:

if __major__ > 2
# Use some version-specific feature
fi

number __minor__ [Built-in constant]
Expands to the minor version number.

string __module__ [Built-in constant]
Expands to the name of the current module (see Section 4.21 [Modules], page 101).

string __package__ [Built-in constant]
Expands to the package name (‘mailfromd’)

number __patch__ [Built-in constant]
For alpha versions and maintenance releases expands to the version patch level. For
stable versions, expands to ‘0.

string __defpreproc__ [Built-in constant]
Expands to the default external preprocessor command line, if the preprocessor is
used, or to an empty string if it is not, e.g.:
__defpreproc__ = "/usr/bin/m4 -s"

See Section 4.22 [Preprocessor], page 103, for information on preprocessor and its
features.

string __preproc__ [Built-in constant]
Expands to the current external preprocessor command line, if the preprocessor is
used, or to an empty string if it is not. Notice, that it equals __defpreproc__,
unless the preprocessor was redefined using --preprocessor command line option
(see Section 4.22 [Preprocessor], page 103).

string __version__ [Built-in constant]
Expands to the textual representation of the program version (e.g. ‘3.0.90’)



62 Mailfromd Manual

string __defstatedir__
Expands to the default state directory (see [statedir], page 11).

[Built-in constant]

string __statedir__ [Built-in constant]
Expands to the current value of the program state directory (see [statedir], page 11).
Notice, that it is the same as __defstatedir__ unless the state directory was rede-
fined at run time.

Built-in constants can be used as variables, this allows to expand them within strings or
here-documents. The following example illustrates the common practice used for debugging
configuration scripts:

func foo(number x)
do
echo "Y%__file__:%__line__:

foo called with arg %x"
done
If the function foo were called in line 28 of the script file /etc/mailfromd.mf, like this:

f00(10), you will see the following string in your logs:
/etc/mailfromd.mf:28: foo called with arg 10

4.9 Variables

Variables represent regions of memory used to hold variable data. These memory regions
are identified by variable names. A variable name must begin with a letter or underscore
and must consist of letters, digits and underscores.

Each variable is associated with its scope of visibility, which defines the part of source
code where it can be used (see Section 4.21.2 [scope of visibility], page 102). Depending
on the scope, we discern three main classes of variables: public, static and automatic (or
local).

Public variables have indefinite lexical scope, so they may be referred to anywhere in the
program. Static are variables visible only within their module (see Section 4.21 [Modules],
page 101). Automatic or local variables are visible only within the given function or handler.

Public and static variables are sometimes collectively called global.

These variable classes occupy separate namespaces, so that an automatic variable can
have the same name as an existing public or static one. In this case this variable is said
to shadow its global counterpart. All references to such a name will refer to the automatic
variable until the end of its scope is reached, where the global one becomes visible again.

Likewise, a static variable may have the same name as a static variable defined in another
module. However, it may not have the same name as a public variable.

A variable is declared using the following syntax:
[qualifiers] type name

where name is the variable name, type is the type of the data it is supposed to hold. It is
‘string’ for string variables and ‘number’ for numeric ones.

For example, this is a declaration of a string variable ‘var’:

string var



Chapter 4: Mail Filtering Language 63

If a variable declaration occurs within a function (see Section 4.13 [Functions|, page 72)
or handler (see Section 4.11 [Handlers|, page 66), it declares an automatic variable, local to
this function or handler. Otherwise, it declares a global variable.

Optional qualifiers are allowed only in global declarations, i.e. in the variable declarations
that appear outside of functions. They specify the scope of the variable. The public quali-
fier declares the variable as public and the static qualifier declares it as static. The default
scope is ‘public’, unless specified otherwise in the module declaration (see Section 4.21.1
[module structure], page 101).

Additionally, qualifiers may contain the word precious, which instructs the compiler to
mark this variable as precious. (see Section 3.10 [precious variables|, page 23). The value of
the precious variable is not affected by the SMTP ‘RSET’ command. If both scope qualifier
and precious are used, they may appear in any order, e.g.:

static precious string rcpt_list
or
precious static string rcpt_list

Declaration can be followed by any valid MFL expression, which supplies the initial value
or initializer for the variable, for example:

string var "test"

A variable declared without initializer is implicitly initialized to a null value, no matter
what its scope: a numeric variable assumes initial value 0, a string variables is initialized
to an empty string.

A variable is assigned a value using the set statement:
set name expr

where name is the variable name and expr is a mailfromd expression (see Section 4.14
[Expressions]|, page 78). The effect of this statement is that the expr is evaluated and the
value it yields is assigned to the variable name.

If the set statement is located outside a function or handler definition, the expr must
be a constant expression, i.e. the compiler should be able to evaluate it immediately.

It is not an error to assign a value to a variable that is not declared. In this case
the assignment first declares a global or automatic variable having the type of expr and
then assigns a value to it. Automatic variable is created if the assignment occurs within a
function or handler, global variable is declared if it occurs at topmost lexical level. This is
called implicit variable declaration.

In the MFL program, variables are referenced by their name. When appearing inside
a double-quoted string, variables are referenced using the notation ‘)name’. Any variable
being referenced must have been declared earlier (either explicitly or implicitly).

4.9.1 Predefined Variables
Several variables are predefined. In mailfromd version 8.14 these are:
Predefined Variable number cache_used [Variable]

This variable is set by stdpoll and strictpoll built-ins (and, consequently, by the
on poll statement). Its value is ‘1’ if the function used the cached data instead of



64 Mailfromd Manual

directly polling the host, and ‘0’ if the polling took place. See Section 5.20 [SMTP
Callout functions], page 145.

You can use this variable to make your reject message more informative for the remote
party. The common paradigm is to define a function, returning empty string if the
result was obtained from polling, or some notice if cached data were used, and to use
the function in the reject text, for example:

func cachestr() returns string
do
if cache_used
return "[CACHED] "
else
return ""
fi
done

Then, in prog envfrom one can use:

on poll $f
do
when not_found or failure:
reject 550 5.1.0 cachestr() . "Sender validity not confirmed"
done
string clamav_virus_name [Predefined Variable]

Name of virus identified by ClamAV. Set by clamav function (see Section 5.29.3
[ClamAV], page 172).

number greylist_seconds_left [Predefined Variable]
Number of seconds left to the end of greylisting period. Set by greylist and is_
greylisted functions (see Section 5.32 [Special test functions|, page 174).

string ehlo_domain [Predefined Variable]
Name of the domain used by polling functions in SMTP EHLO or HELO command.
Default value is the fully qualified domain name of the host where mailfromd is run.
See Section 4.20 [Polling], page 97.

Predefined Variable string last_poll_greeting [Variable]
Callout functions (see Section 5.20 [SMTP Callout functions], page 145) set this
variable before returning. It contains the initial SMTP reply from the last polled
host.

Predefined Variable string last_poll_helo [Variable]
Callout functions (see Section 5.20 [SMTP Callout functions], page 145) set this
variable before returning. It contains the reply to the HELO (EHLO) command, received
from the last polled host.

Predefined Variable string last_poll_host [Variable]
Callout functions (see Section 5.20 [SMTP Callout functions], page 145) set this
variable before returning. It contains the host name or IP address of the last polled
host.



Chapter 4: Mail Filtering Language 65

Predefined Variable string last_poll_recv [Variable]
Callout functions (see Section 5.20 [SMTP Callout functions], page 145) set this
variable before returning. It contains the last SMTP reply received from the remote
host. In case of multi-line replies, only the first line is stored. If nothing was received
the variable contains the string ‘nothing’.

Predefined Variable string last_poll_sent [Variable]
Callout functions (see Section 5.20 [SMTP Callout functions], page 145) set this
variable before returning. It contains the last SMTP command sent to the polled
host. If nothing was sent, last_poll_sent contains the string ‘nothing’.

string mailfrom_address [Predefined Variable]
Email address used by polling functions in SMTP MAIL FROM command (see
Section 4.20 [Polling], page 97.). Default is ‘<>’. Here is an example of how to
change it:

set mailfrom_address "postmaster@my.domain.com"

You can set this value to a comma-separated list of email addresses, in which case
the probing will try each address until either the remote party accepts it or the list
of addresses is exhausted, whichever happens first.

It is not necessary to enclose emails in angle brackets, as they will be added automat-
ically where appropriate. The only exception is null return address, when used in a
list of addresses. In this case, it should always be written as ‘<>’. For example:

set mailfrom_address "postmaster@my.domain.com, <>"

number sa_code [Predefined Variable]
Spam score for the message, set by sa function (see [sa], page 166).

number rcpt_count [Predefined Variable]
The variable rcpt_count keeps the number of recipients given so far by RCPT TO
commands. It is defined only in ‘envrcpt’ handlers.

number sa_threshold [Predefined Variable]
Spam threshold, set by sa function (see [sa], page 166).

string sa_keywords [Predefined Variable]
Spam keywords for the message, set by sa function (see [sa], page 166).

number safedb_verbose [Predefined Variable]
This variable controls the verbosity of the exception-safe database functions. See
[safedb_verbose], page 159.

4.10 Back references

A back reference is a sequence ‘\d’, where d is a decimal number. It refers to the dth
parenthesized subexpression in the last matches statement®. Any back reference occurring

4 The subexpressions are numbered by the positions of their opening parentheses, left to right.



66 Mailfromd Manual

within a double-quoted string is replaced with the value of the corresponding subexpression.
For example:

if $f matches ’.*@\(.*\)\.gnu\.org\.ua’
set host \1
fi
If the value of £ macro is ‘smith@unza.gnu.org.ua’, the above code will assign the
string ‘unza’ to the variable host.

Notice, that each occurrence of matches will reset the table of back references, so try to
use them as early as possible. The following example illustrates a common error, when the
back reference is used after the reference table has been reused by another matching:

# Wrong!
if $f matches ’.*@\(.*\)\.gnu\.org\.ua’
if $f matches ’some.*’
set host \1
fi
fi
This will produce the following run time error:
mailfromd: RUNTIME ERROR near file.mf:3: Invalid back-reference number
because the inner match (‘some.*’) does not have any parenthesized subexpressions.

See Section 4.14.7 [Special comparisons|, page 79, for more information about matches
operator.

4.11 Handlers

Milter stage handler (or handler, for short) is a subroutine responsible for processing a
particular milter state. There are eight handlers available. Their order of invocation and
arguments are described in Figure 3.1.

A handler is defined using the following construct:

prog handler—-name
do

handler-body
done

where handler-name is the name of the handler (see [handler names|, page 13), handler-body
is the list of filter statements composing the handler body. Some handlers take arguments,
which can be accessed within the handler-body using the notation $n, where n is the ordinal
number of the argument. Here we describe the available handlers and their arguments:

connect (string $1, number $2, number $3, string $4) [Handler]

Invocation:
This handler is called once at the beginning of each SMTP connection.

Arguments:
1. string; The host name of the message sender, as reported by MTA.
Usually it is determined by a reverse lookup on the host address.
If the reverse lookup fails, ‘$1’ will contain the message sender’s IP
address enclosed in square brackets (e.g. ‘[127.0.0.11").



Chapter 4: Mail Filtering Language 67

2. number; Socket address family. You need to require the ‘status’
module to get symbolic definitions for the address families. Sup-
ported families are:

Constant Value Meaning

FAMILY_STDIO 0 Standard input/output (the
MTA is run with -bs option)

FAMILY_UNIX 1 UNIX socket

FAMILY _INET 2 IPv4 protocol

FAMILY_INET6 3 IPv6 protocol

Table 4.3: Supported socket families
3. number; Port number if ‘$2’ is ‘FAMILY_INET’.

4. string; Remote IP address if ‘$2’ is ‘FAMILY_INET or full file name
of the socket if ‘$2’ is ‘FAMILY_UNIX . If ‘$2’ is ‘FAMILY_STDIO’, ‘$4’
is an empty string.

The actions (see Section 4.16.1 [Actions|, page 85) appearing in this handler are
handled by Sendmail in a special way. First of all, any textual message is ignored.
Secondly, the only action that immediately closes the connection is tempfail 421.
Any other reply codes result in Sendmail switching to nullserver mode, where it
accepts any commands, but answers with a failure to any of them, except for the
following: QUIT, HELO, NOOP, which are processed as usual.

The following table summarizes the Sendmail behavior depending on the action used:
tempfail 421 excode message
The caller is returned the following error message:
421 4.7.0 hostname closing connection
Both excode and message are ignored.
tempfail 4xx excode message
(where xx represents any digits, except ‘21’) Both excode and message

are ignored. Sendmail switches to nullserver mode. Any subsequent com-
mand, excepting the ones listed above, is answered with

454 4.3.0 Please try again later
reject 5xx excode message
(where xx represents any digits). All arguments are ignored. Sendmail

switches to nullserver mode. Any subsequent command, excepting ones
listed above, is answered with

550 5.0.0 Command rejected
Regarding reply codes, this behavior complies with RFC 2821 (section 3.9), which
states:

An SMTP server must not intentionally close the connection except:

[ ]

- After detecting the need to shut down the SMTP service and returning



68

helo

Mailfromd Manual

a 421 response code. This response code can be issued after the server
receives any command or, if necessary, asynchronously from command
receipt (on the assumption that the client will receive it after the next
command is issued).

However, the RFC says nothing about textual messages and extended error codes,
therefore Sendmail’s ignoring of these is, in my opinion, absurd. My practice shows
that it is often reasonable, and even necessary, to return a meaningful textual message
if the initial connection is declined. The opinion of mailfromd users seems to support
this view. Bearing this in mind, mailfromd is shipped with a patch for Sendmail,
which makes it honor both extended return code and textual message given with
the action. Two versions are provided: etc/sendmail-8.13.7.connect.diff, for
Sendmail versions 8.13.x, and etc/sendmail-8.14.3.connect.diff, for Sendmail
versions 8.14.3.

(string $1) [Handler]

Invocation:
This handler is called whenever the SMTP client sends HELO or EHLO
command. Depending on the actual MTA configuration, it can be called
several times or even not at all.

Arguments:
1. string; Argument to HELO (EHLO) commands.

Notes: According to RFC 28221, $1 must be domain name of the sending host,
or, in case this is not available, its IP address enclosed in square brackets.
Be careful when taking decisions based on this value, because in practice
many hosts send arbitrary strings. We recommend to use heloarg_test
function (see [heloarg_test], page 174) if you wish to analyze this value.

envfrom (string $1, string $2) [Handler]

Invocation:
Called when the SMTP client sends MAIL FROM command, i.e. once at the
beginning of each message.

Arguments:
1. string; First argument to the MAIL FROM command, i.e. the email
address of the sender.

2. string; Rest of arguments to MAIL FROM separated by space charac-
ter. This argument can be ‘""’.
Notes

1. $1 is not the same as $f Sendmail variable, because the latter con-
tains the sender email after address rewriting and normalization,
while $1 contains exactly the value given by sending party.

2. When the array type is implemented, $2 will contain an array of
arguments.



Chapter 4: Mail Filtering Language 69

envrcpt (string $1, string $2) [Handler]

Invocation:
Called once for each RCPT TO command, i.e. once for each recipient, im-
mediately after envfrom.

Arguments:
1. string; First argument to the RCPT TO command, i.e. the email
address of the recipient.
2. string; Rest of arguments to RCPT TO separated by space character.
This argument can be ‘""’.
Notes: When the array type is implemented, $2 will contain an array of argu-
ments.
data () [Handler]
Invocation:

Called after the MTA receives SMTP ‘DATA’ command. Notice that this
handler is not supported by Sendmail versions prior to 8.14.0 and Postfix
versions prior to 2.5.

Arguments:
None
header (string $1, string $2) [Handler]
Invocation:
Called once for each header line received after SMTP DATA command.
Arguments:

1. string; Header field name.

2. string; Header field value. The content of the header may include
folded white space, i.e., multiple lines with following white space
where lines are separated by LF (ASCII 10). The trailing line termi-
nator (CR/LF) is removed.

eoh [Handler|
Invocation:

This handler is called once per message, after all headers have been sent
and processed.

Arguments:
None.

body (pointer $1, number $2) [Handler]

Invocation:
This header is called zero or more times, for each piece of the message
body obtained from the remote host.

Arguments:
1. pointer; Piece of body text. See ‘Notes’ below.

2. number; Length of data pointed to by $1, in bytes.



70

Notes:

Mailfromd Manual

The first argument points to the body chunk. Its size may be quite
considerable and passing it as a string may be costly both in terms of
memory and execution time. For this reason it is not passed as a string,
but rather as a generic pointer, i.e. an object having the same size as
number, which can be used to retrieve the actual contents of the body
chunk if the need arises.

A special function body_string is provided to convert this object to a
regular MFL string (see Section 5.14 [Mail body functions|, page 137).
Using it you can collect the entire body text into a single global variable,
as illustrated by the following example:

string text

prog body
do

set text text . body_string($1,$2)
done

The text collected this way can then be used in the eom handler (see below) to parse
and analyze it.

If you wish to analyze both the headers and mail body, the following code fragment will
do that for you:

eom

string text

# Collect all headers.
prog header

do

set text text . $1 . ": " . $2 . "\n"

done

# Append terminating newline to the headers.

prog eoh
do

set text "Ytext\n"

done

# Collect message body.

prog body
do

set text text . body_string($1, $2)

done

Invocation:

Arguments:

[Handler]

This handler is called once per message, when the terminating dot after
DATA command has been received.

None



Chapter 4: Mail Filtering Language 71

Notes: This handler is useful for calling message capturing functions, such as
sa or clamav. For more information about these, refer to Section 5.29
[Interfaces to Third-Party Programs|, page 165.

For your reference, the following table shows each handler with its arguments:

Handler $1 $2 $3 $4
connect Hostname Socket Family  Port Remote address
helo HELO domain N/A N/A N/A
envirom Sender  email Rest of N/A N/A
address arguments
envrept Recipient email Rest of N/A N/A
address arguments
header Header name Header value N/A N/A
eoh N/A N/A N/A N/A
body Body segment Length of N/A N/A
(pointer) the  segment
(numeric)
eom N/A N/A N/A N/A

Table 4.4: State Handler Arguments

4.12 The ‘begin’ and ‘end’ special handlers

Apart from the milter handlers described in the previous section, MFL defines two special
handlers, called ‘begin’ and ‘end’, which supply startup and cleanup instructions for the
filter program.

The ‘begin’ special handler is executed once for each SMTP session, after the connection
has been established but before the first milter handler has been called. Similarly, the ‘end’
handler is executed exactly once, after the connection has been closed. Neither of them
takes any arguments.

The two handlers are defined using the following syntax:

# Begin handler
begin
do

done
# End handler

end
do

done
where ‘...’ represent any MFL statements.

An MFL program may have multiple ‘begin’ and ‘end’ definitions. They can be inter-
mixed with other definitions. The compiler combines all ‘begin’ statements into a single



72 Mailfromd Manual

one, in the order they appear in the sources. Similarly, all ‘end’ blocks are concatenated
together. The resulting ‘begin’ is called once, at the beginning of each SMTP session, and
‘end’ is called once at its termination.

Multiple ‘begin’ and ‘end’ handlers are a useful feature for writing modules (see
Section 4.21 [Modules], page 101), because each module can thus have its own initialization
and cleanup blocks. Notice, however, that in this case the order in which subsequent
‘begin’ and ‘end’ blocks are executed is not defined. It is only warranted that all ‘begin’
blocks are executed at startup and all ‘end’ blocks are executed at shutdown. It is also
warranted that all ‘begin’ and ‘end’ blocks defined within a compilation unit (i.e. a single
abstract source file, with all #include and #include_once statements expanded in place)
are executed in order of their appearance in the unit.

Due to their special nature, the startup and cleanup blocks impose certain restrictions
on the statements that can be used within them:

1. return cannot be used in ‘begin’ and ‘end’ handlers.

2. The following Sendmail actions cannot be used in them: accept, continue, discard,
reject, tempfail. They can, however, be used in catch statements, declared in
‘begin’ blocks (see example below).

3. Header manipulation actions (see [header manipulation], page 86) cannot be used in
‘end’ handler.

The ‘begin’ handlers are the usual place to put global initialization code to. For example,
if you do not want to use DNS caching, you can do it this way:
begin
do
db_set_active("dns", 0)
done

Additionally, you can set up global exception handling routines there. For example, the
following ‘begin’ statement installs a handler for all exceptions not handled otherwise that
logs the exception along with the stack trace and continues processing the message:

begin
do
catch *
do
echo "Caught exception $1: $2"
stack_trace()
continue
done
done

4.13 Functions

A function is a named mailfromd subroutine, which takes zero or more parameters and
optionally returns a certain value. Depending on the return value, functions can be sub-
divided into string functions and number functions. A function may have mandatory and
optional parameters. When invoked, the function must be supplied exactly as many actual
arguments as the number of its mandatory parameters.



Chapter 4: Mail Filtering Language 73

Functions are invoked using the following syntax:
name (args)

where name is the function name and args is a comma-separated list of expressions. For
example, the following are valid function calls:

foo(10)
interval("1 hour")
greylist("/var/my.db", 180)

The number of parameters a function takes and their data types compose the function
signature. When actual arguments are passed to the function, they are converted to types
of the corresponding formal parameters.

There are two major groups of functions: built-in functions, that are implemented in
the mailfromd binary, and user-defined functions, that are written in MFL. The invocation
syntax is the same for both groups.

Mailfromd is shipped with a rich set of library functions. These are described in
Chapter 5 [Library|, page 111. In addition to these you can define your own functions.

Function definitions can appear anywhere between the handler declarations in a filter
program, the only requirement being that the function definition occur before the place
where the function is invoked.

The syntax of a function definition is:

[qualifier] func name (param-decl) returns data-type
do

function-body
done

where name is the name of the function to define, param-decl is a comma-separated list of
parameter declarations. The syntax of the latter is the same as that of variable declarations
(see Section 4.9 [Variables], page 62), i.e.:

type name
declares the parameter name having the type type. The type is string or number.

Optional qualifier declares the scope of visibility for that function (see Section 4.21.2
[scope of visibility|, page 102). It is similar to that of variables, except that functions
cannot be local (i.e. you cannot declare function within another function).

The public qualifier declares a function that may be referred to from any module,
whereas the static qualifier declares a function that may be called only from the current
module (see Section 4.21 [Modules], page 101). The default scope is ‘public’, unless speci-
fied otherwise in the module declaration (see Section 4.21.1 [module structure], page 101).

For example, the following declares a function ‘sum’, that takes two numeric arguments
and returns a numeric value:

func sum(number x, number y) returns number
Similarly, the following is a declaration of a static function:
static func sum(number x, number y) returns number

Parameters are referenced in the function-body by their name, the same way as other
variables. Similarly, the value of a parameter can be altered using set statement.



74 Mailfromd Manual

A function can be declared to take a certain number of optional arguments. In a function
declaration, optional abstract arguments must be placed after the mandatory ones, and must
be separated from them with a semicolon. The following example is a definition of function
foo, which takes two mandatory and two optional arguments:

func foo(string msg, string email; number x, string pfx)

Mandatory parameters are: msg and email. Optional parameters are: x and pfx. The
actual number of arguments supplied to the function is returned by a special construct $#.
In addition, the special construct @arg evaluates to the ordinal number of variable arg in
the list of formal parameters (the first argument has number ‘0’). These two constructs can
be used to verify whether an argument is supplied to the function.

When an actual argument for parameter n is supplied, the number of actual arguments
($#) is greater than the ordinal number of that parameter in the declaration list (@n). Thus,
the following construct can be used to check if an optional argument arg is actually supplied:

func foo(string msg, string email; number x, string arg)
do
if $# > Qarg

fi
The default mailfromd installation provides a special macro for this purpose: see
[defined], page 104. Using it, the example above could be rewritten as:

func foo(string msg, string email; number x, string arg)
do
if defined(arg)

fi

Within a function body, optional arguments are referenced exactly the same way as the
mandatory ones. Attempt to dereference an optional argument for which no actual param-
eter was supplied, results in an undefined value, so be sure to check whether a parameter
is passed before dereferencing it.

A function can also take variable number of arguments (such functions are called vari-
adic). This is indicated by the use of ellipsis as the last abstract parameter. The statement
below defines a function foo taking one mandatory, one optional and any number of addi-
tional arguments:

func foo (string a ; string b, ...)

All actual arguments passed in a list of variable arguments are coerced to string data
type. To refer to these arguments in the function body, the following construct is used:
$ (expr)
where expr is any valid MFL expression, evaluating to a number n. This construct refers to
the value of nth actual parameter from the variable argument list. Parameters are numbered
from ‘1’, so the first variable parameter is $(1), and the last one is $($# - Nm - No), where
Nm and No are numbers of mandatory and optional parameters to the function.

The construct ‘$(n)’ where 1 <= n <= 9 can also be written as ‘$n’.
For example, the function below prints all its arguments:

func pargs (string text, ...)



Chapter 4: Mail Filtering Language 75

do
echo "text=Ytext"
loop for number i 1,
while i < $# - Qtext,
set 1 i+ 1
do
echo "arg %i=" . $(i)
done
done

Note how the ordinal number operator is used to compute the upper limit.

The function-body is any list of valid mailfromd statements. In addition to the state-
ments discussed below (see Section 4.16 [Statements], page 85) it can also contain the
return statement, which is used to return a value from the function. The syntax of the
return statement is

return value

As an example of this, consider the following code snippet that defines the function ‘sum’
to return a sum of its two arguments:

func sum(number x, number y) returns number
do

return x + y
done

The returns part in the function declaration is optional. A declaration lacking it defines
a procedure, or void function, i.e. a function that is not supposed to return any value. Such
functions cannot be used in expressions, instead they are used as statements (see Section 4.16
[Statements|, page 85). The following example shows a function that emits a customized
temporary failure notice:

func stdtf QO
do

tempfail 451 4.3.5 "Try again later"
done

A function may have several names. An alternative name (or alias) can be assigned to
a function by using alias keyword, placed after param-decl part, for example:

func foo()
alias bar
returns string
do

done
After this declaration, both foo() and bar () will refer to the same function.

The number of function aliases is unlimited. The following fragment declares a function
having three names:

func foo()
alias bar
alias baz



76 Mailfromd Manual

returns string
do

done

Although this feature is rarely needed, there are sometimes cases when it may be neces-
sary.

A variable declared within a function becomes a local variable to this function. Its lexical
scope ends with the terminating done statement.

Parameters, local variables and global variables are using separate namespaces, so a
parameter name can coincide with the name of a global, in which case a parameter is said
to shadow the global. All references to its name will refer to the parameter, until the end
of its scope is reached, where the global one becomes visible again. Consider the following
example:

number x

func foo(string x)
do

echo "foo: %x"
done

prog envfrom

do
set x "Global"
foo("Local")
echo x

done

Running mailfromd --test with this configuration will display:

foo: Local
Global

4.13.1 Some Useful Functions

To illustrate the concept of user-defined functions, this subsection shows the definitions
of some of the library functions shipped with mailfromd®. These functions are contained
in modules installed along with the mailfromd binary. To use any of them in your code,
require the appropriate module as described in Section 4.21.3 [import], page 102, e.g. to
use the revip function, do require ’revip’.

Functions and their definitions:

1. revip

The function revip (see [revip], page 117) is implemented as follows:

func revip(string ip) returns string

5 Notice that these are intended for educational purposes and do not necessarily coincide with the actual
definitions of these functions in Mailfromd version 8.14.



Chapter 4: Mail Filtering Language 77

do
return inet_ntoa(ntohl(inet_aton(ip)))
done

Previously it was implemented using regular expressions. Below we include this variant
as well, as an illustration for the use of regular expressions:

#pragma regex push +extended
func revip(string ip) returns string
do
if ip matches ’([0-9]+)\.([0-9]1+)\.([0-9]1+)\.([0-9]+)"’
return "\4.\3.\2.\1"
fi
return ip
done
#pragma regex pop
2. strip_domain_part

This function returns at most n last components of the domain name domain (see
[strip-domain_part], page 116).

#pragma regex push +extended

func strip_domain_part(string domain, number n) returns string
do
if n > 0 and
domain matches ’.*((\.[~.1+){’> . $2 . ’})°
return substring(\1, 1, -1)
else
return domain
fi
done
#pragma regex pop
3. valid_domain

See [valid_domain], page 174, for a description of this function. Its definition follows:

require dns

func valid_domain(string domain) returns number
do

return not (resolve(domain) = "O0" and not hasmx(domain))
done

4. match_dnsbl

The function match_dnsbl (see [match_dnsbl], page 178) is defined as follows:
require dns
require match_cidr
#pragma regex push +extended



78 Mailfromd Manual

func match_dnsbl(string address, string zone, string range)
returns number
do
string rbl_ip
if range = ’ANY’
set rbl_ip ’127.0.0.0/8°
else
set rbl_ip range
if not range matches ’~([0-9]1{1,3}\.){3}[0-9]1{1,3}$’
return O
fi
fi

if not (address matches ’~([0-9]1{1,3}\.){3}[0-91{1,3}$’
and address != range)
return O
fi

if address matches
>~ ([0-91{1,31)\. ([0-91{1,31)\. ([0-91{1,31)\. ([0-9]1{1,31) 8"’
if match_cidr (resolve ("\4.\3.\2.\1", zone), rbl_ip)
return 1
else
return O
fi
fi
# never reached
done

4.14 Expressions

Expressions are language constructs, that evaluate to a value, that can subsequently be
echoed, tested in a conditional statement, assigned to a variable or passed to a function.

4.14.1 Constant Expressions

Literals and numbers are constant expressions. They evaluate to string and numeric types.

4.14.2 Function Calls

A function call is an expression. Its type is the return type of the function.

4.14.3 Concatenation
Concatenation operator is ‘.’ (a dot). For example, if $f is ‘smith’, and $client_addr is
10.10.1.1’, then:
$f . "-" . $client_addr = "smith-10.10.1.1"
Any two adjacent literal strings are concatenated, producing a new string, e.g.
"GNU’s" " not " "UNIX" = "GNU’s not UNIX"



Chapter 4: Mail Filtering Language 79

4.14.4 Arithmetic Operations

The filter script language offers the common arithmetic operators: ‘+’, ‘=’, ‘¥’ and ‘/’. In
addition, the ‘4’ is a modulo operator, i.e. it computes the remainder of division of its
operands.

All of them follow usual precedence rules and work as you would expect them to.

4.14.5 Bitwise shifts

The ‘<<’ represents a bitwise shift left operation, which shifts the binary representation of
the operand on its left by the number of bits given by the operand on its right.

Similarly, the ‘>>’ represents a bitwise shift right.

4.14.6 Relational Expressions

Relational expressions are:

Expression Result

x<y True if x is less than y.

X <=y True if x is less than or equal to y.
x>y True if x is greater than y.

X>=y True if x is greater than or equal to y.
X=y True if x is equal to y.

x!=y True if x is not equal to y.

Table 4.5: Relational Expressions

The relational expressions apply to string as well as to numbers. When a relational
operation applies to strings, case-sensitive comparison is used, e.g.:

"String" = "string" = False
"String" < "string" = True
4.14.7 Special Comparisons

In addition to the traditional relational operators, described above, mailfromd provides two
operators for regular expression matching:

Expression Result
x matches y True if the string x matches the regexp denoted by y.
x fnmatches y True if the string x matches the globbing pattern denoted by y.

Table 4.6: Regular Expression Matching

The type of the regular expression used by matches operator is controlled by #pragma
regex (see [pragma regex|, page 54). For example:

$f = "grayOgnu.org.ua"

$f matches ’.*Qgnu\.org\.ua’ = true
$f matches ’.*QGNU\.ORG\.UA’ = false
#pragma regex +icase

$f matches ’.*QGNU\.ORG\.UA’ = true



80 Mailfromd Manual

The fnmatches operator compares its left-hand operand with a globbing pattern (see
glob(7)) given as its right-hand side operand. For example:
$f = "gray@gnu.org.ua"
$f fnmatches "*ua" = true
$f fonmatches "*org" = false
$f fnmatches "xorgx" = true

Both operators have a special form, for ‘MX’ pattern matching. The expression:
x mx matches y
is evaluated as follows: first, the expression x is analyzed and, if it is an email address, its
domain part is selected. If it is not, its value is used verbatim. Then the list of ‘MX’s for
this domain is looked up. Each of ‘MX’ names is then compared with the regular expression
y. If any of the names matches, the expression returns true. Otherwise, its result is false.
Similarly, the expression:
x mx fnmatches y
returns true only if any of the ‘MX’s for (domain or email) x match the globbing pattern y.

Both mx matches and mx fnmatches can signal the following exceptions:
e_temp_failure, e_failure.

The value of any parenthesized subexpression occurring within the right-hand side ar-
gument to matches or mx matches can be referenced using the notation ‘\d’, where d is
the ordinal number of the subexpression (subexpressions are numbered from left to right,
starting at 1). This notation is allowed in the program text as well as within double-quoted
strings and here-documents, for example:

if $f matches ’.*0\(.*\)\.gnu\.org\.ua’
set message "Your host name is \1;"
fi

Remember that the grouping symbols are ‘\ (" and ‘\)’ for basic regular expressions, and
‘(" and )’ for extended regular expressions. Also make sure you properly escape all special
characters (backslashes in particular) in double-quoted strings, or use single-quoted strings
to avoid having to do so (see [singe-vs-double], page 57, for a comparison of the two forms).

4.14.8 Boolean Expressions

A boolean expression is a combination of relational or matching expressions using the
boolean operators and, or and not, and, eventually, parentheses to control nesting:

Expression Result

x and y True only if both x and y are true.
X ory True if any of x or y is true.

not x True if x is false.

table 4.1: Boolean Operators

Binary boolean expressions are computed using shortcut evaluation:
x and y If x = false, the result is false and y is not evaluated.

xory If x = true, the result is true and y is not evaluated.



Chapter 4: Mail Filtering Language 81

4.14.9 Operator Precedence

Operator precedence is an abstract value associated with each language operator, that
determines the order in which operators are executed when they appear together within a
single expression. Operators with higher precedence are executed first. For example, ‘*’ has
a higher precedence than ‘+’, therefore the expression a + b * c is evaluated in the following
order: first b is multiplied by c, then a is added to the product.

When operators of equal precedence are used together they are evaluated from left
to right (i.e., they are left-associative), except for comparison operators, which are non-
associative (these are explicitly marked as such in the table below). This means that you
cannot write:

if 5 <= x <= 10
Instead, you should write:
if 5 <= x and x <= 10

The precedence of the mailfromd operators where selected so as to match that used in
most programming languages.®

The following table lists all operators in order of decreasing precedence:

... Grouping

$ % Sendmail macros and mailfromd variables
* / Multiplication, division

+ - Addition, subtraction

<< >> Bitwise shift left and right

< <=>=> Relational operators (non-associative)

= I=matches fnmatches
Equality and special comparison (non-associative)

& Logical (bitwise) AND
Logical (bitwise) XOR

| Logical (bitwise) OR

not Boolean negation
and Logical ‘and’.
or Logical ‘or’

String concatenation

6 The only exception is ‘not’, whose precedence in MFL is much lower than usual (in most programming
languages it has the same precedence as unary ‘-’). This allows to write conditional expressions in more
understandable manner. Consider the following condition:

if not x < 2 and y = 3

It is understood as “if x is not less than 2 and y equals 3”, whereas with the usual precedence for ‘not’
it would have meant “if negated x is less than 2 and y equals 3”.



82 Mailfromd Manual

4.14.10 Type Casting

When two operands on each side of a binary expression have different type, mailfromd
evaluator coerces them to a common type. This is known as implicit type casting. The
rules for implicit type casting are:

1. Both arguments to an arithmetical operation are cast to numeric type.
Both arguments to the concatenation operation are cast to string.
Both arguments to ‘match’ or ‘fnmatch’ function are cast to string.

The argument of the unary negation (arithmetical or boolean) is cast to numeric.

A ol

Otherwise the right-hand side argument is cast to the type of the left-hand side argu-
ment.

The construct for explicit type cast is:
type(expr)
where type is the name of the type to coerce expr to. For example:
string(2 + 4%8) = "34"

4.15 Variable and Constant Shadowing

When any two named entities happen to have the same name we say that a name clash
occurs. The handling of name clashes depends on types of the entities involved in it.

function — any

A name of a constant or variable can coincide with that of a function, it does not produce
any warnings or errors because functions, variables and constants use different namespaces.
For example, the following code is correct:

const a 4

func a()
do

echo a
done

When executed, it prints ‘4’.

function — function, handler — function, and function — handler

Redefinition of a function or using a predefined handler name (see Section 4.11 [Handlers],
page 66) as a function name results in a fatal error. For example, compiling this code:

func a()
do

echo "1"
done

func a()
do

echo "2"
done



Chapter 4: Mail Filtering Language 83

causes the following error message:

mailfromd: sample.mf:9: syntax error, unexpected
FUNCTION_PROC, expecting IDENTIFIER

handler — variable

A variable name can coincide with a handler name. For example, the following code is
perfectly OK:

string envfrom "M"
prog envfrom
do

echo envfrom
done

handler — handler

If two handlers with the same name are defined, the definition that appears further in the
source text replaces the previous one. A warning message is issued, indicating locations of
both definitions, e.g.:

mailfromd: sample.mf:116: Warning: Redefinition of handler
‘envfrom’

mailfromd: sample.mf:34: Warning: This is the location of the
previous definition

variable — variable

Defining a variable having the same name as an already defined one results in a warning
message being displayed. The compilation succeeds. The second variable shadows the first,
that is any subsequent references to the variable name will refer to the second variable. For
example:

string x "Text"
number x 1

prog envfrom
do
echo x
done
Compiling this code results in the following diagnostics:
mailfromd: sample.mf:4: Redeclaring ‘x’ as different data type
mailfromd: sample.mf:2: This is the location of the previous
definition

Executing it prints ‘1’, i.e. the value of the last definition of x.

The scope of the shadowing depends on storage classes of the two variables. If both
of them have external storage class (i.e. are global ones), the shadowing remains in effect
until the end of input. In other words, the previous definition of the variable is effectively
forgotten.

If the previous definition is a global, and the shadowing definition is an automatic variable
or a function parameter, the scope of this shadowing ends with the scope of the second



84 Mailfromd Manual

variable, after which the previous definition (global) becomes visible again. Consider the
following code:

set x "initial"

func foo(string x) returns string
do

return x
done

prog envirom

do
echo foo("param")
echo x

done

Its compilation produces the following warning:

mailfromd: sample.mf:3: Warning: Parameter ‘x’ is shadowing a global
When executed, it produces the following output:

param

initial

State envfrom: continue

variable — constant
If a constant is defined which has the same name as a previously defined variable (the
constant shadows the variable), the compiler prints the following diagnostic message:

file:line: Warning: Constant name ‘name’ clashes with a variable name
file:line: Warning: This is the location of the previous definition

A similar diagnostics is issued if a variable is defined whose name coincides with a
previously defined constant (the variable shadows the constant).

In any case, any subsequent notation %name refers to the last defined symbol, be it
variable or constant.

Notice, that shadowing occurs only when using %name notation. Referring to the con-
stant using its name without ‘%’ allows to avoid shadowing effects.

If a variable shadows a constant, the scope of the shadowing depends on the storage
class of the variable. For automatic variables and function parameters, it ends with the
final done closing the function. For global variables, it lasts up to the end of input.

For example, consider the following code:

const a 4

func foo(string a)
do

echo a
done

prog envfrom



Chapter 4: Mail Filtering Language 85

do
foo(10)
echo a

done

When run, it produces the following output:

$ mailfromd --test sample.mf

mailfromd: sample.mf:3: Warning: Variable name
constant name

mailfromd: sample.mf:1: Warning: This is the location of the previous
definition

10

4

State envfrom: continue

‘a’ clashes with a

constant — constant

Redefining a constant produces a warning message. The latter definition shadows the
former. Shadowing remains in effect until the end of input.

4.16 Statements

Statements are language constructs, that, unlike expressions, do not return any value. State-
ments execute some actions, such as assigning a value to a variable, or serve to control the
execution flow in the program.

4.16.1 Action Statements

An action statement instructs mailfromd to perform a certain action over the message being
processed. There are two kinds of actions: return actions and header manipulation actions.

Reply Actions

Reply actions tell Sendmail to return given response code to the remote party. There are
five such actions:

accept Return an accept reply. The remote party will continue transmitting its mes-
sage.

reject code excode message-expr

reject (code-expr, excode-expr, message-expr)
Return a reject reply. The remote party will have to cancel transmitting its
message. The three arguments are optional, their usage is described below.

tempfail code excode message

tempfail (code-expr, excode-expr, message-expr)
Return a ‘temporary failure’ reply. The remote party can retry to send its
message later. The three arguments are optional, their usage is described below.

discard Instructs Sendmail to accept the message and silently discard it without deliv-
ering it to any recipient.

continue Stops the current handler and instructs Sendmail to continue processing of the
message.



86 Mailfromd Manual

Two actions, reject and tempfail can take up to three optional parameters. There are
two forms of supplying these parameters.

In the first form, called literal or traditional notation, the arguments are supplied as
additional words after the action name, and are separated by whitespace. The first argument
is a three-digit RFC 2821 reply code. It must begin with ‘6’ for reject and with ‘4’ for
tempfail. If two arguments are supplied, the second argument must be either an extended
reply code (RFC 1893/2034) or a textual string to be returned along with the SMTP reply.
Finally, if all three arguments are supplied, then the second one must be an extended reply
code and the third one must give the textual string. The following examples illustrate the
possible ways of using the reject statement:

reject

reject 503

reject 503 5.0.0

reject 503 "Need HELO command"
reject 503 5.0.0 "Need HELO command"

The notion textual string, used above means either a literal string or an MFL expression
that evaluates to string. However, both code and extended code must always be literal.

The second form of supplying arguments is called functional notation, because it re-
sembles the function syntax. When used in this form, the action word is followed by a
parenthesized group of exactly three arguments, separated by commas. Each argument is
a MFL expression. The meaning and ordering of the arguments is the same as in literal
form. Any or all of these three arguments may be absent, in which case it will be replaced
by the default value. To illustrate this, here are the statements from the previous example,
written in functional notation:

reject(,,)
reject (503, ,)
reject (503, 5.0.0)
reject (503, , "Need HELO command")
reject (503, 5.0.0, "Need HELO command")
Notice that there is an important difference between the two notations. The functional
notation allows to compute both reply codes at run time, e.g.:

reject (500 + dig2*10 + dig3, "5.%edig2.%edig2")

Header Actions

Header manipulation actions provide basic means to add, delete or modify the message RFC
2822 headers.

add name string
Add the header name with the value string. E.g.:
add "X-Seen-By" "Mailfromd 8.14"
(notice argument quoting)
replace name string

The same as add, but if the header name already exists, it will be removed first,
for example:

replace "X-Last-Processor" "Mailfromd 8.14"



Chapter 4: Mail Filtering Language 87

delete name
Delete the header named name:

delete "X-Envelope-Date"

These actions impose some restrictions. First of all, their first argument must be a literal
string (not a variable or expression). Secondly, there is no way to select a particular header
instance to delete or replace, which may be necessary to properly handle multiple headers
(e.g. ‘Received’). For more elaborate ways of header modifications, see Section 5.10 [Header
modification functions|, page 132.

4.16.2 Variable Assignments

An assignment is a special statement that assigns a value to the variable. It has the following
syntax:

set name value
where name is the variable name and value is the value to be assigned to it.

Assignment statements can appear in any part of a filter program. If an assignment
occurs outside of function or handler definition, the value must be a literal value (see
Section 4.5 [Literals], page 56). If it occurs within a function or handler definition, value
can be any valid mailfromd expression (see Section 4.14 [Expressions], page 78). In this
case, the expression will be evaluated and its value will be assigned to the variable. For
example:

set delay 150

prog envirom
do
set delay delay * 2

doﬁé
4.16.3 The pass statement

The pass statement has no effect. It is used in places where no statement is needed, but
the language syntax requires one:

on poll $f do

when success:
pass

when not_found or failure:
reject 550

done

4.16.4 The echo statement

The echo statement concatenates all its arguments into a single string and sends it to the
syslog using the priority ‘info’. It is useful for debugging your script, in conjunction with
built-in constants (see Section 4.8.1 [Built-in constants]|, page 60), for example:



88 Mailfromd Manual

func foo(number x)
do
echo "Y%__file__:%__line__:

foo called with arg %x"

done

4.17 Conditional Statements

Conditional expressions, or conditionals for short, test some conditions and alter the control
flow depending on the result. There are two kinds of conditional statements: if-else branches
and switch statements.

The syntax of an if-else branching construct is:
if condition then-body [else else-body] fi

Here, condition is an expression that governs control flow within the statement. Both then-
body and else-body are lists of mailfromd statements. If condition is true, then-body is
executed, if it is false, else-body is executed. The ‘else’ part of the statement is optional.
The condition is considered false if it evaluates to zero, otherwise it is considered true. For
example:

if ¢ = "
accept
else
reject
fi

This will accept the message if the value of the Sendmail macro $£f is an empty string, and
reject it otherwise. Both then-body and else-body can be compound statements including
other if statements. Nesting level of conditional statements is not limited.

To facilitate writing complex conditional statements, the elif keyword can be used to
introduce alternative conditions, for example:

if §f = "
accept
elif $f = "root"
echo "Mail from root!"
else
reject
fi

Another type of branching instruction is switch statement:



Chapter 4: Mail Filtering Language 89

switch condition

do

case x1 [or x2 ...]:
stmt1

case y1 [or y2 ...]:
stmt2

[default:
stmt]
done

Here, x1, x2, y1, y2 are literal expressions; stmt1, stmt2 and stmt are arbitrary mailfromd
statements (possibly compound); condition is the controlling expression. The vertical dotted
row represent another eventual ‘case’ branches.

This statement is executed as follows: the condition expression is evaluated and if its
value equals x1 or x2 (or any other x from the first case), then stmtl is executed. Other-
wise, if condition evaluates to yl or y2 (or any other y from the second case), then stmt2
is executed. Other case branches are tried in turn. If none of them matches, stmt (called
the default branch) is executed.

There can be as many case branches as you wish. The default branch is optional.
There can be at most one default branch.

An example of switch statement follows:

switch x

do

case 1 or 3:
add "X-Branch" "1"
accept

case 2 or 4 or 6:
add "X-Branch" "2"

default:
reject

done

If the value of mailfromd variable x is 2 or 3, it will accept the message immediately, and
add a ‘X-Branch: 1’ header to it. If x equals 2 or 4 or 6, this code will add ‘X-Branch: 2’
header to the message and will continue processing it. Otherwise, it will reject the message.

The controlling condition of a switch statement may evaluate to numeric or string type.
The type of the condition governs the type of comparisons used in case branches: for
numeric types, numeric equality will be used, whereas for string types, string equality is
used.

4.18 Loop Statements

The loop statement allows for repeated execution of a block of code, controlled by some
conditional expression. It has the following form:



90 Mailfromd Manual

loop [labell
[for stmtl] [,while expril] [,stmt2]
do
stmt3
done [while expr2]

where stmtl, stmt2, and stmt3 are statement lists, exprl and expr2 are expressions.
The control flow is as follows:

If stmt1 is specified, execute it.

Evaluate exprl. If it is zero, go to 6. Otherwise, continue.

Execute stmt3.

If stmt2 is supplied, execute it.

If expr2 is given, evaluate it. If it is zero, go to 6. Otherwise, go to 2.

End.

SO ol

Thus, stmt3 is executed until either exprl or expr2 yield a zero value.

The loop body — stmt3 — can contain special statements:

break [label]
Terminates the loop immediately. Control passes to ‘6’ (End) in the formal def-
inition above. If label is supplied, the statement terminates the loop statement
marked with that label. This allows to break from nested loops.

It is similar to break statement in C or shell.

next [labell
Initiates next iteration of the loop. Control passes to ‘4’ in the formal definition
above. If label is supplied, the statement starts next iteration of the loop
statement marked with that label. This allows to request next iteration of an
upper-level loop from a nested loop statement.

The loop statement can be used to create iterative statements of arbitrary complexity.
Let’s illustrate it in comparison with C.

The statement:

loop

do
stmt-list

done

creates an infinite loop. The only way to exit from such a loop is to call break (or return,
if used within a function), somewhere in stmt-list.

The following statement is equivalent to while (exprl) stmt-list in C:

loop while expr
do

stmt-1ist
done

The C construct for (exprl; expr2; expr3) is written in MFL as follows:



Chapter 4: Mail Filtering Language 91

loop for stmtl, while expr2, stmt2
do

stmt3
done

For example, to repeat stmt3 10 times:

loop for set i 0, while i < 10, set i 1 + 1
do

stmt3
done

Finally, the ¢ ‘do’ loop is implemented as follows:

loop
do

stmt-list
done while expr

As a real-life example of a loop statement, let’s consider the implementation of func-
tion ptr_validate, which takes a single argument ipstr, and checks its validity using the
following algorithm:

Perform a DNS reverse-mapping for ipstr, looking up the corresponding PTR record in
‘in-addr.arpa’. For each record returned, look up its IP addresses (A records). If ipstr is
among the returned IP addresses, return 1 (true), otherwise return 0 (false).

The implementation of this function in MFL is:

#pragma regex push +extended

func ptr_validate(string ipstr) returns number
do
loop for string names dns_getname(ipstr) . " "
number i index(names, " "),
while i != -1,
set names substr(names, i + 1)
set i index(names, " ")
do
loop for string addrs dns_getaddr(substr(names, 0, i)) . " "
number j index(addrs, " "),
while j != -1,
set addrs substr(addrs, j + 1)
set j index(addrs, " ")
do
if ipstr == substr(addrs, 0, j)
return 1
fi
done
done
return O
done



92 Mailfromd Manual

4.19 Exceptional Conditions

When the running program encounters a condition it is not able to handle, it signals an
exception. To illustrate the concept, let’s consider the execution of the following code
fragment:

if primitive_hasmx(domainpart($£f))

accept

fi
The function primitive_hasmx (see [primitive_hasmx], page 151) tests whether the domain
name given as its argument has any ‘MX’ records. It should return a boolean value. However,
when querying the Domain Name System, it may fail to get a definite result. For example,
the DNS server can be down or temporary unavailable. In other words, primitive_hasmx
can be in a situation when, instead of returning ‘yes’ or ‘no’, it has to return ‘don’t know’.
It has no way of doing so, therefore it signals an exception.

Each exception is identified by exception type, an integer number associated with it.

4.19.1 Built-in Exceptions

The first 21 exception numbers are reserved for built-in exceptions. These are declared
in module status.mf. The following table summarizes all built-in exception types imple-
mented by mailfromd version 8.14. Exceptions are listed in lexicographic order.

e_badmmq [Exception]
The called function cannot finish its task because an uncompatible message modifica-
tion function was called at some point before it. For details, [MMQ and dkim_sign],
page 189.

e_dbfailure [Exception]
General database failure. For example, the database cannot be opened. This excep-
tion can be signaled by any function that queries any DBM database.

e_divzero [Exception]
Division by zero.

e_exists [Exception]
This exception is emitted by dbinsert built-in if the requested key is already present
in the database (see Section 5.25 [Database functions], page 157).

e_eof [Exception]
Function reached end of file while reading. See Section 5.6 [I/O functions], page 120,
for a description of functions that can signal this exception.

e_failure [Exception]

failure [Exception]
A general failure has occurred. In particular, this exception is signaled by DNS lookup
functions when any permanent failure occurs. This exception can be signaled by any
DNS-related function (hasmx, poll, etc.) or operation (mx matches).

e_format [Exception]
Invalid input format. This exception is signaled if input data to a function are im-
properly formatted. In version 8.14 it is signaled by message_burst function if its



Chapter 4: Mail Filtering Language 93

input message is not formatted according to RFC 934. See Section 5.18.4 [Message
digest functions|, page 143.

e_ilseq [Exception]
Illegal byte sequence. Signaled when a string cannot be converted between character
sets because a sequence of bytes was encountered that is not defined for the source
character set or cannot be represented in the destination character set.

See [MIME decoding], page 142, for details.

e_invcidr [Exception]
Invalid CIDR notation. This is signaled by match_cidr function when its second
argument is not a valid CIDR.

e_invip [Exception]
Invalid IP address. This is signaled by match_cidr function when its first argument
is not a valid TP address.

e_invtime [Exception]
Invalid time interval specification. It is signaled by interval function if its argument
is not a valid time interval (see [time interval specification], page 202).

e_io [Exception]
An error occurred during the input-output operation. See Section 5.6 [I/O functions],
page 120, for a description of functions that can signal this exception.

e_macroundef [Exception]
A Sendmail macro is undefined.

e_noresolve [Exception]
The argument of a DNS-related function cannot be resolved to host name or IP ad-
dress. Currently only ismx (see [ismx], page 152) raises this exception.

e_range [Exception]
The supplied argument is outside the allowed range. This is signalled, for example,
by substring function (see [substring], page 115).

e_regcomp [Exception]
Regular expression cannot be compiled. This can happen when a regular expression (a
right-hand argument of a matches operator) is built at the runtime and the produced
string is an invalid regex.

e_ston_conv [Exception]
String-to-number conversion failed. This can be signaled when a string is used in
numeric context which cannot be converted to the numeric data type. For example:

set x "10a"
if x / 2

The if condition will signal ston_conv, since ‘10a’ cannot be converted to a number.



94 Mailfromd Manual

e_temp_failure [Exception]

temp_failure [Exception]
A temporary failure has occurred. This can be signaled by DNS-related functions or
operations.

e_url [Exception]
The supplied URL is invalid. See Section 5.29 [Interfaces to Third-Party Programs],
page 165.

e_success [Exception]

success [Exception]

e_not_found [Exception]

not_found [Exception]

In addition to these, two symbols are defined that are not exception types in the strict
sense of the world, but are provided to make writing filter scripts more convenient.
These are success, meaning successful return from a function, and not_found, mean-
ing that the required entity (e.g. domain name or email address) was not found. See
Figure 4.1, for an illustration on how these can be used. For consistency with other
exception codes, these can be spelled as e_success and e_not_found.

4.19.2 User-defined Exceptions

You can define your own exception types using the dclex statement:
dclex type

In this statement, type must be a valid MFL identifier, not used for another constant (see
Section 4.8 [Constants|, page 59). The dclex statement defines a new exception identified
by the constant type and allocates a new exception number for it.

The type can subsequently be used in throw and catch statements, for example:

dclex myrange

number fact(number val)
returns number

do
if val < O
throw myrange "fact argument is out of range"
fi
done

4.19.3 Exception Handling

Normally when an exception is signalled, the program execution is terminated and the
MTA is returned a tempfail status. Additional information regarding the exception is
then output to the logging channel (see Section 3.18 [Logging and Debugging], page 40).
However, the user can intercept any exception by installing his own exception-handling
routines.

An exception-handling routine is introduced by a try—catch statement, which has the
following syntax:



Chapter 4: Mail Filtering Language 95

try
do
stmtlist
done
catch exception-list
do
handler-body
done

where stmtlist and handler-body are sequences of MFL statements and exception-list is the
list of exception types, separated by the word or. A special exception-list ‘*’ is allowed and
means all exceptions.

This construct works as follows. First, the statements from stmtlist are executed. If
the execution finishes successfully, control is passed to the first statement after the ‘catch’
block. Otherwise, if an exception is signalled and this exception is listed in exception-list,
the execution is passed to the handler-body. If the exception is not listed in exception-list,
it is handled as usual.

The following example shows a ‘try--catch’ construct used for handling eventual ex-
ceptions, signalled by primitive_hasmx.

try
do
if primitive_hasmx(domainpart ($£))
accept
else
reject
fi
done
catch e_failure or e_temp_failure
do
echo "primitive_hasmx failed"
continue
done

The ‘try--catch’ statement can appear anywhere inside a function or a handler, but
it cannot appear outside of them. It can also be nested within another ‘try--catch’, in
either of its parts. Upon exit from a function or milter handler, all exceptions are restored
to the state they had when it has been entered.

A catch block can also be used alone, without preceding try part. Such a construct
is called a standalone catch. It is mostly useful for setting global exception handlers in a
begin statement (see Section 4.12 [begin/end], page 71). When used within a usual function
or handler, the exception handlers set by a standalone catch remain in force until either
another standalone catch appears further in the same function or handler, or an end of the
function is encountered, whichever occurs first.

A standalone catch defined within a function must return from it by executing return
statement. If it does not do that explicitly, the default value of 1 is returned. A standalone
catch defined within a milter handler must end execution with any of the following actions:
accept, continue, discard, reject, tempfail. By default, continue is used.



96 Mailfromd Manual

It is not recommended to mix ‘try--catch’ constructs and standalone catches. If a
standalone catch appears within a ‘try--catch’ statement, its scope of visibility is unde-
fined.

Upon entry to a handler-body, two implicit positional arguments are defined, which can
be referenced in handler-body as $1 and $2. The first argument gives the numeric code
of the exception that has occurred. The second argument is a textual string containing a
human-readable description of the exception.

The following is an improved version of the previous example, which uses these param-
eters to supply more information about the failure:

try
do
if primitive_hasmx(domainpart ($£))
accept
else
reject
fi
done
catch e_failure or e_temp_failure
do
echo "Caught exception $1: $2"
continue
done

The following example defines the function hasmx that returns true if the domain part
of its argument has any ‘MX’ records, and false if it does not or if an exception occurs’.

func hasmx (string s)
returns number
do
try
do
return primitive_hasmx(domainpart(s))
done
catch *
do
return O
done
done

The same function can written using standalone catch:

func hasmx (string s)
returns number
do
catch *
do
return O

" This function is part of the mailfromd library, See [hasmx], page 151.



Chapter 4: Mail Filtering Language 97

done
return primitive_hasmx(domainpart(s))
done

All variables remain visible within catch body, with the exception of positional argu-
ments of the enclosing handler. To access positional arguments of a handler from the catch
body, assign them to local variables prior to the ‘try--catch’ construct, e.g.:

prog header

do
string hname $1
string hvalue $2
try
do

done

catch *

do
echo "Exception $1 while processing header %hname: %hvalue"
echo $2
tempfail

done

You can also generate (or raise) exceptions explicitly in the code, using throw statement:
throw excode descr

The arguments correspond exactly to the positional parameters of the catch statement:
excode gives the numeric code of the exception, descr gives its textual description. This
statement can be used in complex scripts to create non-local exits from deeply nested
statements.

Notice, that the the excode argument must be an immediate value: an exception iden-
tifier (either a built-in one or one declared previously using a dclex statement).

4.20 Sender Verification Tests

The filter script language provides a wide variety of functions for sender address verification
or polling, for short. These functions, which were described in Section 5.20 [SMTP Callout
functions|, page 145, can be used to implement any sender verification method. The addi-
tional data that can be needed is normally supplied by two global variables: ehlo_domain,
keeping the default domain for the EHLO command, and mailfrom_address, which stores
the sender address for probe messages (see Section 4.9.1 [Predefined variables], page 63).

For example, a simplest way to implement standard polling would be:

prog envfrom
do
if stdpoll($1, ehlo_domain, mailfrom_address) ==
accept
else
reject 550 5.1.0 "Sender validity not confirmed"
fi



98 Mailfromd Manual

done

However, this does not take into account exceptions that stdpoll can signal. To handle
them, one will have to use catch, for example thus:

require status

prog envirom

do
try
do
if stdpoll($1l, ehlo_domain, mailfrom_address) ==
accept
else
reject 550 5.1.0 "Sender validity not confirmed"
fi
done
catch e_failure or e_temp_failure
do
switch $1
do
case failure:
reject 550 5.1.0 "Sender validity not confirmed"
case temp_failure:
tempfail 450 4.1.0 "Try again later"
done
done
done

If polls are used often, one can define a wrapper function, and use it instead. The
following example illustrates this approach:



Chapter 4: Mail Filtering Language 99

func poll_wrapper(string email) returns number

do
catch e_failure or e_temp_failure
do
return email
done
return stdpoll(email, ehlo_domain, mailfrom_address)
done

prog envfrom
do
switch poll_wrapper ($f)
do
case success:
accept
case not_found or failure:
reject 550 5.1.0 "Sender validity not confirmed"
case temp_failure:
tempfail 450 4.1.0 "Try again later"
done
done

Figure 4.1: Building Poll Wrappers

Notice the way envfrom handles success and not_found, which are not exceptions in
the strict sense of the word.

The above paradigm is so common that mailfromd provides a special language construct
to simplify it: the on statement. Instead of manually writing the wrapper function and using
it as a switch condition, you can rewrite the above example as:

prog envfrom
do
on stdpoll($1l, ehlo_domain, mailfrom_address)
do
when success:
accept
when not_found or failure:
reject 550 5.1.0 "Sender validity not confirmed"
when temp_failure:
tempfail 450 4.1.0 "Try again later"
done
done

Figure 4.2: Standard poll example

As you see the statement is pretty similar to switch. The major syntactic difference is the
use of the keyword when to introduce conditional branches.

General syntax of the on statement is:



100 Mailfromd Manual

on condition

do
when x1 [or x2 ...]:
stmt1
when y1 [or y2 ...]:
stmt2
done

The condition is either a function call or a special poll statement (see below). The val-
ues used in when branches are normally symbolic exception names (see [exception names],
page 92).

When the compiler processes the on statement it does the following:

1. Builds a unique wrapper function, similar to that described in Figure 4.1; The name of
the function is constructed from the condition function name and an unsigned number,
called exception mask, that is unique for each combination of exceptions used in when
branches; To avoid name clashes with the user-defined functions, the wrapper name
begins and ends with ‘$’ which normally is not allowed in the identifiers;

2. Translates the on body to the corresponding switch statement;

A special form of the condition is poll keyword, whose syntax is:

poll [for] email
[host host]
[from domain]
[as emaill

The order of particular keywords in the poll statement is arbitrary, for example as
email can appear before email as well as after it.

The simplest form, poll email, performs the standard sender verification of email ad-
dress email. It is translated to the following function call:

stdpoll(email, ehlo_domain, mailfrom_address)

The construct poll email host host, runs the strict sender verification of address email
on the given host. It is translated to the following call:

strictpoll(host, email, ehlo_domain, mailfrom_address)

Other keywords of the poll statement modify these two basic forms. The as keyword
introduces the email address to be used in the SMTP MAIL FROM command, instead of
mailfrom_address. The from keyword sets the domain name to be used in EHLO command.
So, for example the following construct:

poll email host host from domain as addr
is translated to
strictpoll(host, email, domain, addr)

To summarize the above, the code described in Figure 4.2 can be written as:



Chapter 4: Mail Filtering Language 101

prog envirom
do
on poll $f do
when success:
accept
when not_found or failure:
reject 550 5.1.0 "Sender validity not confirmed"
when temp_failure:
tempfail 450 4.1.0 "Try again later"
done
done

4.21 Modules

A module is a logically isolated part of code that implements a separate concern or fea-
ture and contains a collection of conceptually united functions and/or data. Each module
occupies a separate compilation unit (i.e. file). The functionality provided by a module
is incorporated into another module or the main program by requiring this module or by
importing the desired components from it.

4.21.1 Declaring Modules

A module file must begin with a module declaration:
module modname [interface-type].
Note the final dot.

The modname parameter declares the name of the module. It is recommended that it
be the same as the file name without the ‘.mf’ extension. The module name must be a
valid MFL literal. It also must not coincide with any defined MFL symbol, therefore we
recommend to always quote it (see example below).

The optional parameter interface-type defines the default scope of visibility for the sym-
bols declared in this module. If it is ‘public’, then all symbols declared in this module are
made public (importable) by default, unless explicitly declared otherwise (see Section 4.21.2
[scope of visibility], page 102). If it is ‘static’, then all symbols, not explicitly marked as
public, become static. If the interface-type is not given, ‘public’ is assumed.

The actual MFL code follows the ‘module’ line.

The module definition is terminated by the logical end of its compilation unit, i.e. either
by the end of file, or by the keyword bye, whichever occurs first.

Special keyword bye may be used to prematurely end the current compilation unit
before the physical end of the containing file. Any material between bye and the end of file
is ignored by the compiler.

Let’s illustrate these concepts by writing a module ‘revip’:



102 Mailfromd Manual

module ’revip’ public.

func revip(string ip)

returns string
do

return inet_ntoa(ntohl(inet_aton(ip)))
done

bye

This text is ignored. You may put any additional
documentation here.

4.21.2 Scope of Visibility

Scope of Visibility of a symbol defines from where this symbol may be referred to. Symbols
in MFL may have either of the following two scopes:

Public Public symbols are visible from the current module, as well as from any ex-
ternal modules, including the main script file, provided that they are properly
imported (see Section 4.21.3 [import], page 102).

Static Static symbols are visible only from the current module. There is no way to
refer to them from outside.

The default scope of visibility for all symbols declared within a module is defined in the
module declaration (see Section 4.21.1 [module structure], page 101). It may be overridden
for any individual symbol by prefixing its declaration with an appropriate qualifier: either
public or static.

4.21.3 Require and Import

Functions or variables declared in another module must be imported prior to their actual
use. MFL provides two ways of doing so: by requiring the entire module or by importing
selected symbols from it.

require modname [Module Import|
The require statement instructs the compiler to locate the module modname and to
load all public interfaces from it.

The compiler looks for the file modname . mf in the current search path (see [include search
path], page 51). If no such file is found, a compilation error is reported.

For example, the following statement:
require revip
imports all interfaces from the module revip.mf.

Another, more sophisticated way to import from a module is to use the ‘from ...
import’ construct:

from module import symbols.

Note the final dot. The ‘from’ and ‘module’ statements are the only two constructs in
MFL that require the delimiter.



Chapter 4: Mail Filtering Language 103

The module has the same semantics as in the require construct. The symbols is a
comma-separated list of symbol names to import from module. A symbol name may be
given in several forms:

1. Literal
Literals specify exact symbol names to import. For example, the following statement
imports from module A.mf symbols ‘foo’ and ‘bar’:
from A import foo,bar.
2. Regular expression

Regular expressions must be surrounded by slashes. A regular expression instructs the
compiler to import all symbols whose names match that expression. For example, the
following statement imports from A.mf all symbols whose names begin with ‘foo’ and
contain at least one digit after it:

from A import ’/"foo.*[0-9]/’.
The type of regular expressions used in the ‘from’ statement is controlled by #pragma
regex (see Section 4.2.3 [regex], page 54).
3. Regular expression with transformation

Regular expression may be followed by a s-expression, i.e. a sed-like expression of the
form:

s/regexp/replace/ [flags]

where regexp is a regular expression, replace is a replacement for each part of the
input that matches regexp. S-expressions and their parts are discussed in detail in
[s-expression], page 112.

The effect of such construct is to import all symbols that match the regular expression
and apply the s-expression to their names.

For example:
from A import ’/"foo.*[0-9]/s/.*/my_&/’.

This statement imports all symbols whose names begin with ‘foo’ and contain at
least one digit after it, and renames them, by prefixing their names with the string
‘my_". Thus, if A.mf declared a function ‘foo_1’, it becomes visible under the name of
‘my_foo_1".

4.22 MFL Preprocessor

Before compiling the script file, mailfromd preprocesses it. The built-in preprocessor han-
dles only file inclusion (see [include], page 51), while the rest of traditional facilities, such
as macro expansion, are supported via m4, which is used as an external preprocessor.

The detailed description of m4 facilities lies far beyond the scope of this document. You
will find a complete user manual in Section “GNU M4” in GNU M4 macro processor.
For the rest of this section we assume the reader is sufficiently acquainted with m4 macro
Processor.

The external preprocessor is invoked with -s flag, instructing it to include line synchro-
nization information in its output, which is subsequently used by MFL compiler for purposes
of error reporting. The initial set of macro definitions is supplied in file pp-setup, located



104 Mailfromd Manual

in the library search path®, which is fed to the preprocessor input before the script file
itself. The default pp-setup file renames all m4 built-in macro names so they all start with
the prefix ‘m4_"?. It changes comment characters to ‘/*’, ‘x/’ pair, and leaves the default
quoting characters, grave (‘‘’) and acute (‘’’) accents without change. Finally, pp-setup
defines the following macros:

boolean defined (identifier) [M4 Macro]
The identifier must be the name of an optional abstract argument to the function.
This macro must be used only within a function definition. It expands to the MFL
expression that yields true if the actual parameter is supplied for identifier. For
example:

func rcut(string text; number num)
returns string
do
if (defined(num))
return substr(text, length(text) - num)
else
return text
fi
done
This function will return last num characters of text if num is supplied, and entire
text otherwise, e.g.:

rcut("text string") = "text string"
rcut("text string", 3) = "ing"

Invoking the defined macro with the name of a mandatory argument yields true

printf (format, ...) [M4 Macro]
Provides a printf statement, that formats its optional parameters in accordance
with format and sends the resulting string to the current log output (see Section 3.18
[Logging and Debugging], page 40). See Section 5.4 [String formatting], page 117, for
a description of format.
Example usage:

printf (’Function %s returned %d’, funcname, retcode)

string _ (msgid) [M4 Macro]
A convenience macro. Expands to a call to gettext (see Section 5.38 [NLS Functions],
page 191).

string_list_iterate (list, delim, var, code) [M4 Macro]

This macro intends to compensate for the lack of array data type in MFL. It splits
the string list into segments delimited by string delim. For each segment, the MFL
code code is executed. The code can use the variable var to refer to the segment
string.

8 It is usually located in /usr/local/share/mailfromd/8. 14/include/pp-setup.

9 This is similar to GNU m4 —-prefix-builtin options. This approach was chosen to allow for using
non-GNU m4 implementations as well.



Chapter 4: Mail Filtering Language 105

For example, the following fragment prints names of all existing directories listed in
the PATH environment variable:

string path getenv("PATH")
string seg
string list_iterate(path, ":", seg, ¢

if access(seg, F_0K)

echo "seg exists"

fi’)
Care should be taken to properly quote its arguments. In the code below the string
str is treated as a comma-separated list of values. To avoid interpreting the comma
as argument delimiter the second argument must be quoted:

string list_iterate(str, ‘","’, seg, ¢

echo "next segment: " . seg’)

N_ (msgid) [M4 Macro]
A convenience macro, that expands to msgid verbatim. It is intended to mark the
literal strings that should appear in the .po file, where actual call to gettext (see
Section 5.38 [NLS Functions|, page 191) cannot be used. For example:

/* Mark the variable for translation: cannot use gettext here */
string message N_("Mail accepted")

prog envfrom
do

/* Translate and log the message */
echo gettext(message)

You can obtain the preprocessed output, without starting actual compilation, using -E
command line option:

$ mailfromd -E file.mf

The output is in the form of preprocessed source code, which is sent to the standard
output. This can be useful, among others, to debug your own macro definitions.

Macro definitions and deletions can be made on the command line, by using the -D and
-U options. They have the following format:

-D name[=value]

--define=name[=value]
Define a symbol name to have a value value. If value is not supplied, the value
is taken to be the empty string. The value can be any string, and the macro
can be defined to take arguments, just as if it was defined from within the input
using the m4_define statement.

For example, the following invocation defines symbol COMPAT to have a value
43:

$ mailfromd -DCOMPAT=43

-U name



106 Mailfromd Manual

--undefine=name
A counterpart of the -D option is the option -U (--undefine). It undefines
a preprocessor symbol whose name is given as its argument. The following
example undefines the symbol COMPAT:

$ mailfromd -UCOMPAT
The following two options are supplied mainly for debugging purposes:

--NO-preprocessor
Disables the external preprocessor.

--preprocessor=command
Use command as external preprocessor. Be especially careful with this option,
because mailfromd cannot verify whether command is actually some kind of a
preprocessor or not.

4.23 Example of a Filter Script File

In this section we will discuss a working example of the filter script file. For the ease
of illustration, it is divided in several sections. Each section is prefaced with a comment
explaining its function.

This filter assumes that the mailfromd. conf file contains the following;:

relayed-domain-file (/etc/mail/sendmail.cw,
/etc/mail/relay-domains) ;
io-timeout 33;
database cache {
negative-expire-interval 1 day;
positive-expire-interval 2 weeks;
s
Of course, the exact parameter settings may vary, what is important is that they be
declared. See Chapter 7 [Mailfromd Configuration], page 201, for a description of mailfromd
configuration file syntax.

Now, let’s return to the script. Its first part defines the configuration settings for this
host:

#pragma regex +extended +icase

set mailfrom_address "<>"
set ehlo_domain "gnu.org.ua"

The second part loads the necessary source modules:
require ’status’
require ’dns’
require ’rateok’
Next we define envfrom handler. In the first two rules, it accepts all mails coming from
the null address and from the machines which we relay:
prog envfrom
do
if $f = nn



Chapter 4: Mail Filtering Language 107

accept

elif relayed hostname($client_addr)
accept

elif hostname($client_addr) = $client_addr
reject 550 5.7.7 "IP address does not resolve"

Next rule rejects all messages coming from hosts with dynamic IP addresses. A regular
expression used to catch such hosts is not 100% fail-proof, but it tries to cover most existing
host naming patterns:

elif hostname($client_addr) matches
".x(adsl|sdsl|hdsl|1ldsl|xdsl|dialin|dialupl|\
ppp | dhcpldynamic| [-.]cpe[-.]) . *"
reject 550 5.7.1 "Use your SMTP relay"

Messages coming from the machines whose host names contain something similar to an
IP are subject to strict checking:

elif hostname($client_addr) matches
".x[0-9]{1,3}[-.]1[0-9]{1,3}[-.1[0-9]1{1,3}[-.][0-9]4{1,3}.%"
on poll host $client_addr for $f do
when success:
pass
when not_found or failure:
reject 550 5.1.0 "Sender validity not confirmed"
when temp_failure:
tempfail
done

If the sender domain is relayed by any of the ‘yahoo.com’ or ‘nameserver.com’ ‘MX’s, no
checks are performed. We will greylist this message in envrcpt handler:

elif $f mx fnmatches "*.yahoo.com"
or $f mx fnmatches "*.namaeserver.com"
pass

Finally, if the message does not meet any of the above conditions, it is verified by the
standard procedure:

else
on poll $f do
when success:
pass
when not_found or failure:
reject 550 5.1.0 "Sender validity not confirmed"
when temp_failure:
tempfail
done
fi

At the end of the handler we check if the sender-client pair does not exceed allowed mail
sending rate:



108 Mailfromd Manual

if not rateok("$f-$client_addr", interval("1l hour 30 minutes"), 100)
tempfail 450 4.7.0 "Mail sending rate exceeded. Try again later"
fi
done
Next part defines the envrcpt handler. Its primary purpose is to greylist messages from
some domains that could not be checked otherwise:

prog envrcpt
do
set gltime 300
if $f mx fnmatches "*.yahoo.com"
or $f mx fnmatches "*.namaeserver.com"
and not dbmap("/var/run/whitelist.db", $client_addr)
if greylist("$client_addr-$f-$rcpt_addr", gltime)
if greylist_seconds_left = gltime
tempfail 450 4.7.0
"You are greylisted for Jgltime seconds"
else
tempfail 450 4.7.0
"Still greylisted for " .
hgreylist_seconds_left . " seconds"
fi
fi
fi
done

4.24 Reserved Words

For your reference, here is an alphabetical list of all reserved words:
e __defpreproc__
o __defstatedir__
o __file__

e __function__

e __line__
e __major__
e __minor__

e __module__
e __package__
e __patch__

e __preproc__
e __statedir__
e __version__
e accept

e add



Chapter 4: Mail Filtering Language 109

e and

e alias

e begin

e break
e bye

e case

e catch

e const

e continue
o default
o delete
e discard
e do

e done

e echo

e end

o elif

e eclse

o fi

e fnmatches
e for

e from

e func

o if

e import
e loop

e matches
e module
e next

® not

e number
e on

e or

e pass

e precious
® DpDrog

e public
e reject

e replace



110 Mailfromd Manual

e return

e returns

e require

e sct

e static

e string

e switch

e tempfail

e throw

o try

e vaptr

e when

e while

Several keywords are context-dependent: mx is a keyword if it appears before matches

or fnmatches. Following strings are keywords in on context:

® as

e host

e poll

The following keywords are preprocessor macros:
e defined
e _ (an underscore)

o N_

Any keyword beginning with a ‘m4_’ prefix is a reserved preprocessor symbol.



111

5 The MFL Library Functions

This chapter describes library functions available in Mailfromd version 8.14. For the sim-
plicity of explanation, we use the word ‘boolean’ to indicate variables of numeric type that
are used as boolean values. For such variables, the term ‘False’ stands for the numeric 0,
and ‘True’ for any non-zero value.

5.1 Sendmail Macro Access Functions

string getmacro (string macro) [Built-in Function]
Returns the value of Sendmail macro macro. If macro is not defined, raises the
e_macroundef exception.

Calling getmacro (name) is completely equivalent to referencing ${name}, except that
it allows to construct macro names programmatically, e.g.:

if getmacro("auth_%var") = "foo"
fi
boolean macro_defined (string name) [Built-in Function]

Return true if Sendmail macro name is defined.

Notice, that if your MTA supports macro name negotiation!, you will have to export
macro names used by these two functions using ‘#pragma miltermacros’ construct. Con-
sider this example:

func authcheck(string name)
do
string macname "auth_%name"
if macro_defined(macname)
if getmacro(macname)

fi
fi
done

#pragma miltermacros envfrom auth_authen

prog envfrom

do
authcheck("authen")

done

In this case, the parser cannot deduce that the envfrom handler will attempt to reference
the ‘auth_authen’ macro, therefore the ‘#pragma miltermacros’ is used to help it.

! That is, if it supports Milter protocol 6 and upper. Sendmail 8.14.0 and Postfix 2.6 and newer do.
MeTA1 (via pmult) does as well. See Chapter 9 [MTA Configuration], page 221, for more details.



112 Mailfromd Manual

5.2 The sed function

The sed function allows you to transform a string by replacing parts of it that match
a regular expression with another string. This function is somewhat similar to the sed
command line utility (hence its name) and bears similarities to analogous functions in other
programming languages (e.g. sub in awk or the s// operator in perl).

string sed (string subject, expr, ...) [Built-in Function]
The expr argument is an s-expressions of the the form:

s/regexp/replacement/[flags]

where regexp is a regular expression, and replacement is a replacement string for
each part of the subject that matches regexp. When sed is invoked, it attempts
to match subject against the regexp. If the match succeeds, the portion of subject
which was matched is replaced with replacement. Depending on the value of flags
(see [global replace], page 112), this process may continue until the entire subject has
been scanned.

The resulting output serves as input for next argument, if such is supplied. The
process continues until all arguments have been applied.

The function returns the output of the last s-expression.

Both regexp and replacement are described in detail in Section “The ‘s’ Command” in
GNU sed.

Supported flags are:
g Apply the replacement to all matches to the regexp, not just the first.

i Use case-insensitive matching. In the absence of this flag, the value set by the
recent #pragma regex icase is used (see [pragma regex|, page 54).

X regexp is an extended regular expression (see Section “Extended regular ex-
pressions” in GNU sed). In the absence of this flag, the value set by the recent
#pragma regex extended (if any) is used (see [pragma regex|, page 54).

‘number’  Only replace the numberth match of the regexp.

Note: the POSIX standard does not specify what should happen when you mix
the ‘g’ and number modifiers. Mailfromd follows the GNU sed implementation
in this regard, so the interaction is defined to be: ignore matches before the
numberth, and then match and replace all matches from the numberth on.

Any delimiter can be used in lieue of ‘/’, the only requirement being that it be used
consistently throughout the expression. For example, the following two expressions are
equivalent:

s/one/two/
s,one,two,

Changing delimiters is often useful when the regex contains slashes. For instance, it is
more convenient to write s,/,—-, than s/\//-/.

Here is an example of sed usage:

set email sed(input, ’s/°<(.*)>$/\1/x’)



Chapter 5: The MFL Library Functions 113

It removes angle quotes from the value of the ‘input’ variable and assigns the result to
‘email’.

To apply several s-expressions to the same input, you can either give them as multiple
arguments to the sed function:

set email sed(input, ’s/°<(.*)>$/\1/x’, ’s/(.+@) (.+)/\1\L\2\E/x’)
or give them in a single argument separated with semicolons:
set email sed(input, ’s/°<(.*)>$/\1/x;s/(.+@) (.+)/\1\L\2\E/x’)

Both examples above remove optional angle quotes and convert the domain name part to
lower case.

Regular expressions used in sed arguments are controlled by the #pragma regex, as
another expressions used throughout the MFL source file. To avoid using the ‘x’ modifier
in the above example, one can write:

#pragma regex +extended
set email sed(input, ’s/~<(.*)>$/\1/’, ’s/(.+@) (.+)/\1\L\2\E/’)
See Section 4.2.3 [regex|, page 54, for details about that #pragma.

So far all examples used constant s-expressions. However, this is not a requirement. If
necessary, the expression can be stored in a variable or even constructed on the fly before
passing it as argument to sed. For example, assume that you wish to remove the domain
part from the value, but only if that part matches one of predefined domains. Let a regular
expression that matches these domains be stored in the variable domain_rx. Then this can
be done as follows:

set email sed(input, "s/(.+) (@/domain_rx)/\1/")
If the constructed regular expression uses variables whose value should be matched ex-

actly, such variables must be quoted before being used as part of the regexp. Mailfromd
provides a convenience function for this:

string qr (string str[; string delim|) [Built-in Function)]
Quote the string str as a regular expression. This function selects the characters to
be escaped using the currently selected regular expression flavor (see Section 4.2.3
[regex], page 54). At most two additional characters that must be escaped can be
supplied in the delim optional parameter. For example, to quote the variable ‘x’ for
use in double-quoted s-expression:

qr(x, :/n;)

5.3 String Manipulation Functions

string escape (string str, [string chars]|) [Built-in Function)]
Returns a copy of str with the characters from chars escaped, i.e. prefixed with a
backslash. If chars is not specified, ‘\"’ is assumed.
escape(’"a\tstr"ing’) = ’\"a\\tstr\"ing’
escape(’new "value"’, ’\" ’) = ’new\ \"value\"’

string unescape (string str) [Built-in Function]
Performs the reverse to ‘escape’, i.e. removes any prefix backslash characters.

unescape(’a \"quoted\" string’) = ’a "quoted" string’



114 Mailfromd Manual

string unescape (string str, [string chars]) [Built-in Function]

string domainpart (string str) [Built-in Function]
Returns the domain part of str, if it is a valid email address, otherwise returns str
itself.

domainpart("gray") = "gray"
domainpart("gray@gnu.org.ua") = "gnu.org.ua"

number index (string s, string t) [Built-in Function]

number index (string s, string t, number start) [Built-in Function]
Returns the index of the first occurrence of the string t in the string s, or -1 if t is
not present.

index("string of rings", "ring") = 2
Optional argument start, if supplied, indicates the position in string where to start
searching.

index("string of rings", "ring", 3) = 10
To find the last occurrence of a substring, use the function rindex (see [rindex],
page 115).

number interval (string str) [Built-in Function]
Converts str, which should be a valid time interval specification (see [time interval
specification|, page 202), to seconds.

number length (string str) [Built-in Function]
Returns the length of the string str in bytes.

length("string") = 6

string dequote (string str) [Built-in Function]
Removes ‘<’ and ‘>’ surrounding str. If str is not enclosed by angle brackets or these
are unbalanced, the argument is returned unchanged:

dequote("<root@gnu.org.ua>") = "root@gnu.org.ua"
dequote("root@gnu.org.ua") = "root@gnu.org.ua"
dequote("there>") = "there>"

string localpart (string str) [Built-in Function]
Returns the local part of str if it is a valid email address, otherwise returns str
unchanged.

localpart("gray") = "gray"
localpart("gray@gnu.org.ua") = "gray"

string replstr (string s, number n) [Built-in Function]

Replicate a string, i.e. return a string, consisting of s repeated n times:
replstr("12", 3) = "121212"

string revstr (string s) [Built-in Function]
Returns the string composed of the characters from s in reversed order:

revstr("foobar") = "raboof"



Chapter 5: The MFL Library Functions 115

number rindex (string s, string t) [Built-in Function]
number rindex (string s, string t, number start) [Built-in Function]
Returns the index of the last occurrence of the string t in the string s, or -1 if ¢t is not
present.
rindex("string of rings", "ring") = 10

Optional argument start, if supplied, indicates the position in string where to start
searching. E.g.:

rindex("string of rings", "ring", 10) = 2

See also [String manipulation], page 114.

string substr (string str, number start) [Built-in Function]

string substr (string str, number start, number length) [Built-in Function]
Returns the at most length-character substring of str starting at start. If length is
omitted, the rest of str is used.

If length is greater than the actual length of the string, the e_range exception is
signalled.

substr("mailfrom", 4) = "from"
substr("mailfrom", 4, 2) = "fr"

string substring (string str, number start, number end) [Built-in Function]
Returns a substring of str between offsets start and end, inclusive. Negative end
means offset from the end of the string. In other words, yo obtain a substring from
start to the end of the string, use substring(str, start, -1):
substring("mailfrom", 0, 3) = "mail"
substring("mailfrom", 2, 5) = "ilfr"
substring("mailfrom", 4, -1) = "from"
substring("mailfrom", 4, length("mailfrom") - 1) = "from"
substring("mailfrom", 4, -2) = "fro"
This function signals e_range exception if either start or end are outside the string
length.

string tolower (string str) [Built-in Function]
Returns a copy of the string str, with all the upper-case characters translated to their
corresponding lower-case counterparts. Non-alphabetic characters are left unchanged.

tolower ("MAIL") = "mail"

string toupper (string str) [Built-in Function]
Returns a copy of the string str, with all the lower-case characters translated to
their corresponding upper-case counterparts. Non-alphabetic characters are left un-
changed.

toupper("mail") = "MAIL"

string ltrim (string str|, string cset) [Built-in Function]
Returns a copy of the input string str with any leading characters present in cset
removed. If the latter is not given, white space is removed (spaces, tabs, newlines,
carriage returns, and line feeds).

ltrim(" a string") = "a string"



116 Mailfromd Manual

1trim(“089", uou) = "89"

Note the last example. It shows how 1trim can be used to convert decimal numbers
in string representation that begins with ‘0’. Normally such strings will be treated
as representing octal numbers. If they are indeed decimal, use 1trim to strip off the
leading zeros, e.g.:

set dayofyear ltrim(strftime(’%j’, time()), "O")

string rtrim (string str|, string cset) [Built-in Function]
Returns a copy of the input string str with any trailing characters present in cset
removed. If the latter is not given, white space is removed (spaces, tabs, newlines,
carriage returns, and line feeds).

number vercmp (string a, string b) [Built-in Function]
Compares two strings as mailfromd version numbers. The result is negative if b
precedes a, zero if they refer to the same version, and positive if b follows a:

vercmp("5.0", "5.1") = 1
vercmp("4.4", "4.3") = -1
vercmp("4.3.1", "4.3") = -1
vercmp("8.0", "8.0") = 0

string sa_format_score (number code, number prec) [Library Function]
Format code as a floating-point number with prec decimal digits:

sa_format_score(5000, 3) = "5.000"

This function is convenient for formatting SpamAssassin scores for use in message
headers and textual reports. It is defined in module sa.mf.

See [sa], page 166, for examples of its use.

string sa_format_report_header (string text) [Library Function]
Format a SpamAssassin report text in order to include it in a RFC 822 header. This
function selects the score listing from text, and prefixes each line with ‘* ’. Its result

looks like:
* 0.2 NO_REAL_NAME From: does not include a real name
* 0.1 HTML_MESSAGE BODY: HTML included in message

See [sa], page 166, for examples of its use.

string strip_domain_part (string domain, number n) [Library Function]
Returns at most n last components of the domain name domain. If n is 0 the function
returns domain.

This function is defined in the module strip_domain_part.mf (see Section 4.21 [Mod-
ules|, page 101).
Examples:

require strip_domain_part

strip_domain_part("puszcza.gnu.org.ua", 2) = "org.ua"
strip_domain_part("puszcza.gnu.org.ua", 0) = "puszcza.gnu.org.ua"



Chapter 5: The MFL Library Functions 117

boolean is_ip (string str) [Library Function]
Returns ‘true’ if str is a valid IPv4 address. This function is defined in the module
is_ip.mf (see Section 4.21 [Modules], page 101).

For example:

require is_ip

is_ip("1.2.3.4") = 1
is_ip("1.2.3.x") = 0
is_ip("blah") = 0
is_ip("255.255.255.255") = 1
is_ip("0.0.0.0") = 1

string revip (string ip) [Library Function]
Reverses octets in ip, which must be a valid string representation of an IPv4 address.

Example:
revip("127.0.0.1") = "1.0.0.127"

string verp_extract_user (string email, string domain) [Library Function]
If email is a valid VERP-style email address for domain, this function returns the user
name, corresponding to that email. Otherwise, it returns empty string.

verp_extract_user ("gray=gnu.org.ua@tuhs.org", ’gnu\..*’)
:> n gray n

5.4 String formatting

string sprintf (string format, ...) [Built-in Function]
The function sprintf formats its argument according to format (see below) and re-
turns the resulting string. It takes varying number of parameters, the only mandatory
one being format.

Format string

The format string is a simplified version of the format argument to C printf-family func-
tions.

The format string is composed of zero or more directives: ordinary characters (not ‘%’),
which are copied unchanged to the output stream; and conversion specifications, each of
which results in fetching zero or more subsequent arguments. Each conversion specification
is introduced by the character ‘%’, and ends with a conversion specifier. In between there
may be (in this order) zero or more flags, an optional minimum field width, and an optional
precision.

Notice, that in practice that means that you should use single quotes with the format
arguments, to protect conversion specifications from being recognized as variable references
(see [singe-vs-double], page 57).

No type conversion is done on arguments, so it is important that the supplied arguments
match their corresponding conversion specifiers. By default, the arguments are used in the
order given, where each ‘*’ and each conversion specifier asks for the next argument. If



118 Mailfromd Manual

insufficiently many arguments are given, sprintf raises ‘e_range’ exception. One can also
specify explicitly which argument is taken, at each place where an argument is required, by
writing ‘%m$’, instead of ‘%4’ and ‘*m$’ instead of ‘*’, where the decimal integer m denotes
the position in the argument list of the desired argument, indexed starting from 1. Thus,

sprintf (°%*d’, width, num);
and
sprintf (°%2%$*1$d’, width, num);

are equivalent. The second style allows repeated references to the same argument.

Flag characters

The character ‘%’ is followed by zero or more of the following flags:

‘@ The value should be converted to an alternate form. For ‘o’ conversions, the
first character of the output string is made zero (by prefixing a ‘0’ if it was not
zero already). For ‘x’ and ‘X’ conversions, a non-zero result has the string ‘0x’
(or ‘0X’ for ‘X’ conversions) prepended to it. Other conversions are not affected
by this flag.

‘0’ The value should be zero padded. For ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, and ‘X’ conversions,
the converted value is padded on the left with zeros rather than blanks. If the
‘0’ and ‘-’ flags both appear, the ‘0’ flag is ignored. If a precision is given, the
‘0’ flag is ignored. Other conversions are not affected by this flag.

=’ The converted value is to be left adjusted on the field boundary. (The default
is right justification.) The converted value is padded on the right with blanks,
rather than on the left with blanks or zeros. A ‘-’ overrides a ‘0’ if both are
given.

*? 2 (a space)’
A blank should be left before a positive number (or empty string) produced by
a signed conversion.

+ A sign (‘+7 or ‘-’) always be placed before a number produced by a signed
conversion. By default a sign is used only for negative numbers. A ‘+’ overrides
a space if both are used.

Field width

An optional decimal digit string (with nonzero first digit) specifying a minimum field width.
If the converted value has fewer characters than the field width, it will be padded with spaces
on the left (or right, if the left-adjustment flag has been given). Instead of a decimal digit
string one may write ‘*” or ‘*m$’ (for some decimal integer m) to specify that the field width
is given in the next argument, or in the m-th argument, respectively, which must be of
numeric type. A negative field width is taken as a ‘-’ flag followed by a positive field width.
In no case does a non-existent or small field width cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the conversion
result.



Chapter 5: The MFL Library Functions 119

Precision

An optional precision, in the form of a period (‘.’) followed by an optional decimal digit

string. Instead of a decimal digit string one may write ‘*’ or ‘*m$’ (for some decimal integer

m) to specify that the precision is given in the next argument, or in the m-th argument,

respectively, which must be of numeric type. If the precision is given as just ‘.’, or the

precision is negative, the precision is taken to be zero. This gives the minimum number
[ AP B4

of digits to appear for ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, and ‘X’ conversions, or the maximum number of
characters to be printed from a string for the ‘s’ conversion.

Conversion specifier

A character that specifies the type of conversion to be applied. The conversion specifiers
and their meanings are:

d

i The numeric argument is converted to signed decimal notation. The precision,
if any, gives the minimum number of digits that must appear; if the converted
value requires fewer digits, it is padded on the left with zeros. The default
precision is ‘1’. When ‘0’ is printed with an explicit precision ‘0’, the output is
empty.

-

The numeric argument is converted to unsigned octal (‘o’), unsigned decimal
(‘u’), or unsigned hexadecimal (‘x’ and ‘X’) notation. The letters ‘abcdef’ are
used for ‘x’ conversions; the letters ‘ABCDEF’ are used for ‘X’ conversions. The
precision, if any, gives the minimum number of digits that must appear; if the
converted value requires fewer digits, it is padded on the left with zeros. The
default precision is ‘1’. When ‘0’ is printed with an explicit precision 0, the
output is empty.

S The string argument is written to the output. If a precision is specified, no
more than the number specified of characters are written.

% A ‘% is written. No argument is converted. The complete conversion specifica-
tion is ‘%%’.

5.5 Character Type

These functions check whether all characters of str fall into a certain character class ac-
cording to the ‘C’ (‘POSIX’) locale?. ‘True’ (1) is returned if they do, ‘false’ (0) is returned
otherwise. In the latter case, the global variable ctype_mismatch is set to the index of the
first character that is outside of the character class (characters are indexed from 0).

boolean isalnum (string str) [Built-in Function]
Checks for alphanumeric characters:
isalnum("a123") = 1
isalnum("a.123") = 0 (ctype_mismatch = 1)

2 Support for other locales is planned for future versions.



120 Mailfromd Manual

boolean isalpha (string str) [Built-in Function]
Checks for an alphabetic character:

isalnum("abc") = 1
isalnum("a123") = 0

boolean isascii (string str) [Built-in Function]
Checks whether all characters in str are 7-bit ones, that fit into the ASCII character
set.

isascii("abc") = 1
isascii("ab\0200") = 0

boolean isblank (string str) [Built-in Function]
Checks if str contains only blank characters; that is, spaces or tabs.

boolean iscntrl (string str) [Built-in Function]
Checks for control characters.

boolean isdigit (string str) [Built-in Function]
Checks for digits (0 through 9).

boolean isgraph (string str) [Built-in Function]
Checks for any printable characters except spaces.

boolean islower (string str) [Built-in Function]
Checks for lower-case characters.

boolean isprint (string str) [Built-in Function]
Checks for printable characters including space.

boolean ispunct (string str) [Built-in Function]
Checks for any printable characters which are not a spaces or alphanumeric characters.

boolean isspace (string str) [Built-in Function]
Checks for white-space characters, i.e.: space, form-feed (‘\f’), newline (‘\n’), carriage
return (‘\r’), horizontal tab (‘\t’), and vertical tab (‘\v’).

boolean isupper (string str) [Built-in Function]
Checks for uppercase letters.

boolean isxdigit (string str) [Built-in Function]
Checks for hexadecimal digits, i.e. one of ‘0’, ‘1’, ‘2’ ‘3", ‘4’ ‘5’ ‘6’ ‘7", ‘8, ‘9’ ‘@’,
Cb? LC7 4d7 (e7 Cf7 ‘A? (B7 4C7 (D7 CE7 ‘F’.

5.6 I/0 functions

MFL provides a set of functions for writing to disk files, pipes or sockets and reading from
them. The idea behind them is the same as in most other programming languages: first
you open the resource with a call to open which returns a descriptor i.e. an integer number
uniquely identifying the resource. Then you can write or read from it using this descriptor.
Finally, when the resource is no longer needed, you can close it with a call to close.



Chapter 5: The MFL Library Functions 121

The number of available resource descriptors is limited. The default limit is 1024. You
can tailor it to your needs using the max-streams runtime configuration statement. See
Section 7.11 [conf-runtime], page 210, for a detailed description.

By default, all I/O operations are unbuffered. This can be changed by setting the
following global variables:

number io_buffering [Built-in variable]
Sets the default buffering type. Allowed values are (symbolic names are defined in
status.mf module):

0
BUFFER_NONE
No buffering. This is the default.

1

BUFFER_FULL
Full buffering. Size of the buffer is set by the io_buffer_size global
variable (see below).

2

BUFFER_LINE
Line buffering. When reading, it is pretty much the same as BUFFER_
FULL. When writing, the data are accumulated in buffer and actually
sent to the underlying transport stream when the newline character is
seen.

The initial size of the buffer is set by the io_buffer_size variable. It
will grow as needed during the I/0O.

number io_buffer_size [Built-in variable]
Set the buffer size if io_buffering is set to BUFFER_FULL or BUFFER_LINE. By default,
this variable is set to the size of the system page.

number open (string name) [Built-in Function]
The name argument specifies the name of a resource to open and the access rights
you need to have on it. The function returns a descriptor of the opened stream, which
can subsequently be used as an argument to other I/O operations.

Buffering mode for the opened stream is defined by the io_buffering and io_
buffer_size global variables. It can be changed using the setbuf function (see
[setbuf], page 126).

First symbols of name determine the type of the resource to be opened and the access

mode:

&> The rest of name is a name of a file. Open the file for read-write access.
If the file exists, truncate it to zero length, otherwise create the file.

>>7 The rest of name is a name of a file. Open the file for appending (writing

at end of file). The file is created if it does not exist.

Treat the rest of name as the command name and its arguments. Run this
command and open its standard input for writing. The standard error is



122

L|<7

4|&7

4@7

Mailfromd Manual

closed before launching the program. This can be altered by using the
following versions of this construct:

| 2>null: command
Standard error is redirected to /dev/null.

| 2>file:name command
Execute command with its standard error redirected to the
file name. If the file exists, it will be truncated.

| 2>>file:name command
Standard error of the command is appended to the file name.
If file does not exist, it will be created.

The ‘12>null:’ construct described above is a shortcut for

|2>>file:/dev/null command

| 2>syslog:facility . priority| command
Standard error is redirected to the given syslog facility and,
optionally, priority. If the latter is omitted, ‘LOG_ERR’ is as-
sumed.

Valid values for facility are: ‘user’, ‘daemon’, ‘auth’,
‘authpriv’, ‘mail’, and ‘localO’ through ‘local?’. Valid
values for priority are: ‘emerg’, ‘alert’, ‘crit’, ‘err’,
‘warning’, ‘notice’; ‘info’, ‘debug’. Both facility and
priority may be given in upper, lower or mixed cases.
Notice, that no whitespace characters are allowed between ‘|’ and ‘2>’.
Treat the rest of name as the command name and its arguments. Run
this command with its stdin closed and stdout open for reading.
The standard error is treated as described above (see ‘|”).
Treat the rest of name as the command name and its arguments. Run
this command and set up for two-way communication with it, i.e writes to
the descriptor returned by open will send data to the program’s standard

input, reads from the descriptor will get data from the program’s standard
output.

The standard error is treated as described above (see ‘|’). For example,
the following redirects it to syslog ‘mail.debug’:

|&2>syslog:mail.debug command

Treat the rest of name as the URL of a socket to connect to. Valid URL
forms are described in [milter port specification], page 202.

If none of these prefixes is used, name is treated as a name of an existing file and
open will attempt to open this file for reading.

The open function will signal exception e_failure if it is unable to open the resource
or get the required access to it.



Chapter 5: The MFL Library Functions 123

number spawn (string cmd [, number in, number out, number  [Built-in Function]

err])
Runs the supplied command cmd. The syntax of the cmd is the same as for the name
argument to open (see above), which begins with ‘|’, excepting that the ‘|’ sign is

optional. That is:
spawn("/bin/cat")
has exactly the same effect as
open("|/bin/cat")
Optional arguments specify file stream descriptors to be used for the program standard
input, output and error streams, correspondingly. If supplied, these should be the

values returned by a previous call to open or tempfile. The value ‘-1’ means no
redirection.

Buffering mode for the opened stream is defined by the io_buffering and io_
buffer_size global variables. It can be changed using the setbuf function (see
[setbuf], page 126).

The example below starts the awk program with a simple expression as its argument
and redirects the content of the file /etc/passwd to its standard input. The returned
stream descriptor is bound to the command’s standard output (see the description of
‘| <’ prefix above). The standard error is closed:

number fd spawn("<awk -F: ’{print $1}’", open("/etc/passwd"))

void close (number rd) [Built-in Function]
The argument rd is a resource descriptor returned by a previous call to open. The
function close closes the resource and deallocates any memory associated with it.

close will signal e_range exception if rd lies outside of allowed range of resource
descriptors. See Section 7.11 [conf-runtime|, page 210.

Notice that you are not required to close resources opened by open. Any unclosed
resource will be closed automatically upon the termination of the filtering program.

void shutdown (number rd, number how) [Built-in Function]
This function causes all or part of a full-duplex connection to be closed. The rd must
be either a socket descriptor (returned by open(@...)) or a two-way pipe socket
descriptor (returned by open(|&...)), otherwise the call to shutdown is completely
equivalent to close.

The how argument identifies which part of the connection to shut down:

SHUT_RD

Read connection. All further receptions will be disallowed.
SHUT_WR

Write connection. All further transmissions will be disallowed.
SHUT_RDWR

Shut down both read and write parts.

number tempfile ([string tmpdir]) [Built-in Function)]
Creates a nameless temporary file and returns its descriptor. Optional tmpdir supplies
the directory where to create the file, instead of the default /tmp.



124 Mailfromd Manual

void rewind (number rd) [Built-in Function]
Rewinds the stream identified by rd to its beginning.

number copy (number dst, number src) [Built-in Function]
Copies all data from the stream src to dst. Returns number of bytes copied.

The following functions provide basic read/write capabilities.

void write (number rd, string str [, number size)) [Built-in Function]
Writes the string str to the resource descriptor rd. If the size argument is given,
writes this number of bytes.

This function always attempts to write the requested amount of data. It will signal
e_range exception if rd lies outside of allowed range of resource descriptors, e_io
exception if an I/O error occurs, and e_eof exception if it wrote 0 bytes (e.g. because
the underlying device is full).

void write_body (number rd, pointer bp , number size) [Built-in Function]
Write the body segment of length size from pointer bp to the stream rd. This function
can be used only in prog body (see [body handler]|, page 69). Its second and third
arguments correspond exactly to the parameters of the body handler, so the following
construct writes the message body to the resource £d, which should have been open
prior to invoking the body handler:

prog body
do
write_body(fd, $1, $2)
done
string read (number rd, number n) [Built-in Function]

Read and return at most n bytes from the resource descriptor rd.

If there are less than n bytes in the stream, the remaining bytes will be returned. Use
length() to obtain the actual size of the returned data. If there are no bytes left,
the e_eof exception will be signalled.

The function may signal the following exceptions:

e_range rd lies outside of allowed range of resource descriptors.
e_eof End of file encountered.
e_io An I/0O error occurred.
string getdelim (number rd, string delim) [Built-in Function]

Read and return the next string terminated by delim from the resource descriptor rd.
The terminating delim string will be removed from the return value.

When using this function, it is highly recommended to enable full buffering for fd,
either by setting io_buffering before open (see [io_buffering], page 121) or by calling
setbuf after it (see [setbuf], page 126). See [getline], page 125, for an example.

This function may signal the following exceptions:

e_range rd lies outside of allowed range of resource descriptors.



Chapter 5: The MFL Library Functions 125

e_eof End of file encountered.
e_io An I/O error occurred.
string getline (number rd) [Built-in Function]

Read and return the next line from the resource descriptor rd. A line is any sequence
of characters terminated with the default line delimiter. The default delimiter is a
property of rd, i.e. different descriptors can have different line delimiters. The default
value is ‘\n’ (ASCII 10), and can be changed using the fd_set_delimiter function
(see below).

When using this function, it is highly recommended to enable full buffering for fd,
either by setting io_buffering before open (see [io_buffering], page 121) or by calling
setbuf after it (see [setbuf], page 126), e.g.:

set fd open(input)

setbuf (fd, BUFFER_FULL)

set line getline(£fd)

This function may signal the following exceptions:

e_range rd lies outside of allowed range of resource descriptors.
e_eof End of file encountered.
e_io An 1/0 error occurred.
void fd_set_delimiter (number fd, string delim) [Built-in Function]

Set new line delimiter for the descriptor fd, which must be in opened state.

Default delimiter is a newline character (ASCII 10). The following example shows
how to change it to CRLF sequence:

fd_set_delimiter(fd, "\r\n")

string fd_delimiter (number fd) [Built-in Function]
Returns the line delimiter string for fd.

The following example shows how mailfromd I/O functions can be used to automatically
add TP addresses to an RBL zone:

set nsupdate_cmd
"/usr/bin/nsupdate -k /etc/bind/Kmail.+157+14657.private"

func block_address(string addr)
do

number fd

string domain

set fd open "|%nsupdate_cmd"

set domain revip(addr) . ".rbl.myzone.come"
write(fd, "prereq nxrrset %domain A\n"
"update add Y%domain 86400 A %addr\n\n"
done



126 Mailfromd Manual

The function revip is defined in [revip], page 117.

void setbuf (number fd, [number type, number sizel) [Built-in Function]
Changes the buffering mode of fd according to the remaining two arguments. The
type specifies buffering type (see [io_buffering], page 121), and size supplies the buffer
size for buffering types BUFFER_FULL and BUFFER_LINE. If size is omitted, it defaults
to io_buffer_size (see [io_buffer_size], page 121). Omitted type defaults to io_
buffering (see [io_buffering], page 121).

number getbuftype (number fd) [Built-in Function]
Returns the type of buffering currently in effect for the descriptor fd.  See
[io_buffering], page 121, for a list of possible return values.
If this function returns BUFFER_FULL or BUFFER_LINE, you can use getbufsize to get
the associated buffer size.

number getbufsize(number fd) [Built-in Function]
Returns the buffer size for the descriptor fd.

5.7 Filtering functions

This section describes functions that transform data using Mailutils filter pipes. Filter pipe
is a string defining data flow between several filters. Each filter takes input, transforms it
according to certain rules and produces the transformed data on its output. As in shell,
multiple filters are connected using pipe characters (‘|’). For example, the crlf filter
inserts a carriage return character before each newline character. A filter doing that kind
of transformation is defined as:

n Crlf n

Another filter, base64, converts its input to a BASE64 encoded string. To transform
each newline into carriage return + newline pair and encode the resulting stream in BASEG64,
one would write:

"crlf | base64"

Some filters take one or more arguments. These are specified as a comma-delimited list
in parentheses after the filter name. For example, the 1inelen filter limits the length of
each output line to the given number of octets. The following filter pipe will limit the length
of base64 lines in the filter above to 62 octets:

"crlf | base64 | linelen(62)"

Many filters operate in two modes: encode and decode. By default all MFL functions
apply filters in encode mode. The desired mode can be stated explicitly in the filter string
by using encode () and decode () functions. They take a filter pipe line as their argument.
For example, the following will decode the stream produced by the example filter above:

"decode(base64 | crlf)"

See Section 5.7.1 [Filters|, page 127, for a discussion of available filters and their argu-
ments.
string filter_string (string input, string filter_pipe) [Built-in Function]

Transforms the string input using filters in filter_pipe and returns the result. Example:

set input "test\ninput\n"
filter_string(input, "crlf|base64") = "dGVzdAOKaWswdXQNCg=="



Chapter 5: The MFL Library Functions 127

void filter_fd (number src_fd, number dst_fd, string [Built-in Function]
filter_pipe)
Given two I/0 descriptors, reads data from src_fd, transforms it using filter_pipe and
writes the result to descriptor dst_fd.

Both descriptors must be obtained using functions described in Section 5.6 [I/O func-
tions], page 120.

5.7.1 Filters and Filter Pipes

A filter pipe is a string consisting of filter invocations delimited by pipe characters (‘|’).
Fach invocation is a filter name optionally followed by a comma-separated list of parameters.
Most filters can operate in two modes: encode and decode. Unless specified otherwise, filters
are invoked in encode mode. To change the mode, the encode and decode meta-filters are
provided. Argments to these filters are filter pipes that will be executed in the corresponding
mode.

The following Mailutils filters are available:
7bit [Filter]
In encode mode, converts its input into 7-bit ASCII, by clearing the 8th bit on each
processed byte.

In decode mode, it operates exactly as the 8bit filter, i.e. copies its input to the
output verbatim.

The filter takes no arguments.

8bit [Filter]

binary [Filter]
Copies its input to output verbatim.

base64 [Filter]

B [Filter]

FEncodes or decodes the input using the base64 encoding.

The only difference between BASE64 and B is that, in encode mode, the former limits
each ouput line length to 76 octets, whereas the latter produces a contiguous stream
of base64 data.

In decode mode, both filters operate exactly the same way.

charset (cset) [Filter]

charset (cset, fallback) [Filter]
A convenience interface to the iconv filter, available for use only in the message_
body_to_stream function. It decodes the part of a MIME message from its original
character set, which is determined from the value of the Content-Type header, to the
destination character set cset. Optional fallback parameter specifies the representa-
tion fallback to be used for octets that cannot be converted between the charater sets.
Its use is described in See [iconv], page 129.

This filter is normally takes its input from the mimedecode filter, as in:
message_body_to_stream(fd, msg, ’mimedecode|charset(utf-8)’)

See [mimedecode|, page 142, for a detailed discussion.



128

crlf

Mailfromd Manual

[Filter]

rfc822 [Filter]

Converts line separators from LF (ASCII 10) to CRLF (ASCII 13 10) and vice-versa.
In decode mode, translates each CRLF to LF. Takes no arguments.

In encode mode, translates each LF to CRLF. If an optional argument ‘-n’ is given,
produces a normalized output, by preserving each input CRLF sequence untouched
(otherwise such sequences will be are translated to CR CR LF).

crlfdot [Filter]

dot

from

In encode mode, replaces each LF (‘\n’ or ASCII 10) character with CRLF (‘\r\n’,
ASCII 13 10), and byte-stuffs the output by producing an additional ‘.’ in front of
any ‘.’ appearing at the beginning of a line in input. Upon end of input, it outputs
additional ‘.\r\n’, if the last output character was ‘\n’, or ‘\r\n.\r\n’ otherwise.

If supplied the ‘-n’ argument, it preserves each CRLF input sequence untranslated
(see the CRLF above).

In decode mode, the reverse is performed: each CRLF is replaced with a single LF
byte, and additional dots are removed from beginning of lines. A single dot on a line
by itself marks the end of the stream and causes the filter to return EOF.

[Filter]
In encode mode, byte-stuffs the input by outputting an additional dot (‘.”) in front
of any dot appearing at the beginning of a line. Upon encountering end of input, it
outputs additional ‘.\n’.

In decode mode, the reverse is performed: additional dots are removed from beginning
of lines. A single dot on a line by itself (i.e. the sequence ‘\n.\n’) marks the end of
the stream and causes the filter to return EOF.

This filter doesn’t take arguments.

[Filter]
Performs a traditional UNIX processing of lines starting with a ‘From’ followed by a
space character.

In encode mode, each ‘From ’ at the beginning of a line is replaced by ‘>From ’.

In decode mode, the reverse operation is performed: initial greater-then sign (‘>’) is
removed from any line starting with ‘>From ’.

The filter takes no arguments.

fromrd [Filter]

MBOXRD-compatible processing of envelope lines.

In encode mode, each ‘From ’ optionally preceded by any number of contiguous ‘>’
characters and appearing at the beginning of a line is prefixed by another ‘>’ character
on output.

In decode mode, the reverse operation is performed: initial greater-then sign (‘>’) is
removed from any line starting with one or more ‘>’ characters followed by ‘From ’.



Chapter 5: The MFL Library Functions 129

header [Filter]
This filter treats its input as a RFC-2822 email message. It extracts its header part
(i.e. everything up to the first empty line) and copies it to the output. The body of
the message is ignored.

The filter operates only in decode mode and takes no arguments.

iconv (src, dst [, fallback]) [Filter]
Converts input from character set src to dst. The filter works the same way in both
decode and encode modes.
It takes two mandatory arguments: the names of the input (src) and output (dst)
charset. Optional third argument specifies what to do when an illegal character
sequence is encountered in the input stream. Its possible values are:

none Raise a e_ilseq exception.

copy-pass
Copy the offending octet to the output verbatim and continue conversion
from the next octet.

copy-octal
Print the offending octet to the output using the C octal conversion and
continue conversion from the next octet.

The default is copy-octal.

The following example creates a iconv filter for converting from iso-8859-2 to utf-8,
raising the e_ilseq exception on the first conversion error:

iconv(iso-8859-2, utf-8, none)

inline-comment [Filter]

inline-comment (str, [options]) [Filter]
In decode mode, the filter removes from the input all lines beginning with a given
inline comment sequence str. The default comment sequence is ‘;’ (a semicolon).

The following options modify the default behavior:

-i, str  Emit line number information after each contiguous sequence of removed
lines. The argument str supplies an information starter — a sequence of
characters which is output before the actual line number.

-r Remove empty lines, i.e. the lines that contain only whitespace charac-
ters.
-s Squeeze whitespace. Each sequence of two or more whitespace characters

encountered on input is replaced by a single space character on output.

-S A whitespace-must-follow mode. A comment sequence is recognized only
if followed by a whitespace character. The character itself is retained on
output.

In encode mode the inline-comment filter adds a comment-starter sequence at the

beginning of each line. The default comment-starter is ‘;’ and can be changed by
specifying the desired comment starter as the first argument.



130 Mailfromd Manual

The only option supported in this mode is -S, which enables the whitespace-must-
follow mode, in which a single space character (ASCII 20) is output after each com-
ment sequence.

linecon [Filter]

linecon (-i, str) [Filter]
Implements a familiar UNIX line-continuation facility. The filter removes from itsin-
put stream any newline character immediately preceded by a backslash. This filter
operates only in decode mode.

If given the arguments (‘-i’, str), enables the line number information facility. This
facility emits current input line number (prefixed with str) after each contiguous
sequence of one or more removed newline characters. It is useful for implementing
parsers which are normally supposed to identify eventual erroneous lines with their
input line numbers.

linelen (n) [Filter]
Limits the length of each output line to a certain number of octets. It operates
in encode mode only and requires a single parameter: the desired output length in
octets. This filter makes no attempt to analyze the lexical structure of the input: the
newline caracters are inserted when the length of the output line reaches a predefined
maximum. Any newline characters present in the input are taken into account when
computing the input line length.

mimedecode [Filter]
This is a domain-specific filter available for use only with the message_body_to_
stream function. It decodes the part of a MIME message from whatever encoding
that was used to store it in the message to a stream of bytes. See [mimedecode],
page 142.

quoted-printable [Filter]
Q [Filter]
Encodes or decodes the input using the quoted-printable encoding.

XML [Filter]
In encode mode, the xml filter converts input stream (which must contain valid UTF-
8 characters) into a form suitable for inclusion into a XML or HTML document,
i.e. it replaces ‘<’; >’ and ‘& with ‘&41t;’, ‘&gt;’, and ‘&amp;’, correspondingly, and
replaces invalid characters with their numeric character reference representation.
In decode mode, a reverse operation is performed.

The filter does not take arguments.

5.8 Email processing functions.

number email_map (string email) [Built-in Function]
Parses email and returns a bitmap, consisting of zero or more of the following flags:

‘EMAIL_MULTIPLE’
email has more than one email address.



Chapter 5: The MFL Library Functions 131

‘EMAIL_COMMENTS’
email has comment parts.

‘EMAIL_PERSONAL’
email has personal part.

‘EMAIL_LOCAL’
email has local part.

‘EMAIL_DOMAIN’
email has domain part.

‘EMAIL_ROUTE’
email has route part.

These constants are declared in the email.mf module. The function email_map
returns 0 if its argument is not a valid email address.

boolean email_valid (string email) [Library Function]
Returns ‘True’ (1) if email is a valid email address, consisting of local and domain
parts only. E.g.:
email_valid("gray@gnu.org") = 1
email_valid("gray") = O
email_valid(’"Sergey Poznyakoff <gray@gnu.org>’) = 0

This function is defined in email.mf (see Section 4.21 [Modules], page 101).

5.9 Envelope Modification Functions

Envelope modification functions set sender and add or delete recipient addresses from the
message envelope. This allows MFL scripts to redirect messages to another addresses.

void set_from (string email [, string args]) [Built-in Function]
Sets envelope sender address to email, which must be a valid email address. Optional
args supply arguments to ESMTP ‘MAIL FROM’ command.

void rcpt_add (string address) [Built-in Function]
Add the e-mail address to the envelope.

void rcpt_delete (string address) [Built-in Function]
Remove address from the envelope.

The following example code uses these functions to implement a simple alias-like capa-
bility:
prog envrcpt
do
string alias dbget(aliasdb, $1, "NULL", 1)
if alias != "NULL"
rcpt_delete($1)
rcpt_add(alias)
fi
done



132 Mailfromd Manual

5.10 Header Modification Functions

There are two ways to modify message headers in a MFL script. First is to use header ac-
tions, described in Section 4.16.1 [Actions]|, page 85, and the second way is to use message
modification functions. Compared with the actions, the functions offer a series of advan-
tages. For example, using functions you can construct the name of the header to operate
upon (e.g. by concatenating several arguments), something which is impossible when using
actions. Moreover, apart from three basic operations (add, modify and remove), as sup-
ported by header actions, header functions allow to insert a new header into a particular
place.

void header_add (string name, string value) [Built-in Function]
Adds a header ‘name: value’ to the message.

In contrast to the add action, this function allows to construct the header name using
arbitrary MFL expressions.

void header_add (string name, string value, number idx) [Built-in Function]
This syntax is preserved for backward compatibility. It is equivalent to header_
insert, which see.

void header_insert (string name, string value, number [Built-in Function]
idx)

This function inserts a header ‘name: ‘value’’ at idxth header position in the internal
list of headers maintained by the MTA. That list contains headers added to the
message either by the filter or by the MTA itself, but not the headers included in the
message itself. Some of the headers in this list are conditional, e.g. the ones added
by the ‘H?cond?’ directive in sendmail.cf. MTA evaluates them after all header
modifications have been done and removes those of headers for which they yield false.
This means that the position at which the header added by header_insert will
appear in the final message will differ from idx.

void header_delete (string name [, number index]) [Built-in Function)]
Delete header name from the envelope. If index is given, delete indexth instance of
the header name.

Notice the differences between this function and the delete action:

1. It allows to construct the header name, whereas delete requires it to be a literal
string.

2. Optional index argument allows to select a particular header instance to delete.

void header_replace (string name, string value [, number [Built-in Function]
index])
Replace the value of the header name with value. If index is given, replace indexth
instance of header name.

Notice the differences between this function and the replace action:

1. It allows to construct the header name, whereas replace requires it to be a literal
string.

2. Optional index argument allows to select a particular header instance to replace.



Chapter 5: The MFL Library Functions 133

void

void

void

header_rename (string name, string newname|, number [Library Function]
idx])

Defined in the module header_rename.mf.
Available only in the ‘eom’ handler.

Renames the idxth instance of header name to newname. If idx is not given, assumes
1.

If the specified header or the idx instance of it is not present in the current message,
the function silently returns. All other errors cause run-time exception.

The position of the renamed header in the header list is not preserved.
The example below renames ‘Subject’ header to ‘X-01d-Subject’:

require ’header_rename’

prog eom
do
header_rename("Subject", "X-0ld-Subject")
done
header_prefix_all (string name [, string prefix]) [Library Function]

Defined in the module header_rename .mf.

Available only in the ‘eom’ handler.

Renames all headers named name by prefixing them with prefix. If prefix is not
supplied, removes all such headers.

All renamed headers will be placed in a continuous block in the header list. The
absolute position in the header list will change. Relative ordering of renamed headers
will be preserved.

header_prefix_pattern (string pattern, string [Library Function]
prefix)

Defined in the module header_rename .mf.
Available only in the ‘eom’ handler.

Renames all headers with names matching pattern (in the sense of fnmatch, see
Section 4.14.7 [Special comparisons|, page 79) by prefixing them with prefix.

All renamed headers will be placed in a continuous block in the header list. The
absolute position in the header list will change. Relative ordering of renamed headers
will be preserved.

If called with one argument, removes all headers matching pattern.

For example, to prefix all headers beginning with ‘X-Spamd-’ with an additional ‘X-":

require ’header_rename’

prog eom
do

header_prefix_pattern("X-Spamd-*", "X-")
done



134 Mailfromd Manual

5.11 Body Modification Functions

Body modification is an experimental feature of MFL. The version 8.14 provides only one
function for that purpose.

void replbody (string text) [Built-in Function]
Replace the body of the message with text. Notice, that text must not contain RFC
822 headers. See the previous section if you want to manipulate message headers.

Example:
replbody("Body of this message has been removed by the mail filter.")|

No restrictions are imposed on the format of text.

void replbody_fd (number fd) [Built-in Function]
Replaces the body of the message with the content of the stream fd. Use this function
if the body is very big, or if it is returned by an external program.

Notice that this function starts reading from the current position in fd. Use rewind
if you wish to read from the beginning of the stream.

The example below shows how to preprocess the body of the message using external
program /usr/bin/mailproc, which is supposed to read the body from its standard
input and write the processed text to its standard output:

number fd # Temporary file descriptor

prog data

do
# Open the temporary file
set fd tempfile()

done

prog body
do
# Write the body to it.
write_body(fd, $1, $2)
done

prog eom
do
# Use the resulting stream as the stdin to the mailproc
# command and read the new body from its standard output.
rewind (£d)
replbody_fd(spawn("</usr/bin/mailproc", £d))
done

5.12 Message Modification Queue

Message modification functions described in the previous subsections do not take effect
immediately, in the moment they are called. Instead they store the requested changes in



Chapter 5: The MFL Library Functions 135

the internal message modification queue. These changes are applied at the end of processing,
before ‘eom’ stage finishes (see Figure 3.1).

One important consequence of this way of operation is that calling any MTA action
(see Section 4.16.1 [Actions], page 85), causes all prior modifications to the message to be
ignored. That is because after receiving the action command, MTA will not call filter for
that message any more. In particular, the ‘eom’ handler will not be called, and the message
modification queue will not be flushed. While it is logical for such actions as reject or
tempfail, it may be quite confusing for accept. Consider, for example, the following code:

prog envfrom
do
if $1 == "n
header_add("X-Filter", "foo")
accept
fi
done

Obviously, the intention was to add a ‘X-Filter’ header and accept the message if it
was sent from the null address. What happens in reality, however, is a bit different: the
message is accepted, but no header is added to it. If you need to accept the message and
retain any modifications you have done to it, you need to use an auxiliary variable, e.g.:

number accepted O
prog envfrom
do
if $1 == nn
header_add("X-Filter", "foo")
set accepted 1
fi
done
Then, test this variable for non-zero value at the beginning of each subsequent handler,
e.g.
prog data
do
if accepted
continue
fi
done
To help you trace such problematic usages of accept, mailfromd emits the following
warning:
RUNTIME WARNING near /etc/mailfromd.mf:36: ‘accept’ causes previous

message modification commands to be ignored; call mmq_purge() prior
to ‘accept’, to suppress this warning

If it is OK to lose all modifications, call mmq_purge, as suggested in this message.
void mmq_purge () [Built-in Function]
Remove all modification requests from the queue. This function undoes the effect of
any of the following functions, if they had been called previously: rcpt_add, rcpt_



136 Mailfromd Manual

delete, header_add, header_insert, header_delete, header_replace, replbody,
quarantine.

5.13 Mail Header Functions

string message_header_encode (string text, [string enc, [Built-in Function]
string charset])
Encode text in accordance with RFC 2047. Optional arguments:

enc Encoding to use. Valid values are ‘quoted-printable’, or ‘Q’ (the de-
fault) and ‘base64’, or ‘B’.

charset Character set. By default ‘UTF-8’.

If the function is unable to encode the string, it raises the exception e_failure.
For example:

set string "Keld Jgrn Simonsen <keld@dkuug.dk>"
message_header_encode(string, "IS0-8859-1")
= "=7IS0-8859-17Q7Keld_J=F8rn_Simonsen?= <keld@dkuug.dk>"

string message_header_decode (string text, [string [Built-in Function]
charset])
text must be a header value encoded in accordance with RFC 2047. The function
returns the decoded string. If the decoding fails, it raises e_failure exception. The
optional argument charset specifies the character set to use (default — ‘UTF-8’).

set string "=7IS0-8859-17Q7Keld_J=F8rn_Simonsen?= <keld@dkuug.dk>"
message_header_decode(string)
= "Keld Jgrn Simonsen <keld@dkuug.dk>"

string unfold (string text) [Built-in Function]
If text is a “folded” multi-line RFC 2822 header value, unfold it. If text is a single-line
string, return its unchanged copy.

For example, suppose that the message being processed contained the following
header:

List-Id: Sent bugreports to
<some-address@some.net>

Then, applying unfold to its value® will produce:

Sent bugreports to <some-address@some.net>

3 For example:

prog header
do

echo unfold($2)
done



Chapter 5: The MFL Library Functions 137

5.14 Mail Body Functions

string body_string (pointer text, number count) [Built-in Function]
Converts first count bytes from the memory location pointed to by text into a regular
string.

This function is intended to convert the $1 argument passed to a body handler to a
regular MFL string. For more information about its use, see [body handler], page 69.

bool body_has_nulls (pointer text, number count) [Built-in Function]
Returns ‘True’ if first count bytes of the string pointed to by text contain ASCII NUL
characters.
Example:
prog body
do
if body_has_nulls($1l, $2)
reject
fi
done

5.15 EOM Functions

The following function is available only in the ‘eom’ handler:

void progress () [Built-in Function]
Notify the MTA that the filter is still processing the message. This causes MTA to
restart its timeouts and allows additional amount of time for execution of ‘eom’.

Use this function if your ‘eom’ handler needs additional time for processing the message
(e.g. for scanning a very big MIME message). You may call it several times, if the
need be, although such usage is not recommended.

5.16 Current Message Functions

number current_message () [Built-in Function]
This function can be used in eom handlers only. It returns a message descriptor
referring to the current message. See Section 5.18 [Message functions], page 139, for
a description of functions for accessing messages.

The functions below access the headers from the current message. They are available in
the following handlers: eoh, body, eom.

number current_header_count ([string name]) [Built-in Function]
Return number of headers in the current message. If name is specified, return number
of headers that have this name.

current_header_count() = 6
current_header_count ("Subject") = 1

string current_header_nth_name (number n) [Built-in Function]
Return the name of the nth header. The index n is 1-based.



138 Mailfromd Manual

string current_header_nth_value (number n) [Built-in Function]
Return the value of the nth header. The index n is 1-based.

string current_header (string name [, number n|) [Built-in Function]
Return the value of the named header, e.g.:

set s current_header("Subject")

Optional second argument specifies the header instance, if there are more than 1
header of the same name, e.g.:

set s current_header("Received", 2)

Header indices are 1-based.

All current_header function raise the e_not_found exception if the requested header was
not found.

5.17 Mailbox Functions

A set of functions is provided for accessing mailboxes and messages within them. In this
subsection we describe the functions for accessing mailboxes.

A mailbox is opened using mailbox_open function:

number mailbox_open (string url [, string mode, string [Built-in Function]
perns])
Open a mailbox identified by url. Return a mailbox descriptor: a unique numeric
identifier that can subsequently be used to access this mailbox.

The optional mode argument specifies the access mode for the mailbox. Its valid

values are:

Value Meaning

T Open mailbox for reading. This is the default.

w Open mailbox for writing. If the mailbox does not exist,
it is created.

W Open mailbox for reading and writing. If the mailbox
does not exist, it is created.

wr Same as ‘rw’.

w+ Open mailbox for reading and writing. If the mailbox
does not exist, it is created.

a Open mailbox for appending messages to it. If the mail-
box does not exist, an exception is signalled.

at+ Open mailbox for appending messages to it. If the mail-

box does not exist, it is created.
The optional perms argument specifies the permissions to use in case a new file (or
files) is created. It is a comma-separated list of:
[go] (+]=) [wr]l+
The initial letter controls which users’ access is to be set: users in the file’s group (‘g’)

or other users not in the file’s group (‘o’). The following character controls whether
the permissions are added to the default ones (‘+’) or applied instead of them (‘=").



Chapter 5: The MFL Library Functions 139

The remaining letters specify the permissions: ‘r’ for read access and ‘w’ for write
access. For example:

g=rw,o+r

The number of mailbox descriptors available for simultaneous opening is 64. This
value can be changed using the max-open-mailboxes runtime configuration statement (see
Section 7.11 [conf-runtime], page 210).

number mailbox_messages_count (number nmbx) [Built-in Function]
Return the number of messages in mailbox. The argument nmbx is a valid mailbox
descriptor as returned by a previous call to mailbox_open.

number mailbox_get_message (number mbx, number n) [Built-in Function]
Retrieve nth message from the mailbox identified by descriptor mbx. On success,
the function returns a message descriptor, an integer number that can subsequently
be used to access that message (see Section 5.18 [Message functions], page 139). On
error, an exception is raised.

Messages in a mailbox are numbered starting from 1.

void mailbox_close (number nmbx) [Built-in Function]
Close a mailbox previously opened by mailbox_open.

void mailbox_append_message (number nmbx, number [Built-in Function]
nmsg)
Append message nmsg to mailbox nmbx. The message descriptor nsmg must be
obtained from a previous call to mailbox_get_message or current_message (see
[current_message|, page 137).

5.18 Message Functions

The functions described below retrieve information from RFC822 messages. The message
to operate upon is identified by its descriptor, an integer number returned by the previous
call to mailbox_get_message (see Section 5.17 [Mailbox functions], page 138) or current_
message (see [current_message], page 137) function. The maximum number of message
descriptors is limited by 1024. You can change this limit using the max-open-messages
runtime configuration statement (see Section 7.11 [conf-runtime], page 210).

number message_size (number nmsg) [Built-in Function]
Return the size of the message nmsg, in bytes. Notice, that if nmsg refers to current
message (see [current_message|, page 137), the returned value is less than the size
seen by the MTA, because mailfromd recodes CR-LF sequences to LF, i.e. removes
carriage returns (ASCII 13) occurring before line feeds (ASCII 10. To obtain actual
message length as seen by the MTA, add the number of lines in the message:

set actual_length message_size(nmsg) + message_lines(nmsg)

boolean message_body_is_empty (number nmsg) [Built-in Function]
Returns true if the body of message nmsg has zero size or contains only whitespace
characters. If the ‘Content-Transfer-Encoding’ header is present, it is used to
decode body before processing.



140 Mailfromd Manual

void message_close (number nmsg) [Built-in Function]
Close the message identified by descriptor nmsg.

number message_lines (number nmsg) [Built-in Function]
Return total number of lines in message nmsg. The following relation holds true:
message_lines(x) = message_body_lines(x)
+ message_header_lines(x) + 1

string message_read_line (number nmsg) [Built-in Function]
Read and return next line from the message nmsg. If there are no more lines to read,
raise the eof exception.

Use message_rewind to rewind the message stream and read its contents again.

void message_rewind (number nmsg) [Built-in Function]
Rewind the stream associated with message referred to by descriptor nmsg.

number message_from_stream (number fd; string [Built-in Function]
filter_chain)
Converts contents of the stream identified by fd to a mail message. Returns identifier
of the created message.

Optional filter_chain supplies the name of a Mailutils filter chain, through which
the data will be passed before converting. See http://mailutils.org/wiki/
Filter_chain, for a description of filter chains.

void message_to_stream (number fd, number nmsg; string [Built-in Function]
filter_chain)
Copies message nsmg to stream descriptor fd. The descriptor must be obtained by a
previous call to open.
Optional filter_chain supplies the name of a Mailutils filter chain, through which the
data will be passed before writing them to fd. See http://mailutils.org/wiki/
Filter_chain, for a description of filter chains.

5.18.1 Header functions

number message_header_size (number nmsg) [Built-in Function]
Return the size, in bytes of the headers of message nmsg. See the note to the message_
size, above.

number message_header_lines (number nmsg) [Built-in Function]
Return number of lines occupied by headers in message nmsg.

number message_header_count (number nmsg, [string name])  [Built-in Function]
Return number of headers in message nmsg.

If name is supplied, count only headers with that name.

string message_find_header (number nmsg, string name |, [Built-in Function]
number idx])
Return value of header name from the message nmsg. If the message contains several
headers with the same name, optional parameter idx may be used to select one of
them. Headers are numbered from ‘1’.


http://mailutils.org/wiki/Filter_chain
http://mailutils.org/wiki/Filter_chain
http://mailutils.org/wiki/Filter_chain
http://mailutils.org/wiki/Filter_chain

Chapter 5: The MFL Library Functions 141

If no matching header is not found, the not_found exception is raised. If another
error occurs, the failure exception is raised.

The returned string is a verbatim copy of the message contents (except for eventual
CR-LF -> LF translation, see above). You might need to apply the unfold function
to it (see Section 5.13 [Mail header functions|, page 136).

string message_nth_header_name (number nmsg, number [Built-in Function]
n)
Returns the name of the nth header in message nmsg. If there is no such header,
e_range exception is raised.

string message_nth_header_value (number msg, number [Built-in Function]
n)
Returns the value of the nth header in message nmsg. If there is no such header,
e_range exception is raised.

boolean message_has_header (number nmsg, string name |, [Built-in Function]
number idx])
Return true if message nmsg contains header with the given name. If there are
several headers with the same name, optional parameter idx may be used to select
one of them.

5.18.2 Message body functions

number message_body_size (number nmsg) [Built-in Function]
Return the size, in bytes, of the body of message nmsg. See the note to the message_
size, above.

number message_body_lines (number nmsg) [Built-in Function]
Return number of lines in the body of message referred to by descriptor nmsg.

void message_body_rewind (number nmsg) [Built-in Function]
Rewind the stream associated with the body of message referred to by descriptor
nmsg.

A call to message_body_read_line (see below) after calling this function will return
the first line from the message body.

string message_read_body_line (number nmsg) [Built-in Function]
Read and return next line from the body of the message nmsg. If there are no more
lines to read, raise the eof exception.

Use message_body_rewind (see above) to rewind the body stream and read its con-
tents again.

void message_body_to_stream (number fd, number nmsg; [Built-in Function]
string filter_pipe)
Copies the body of the message nsmg to stream descriptor fd. The descriptor must
be obtained by a previous call to open.
Optional filter_pipe supplies a sequence of Mailutils filters, through which the data
will be passed before writing them to fd. See Section 5.7 [Filtering functions],
page 126, for a discussion of filter pipe syntax.



142 Mailfromd Manual

In addition to filters described in See Section 5.7.1 [Filters], page 127, two spe-
cial filters are provided for use with this function: mimedecode and charset. The
mimedecode filter instructs the function to decode the message body by reverting the
encoding specified by its Content-Transfer-Encoding header. It is normally used
as the very first filter in chain. The charset filter recodes the message body from it
original character set to the character set specified as its argument.

See [mimedecode], page 142, for a detailed discussion of this feature.
5.18.3 MIME functions

boolean message_is_multipart (number nmsg) [Built-in Function]
Return true if message nmsg is a multipart (MIME) message.

number message_count_parts (number nmsg) [Built-in Function]
Return number of parts in message nmsg, if it is a multipart (MIME) message. If it
is not, return ‘1’.

Use message_is_multipart to check whether the message is a multipart one.

number message_get_part (number nmsg, number n) [Built-in Function]
Extract nth part from the multipart message nmsg. Numeration of parts begins from
‘1’. Return message descriptor referring to the extracted part. Message parts are
regarded as messages, so any message functions can be applied to them.

string message_content_type (number nmsg) [Built-in Function]
Returns content type for the message nmsg. The returned string is composed of
content type and subtype, delimited by slash.

If nmsg is not a multipart message, the function returns ‘text/plain’.

Several functions are provided for decoding multi-part messages. Such decoding is gov-
erned by Content-Transfer-Encoding and Content-Type headers of the message. The
Content-Transfer-Encoding header defines the method used to encode the message. The
value of Content-Type header is used to determine the character set the body is written
in.

Basic MIME decoding facilities are provided by the built-in function message_body_to_
stream, described in the previous subsection. To instruct it to decode the content, pass it
the filter_chain argument beginning with the word mimedecode. The usual sequence is:

set fd open("> outfile")
message_body_to_stream(fd, msg, "mimedecode")

To ensure that the produced stream is represented in a specific character set, use the
charset special filter. Its argument is the name of the character set to recode the text to:

set fd open("> outfile")
message_body_to_stream(fd, msg, "mimedecode|charset(utf-8)")

The charset filter takes also an optional second argument — a fallback method, speci-
fying what to do when an octet sequence is encountered that cannot be represented in the
requested character set. Possible values for this argument are:

‘none’ Stop further conversion and signal the e_ilseq exception.



Chapter 5: The MFL Library Functions 143

‘copy-pass’
Copy the offending character to the output verbatim.

‘copy-octal’
Represent the offending character as a C octal sequence (‘\nnn’, where n is an
octal digit). This is the default.

To decode a particular part of the message, first extract it using the message_get_part
function. Recall that message parts are messages as well, and as such can be passed to
message_body_to_stream. For example, the following code fragment extracts all top-level
parts of a multi-part message to files named ‘part.N":

if message_is_multipart(msg)
set n message_count_parts(msg)
loop for set i 1, while i <= n, set i i + 1
do
set fd open("> part.%i")
message_body_to_stream(fd, message_get_part(msg, i), "mimedecode")
close(fd)
done
fi

The mime .mf module provides additional functions for decoding multi-part messages:

number message_body_decode (number nmsg; string [Library Function]
charset, string fallback)
Decodes the body of the message (or message part) nmsg, optionally converting it
to the given charset. The fallback argument specifies what to do if a byte sequence
cannot be converted to the specified character set. See [iconv fallback], page 129, for
a detailed discussion.

The function returns a descriptor of the I/O stream that contains the decoded mate-
rial. See Section 5.6 [I/O functions], page 120, for a discussion of functions available
for reading from it.

number message_part_decode (number nmsg, number part; [Library Function]
string charset, string fallback)
Decodes the body of the given part of a MIME message nmsg. The argument part is
a 1-based index of the part in the message. Optional arguments charset and fallback
have the same meaning as in message_body_decode (see above).

Returns a descriptor of the I/O stream that contains the decoded material.
This function is equivalent to:

message_body_decode (message_get_part (amsg, part, charset,
fallback))

5.18.4 Message digest functions

Message digests are specially formatted messages that contain certain number of mail mes-
sages, encapsulated using the method described in RFC 934. Such digests are often used
in mailing lists to reduce the frequency of sending mails. Messages of this format are also
produced by the forward function in most MUA’s.



144 Mailfromd Manual

The usual way to handle a message digest in MFL is to convert it first to a MIME message,
and then to use functions for accessing its parts (see Section 5.18.3 [MIME functions],
page 142).

number message_burst (number nmsg ; number flags) [Built-in Function]
Converts the message identified by the descriptor nmsg to a multi-part message.
Returns a descriptor of the created message.

Optional argument flags controls the behavior of the bursting agent. It is a bitwise
OR of error action and bursting flags.

Error action defines what to do if a part of the digest is not in RFC822 message
format. If it is ‘BURST_ERR_FAIL’ (the default), the function will raise the ‘e_format’
exception. If onerr is ‘BURST_ERR_IGNORE’, the improperly formatted part will be
ignored. Finally, the value ‘BURST_ERR_BODY’ instructs message_burst to create a
replacement part with empty headers and the text of the offending part as its body.

Bursting flags control various aspects of the agent behavior. Currently only one
flag is defined, ‘BURST_DECODE’, which instructs the agent to decode any MIME parts
(according to the ‘Content-Transfer-Encoding’ header) it encounters while bursting
the message.

Parts of a message digest are separated by so-called encapsulation boundaries, which are
in essence lines beginning with at least one dash followed by a non-whitespace character.
A dash followed by a whitespace serves as a byte-stuffing character, a sort of escape for
lines which begin with a dash themselves. Unfortunately, there are mail agents which do
not follow byte-stuffing rules and pass lines beginning with dashes unmodified into resulting
digests. To help handle such cases a global variable is provided which controls how much
dashes should the line begin with for it to be recognized as an encapsulation boundary.

number burst_eb_min_length [Built-in variable]
Minimal number of consecutive dashes an encapsulation boundary must begin with.

The default is 2.

The following example shows a function which saves all parts of a digest message to
separate disk files. The argument orig is a message descriptor. The resulting files are
named by concatenating the string supplied by the stem argument and the ordinal number
(1-based) of the message part.

func burst_digest(number orig, string stem)
do

number msg message_burst(orig)

number nparts message_count_parts(msg)

loop for number i 1,
while i <= nparts,
set 1 i+ 1
do
number part message_get_part(msg, i)
number out open(sprintf(’>%s%02d’, stem, i))
message_to_stream(out, part)



Chapter 5: The MFL Library Functions 145

done
message_close (msg)
done

5.19 Quarantine Functions

void quarantine (string text) [Built-in Function]
Place the message to the quarantine queue, using text as explanatory reason.

5.20 SMTP Callout Functions

number callout_open (string url) [Library Function]
Opens connection to the callout server listening at url. Returns the descriptor of the
connection.

void callout_close (number fd) [Library Function]

Closes the connection. fd is the file descriptor returned by the previous call to
callout_open.

number callout_do (number fd, string email [, string rest])  [Library Function]
Instructs the callout server identified by fd (a file descriptor returned by a previous
call to callout_open) to verify the validity of the email. Optional rest argument
supplies additional parameters for the server.

Possible return values:
0 Success. The email is found to be valid.

e_not_found
email does not exist.

e_temp_failure
The email validity cannot be determined right now, e.g. because remote
SMTP server returned temporary failure. The caller should retry verifi-
cation later.

e_failure
Some error occurred.

The function will throw the e_callout_proto exception if the remote host doesn’t
speak the correct callout protocol.
Upon return, callout_do modifies the following variables:

last_poll_host
Host name or IP address of the last polled SMTP server.

last_poll_greeting
Initial SMTP reply from the last polled host.

last_poll_helo
The reply to the HELO (EHLO) command, received from the last polled
host.



146 Mailfromd Manual

last_poll_sent
Last SMTP command sent to the polled host. If nothing was sent, last_
poll_sent contains the string ‘nothing’.

last_poll_recv
Last SMTP reply received from the remote host. In case of multi-line
replies, only the first line is stored. If nothing was received the variable
contains the string ‘nothing’.

The default callout server is defined by the callout-url statement in the configuration
file, or by the callout statement in the server milter section (see [configuring default
callout server], page 205. The following functions operate on that server.

string default_callout_server_url () [Built-in Function]
Returns URL of the default callout server.

number callout (string email) [Library Function]
Verifies the validity of the email using the default callout server.

5.21 Compatibility Callout Functions

The following functions are wrappers over the callout functions described in the previous
section. They are provided for backward compatibility.

These functions are defined in the module poll.mf, which you must require prior to
using any of them.

boolean _pollhost (string ip, string email, string domain, [Library Function]
string mailfrom)
Poll SMTP host ip for email address email, using domain as EHLO domain and mailfrom
as MAIL FROM. Returns 0 or 1 depending on the result of the test. In contrast to the
strictpoll function, this function does not use cache database and does not fall
back to polling MX servers if the main poll tempfails. The function can throw one of
the following exceptions: e_failure, e_temp_failure.

boolean _pollmx (string ip, string email, string domain, [Library Function]
string mailfrom)
Poll MXs of the domain for email address email, using domain as EHLO domain and
mailfrom as MAIL FROM address. Returns 0 or 1 depending on the result of the test.
In contrast to the stdpoll function, _pollmx does not use cache database and does
not fall back to polling the ip if the poll fails. The function can throw one of the
following exceptions: e_failure, e_temp_failure.

boolean stdpoll (string email, string domain, string [Library Function]
mailfrom)
Performs standard poll for email, using domain as EHLO domain and mailfrom as MAIL
FROM address. Returns 0 or 1 depending on the result of the test. Can raise one of
the following exceptions: e_failure, e_temp_failure.

In on statement context, it is synonymous to poll without explicit host.



Chapter 5: The MFL Library Functions 147

boolean strictpoll (string host, string email, string [Library Function]
domain, string mailfrom)
Performs strict poll for email on host host. See the description of stdpoll for the
detailed information.

In on context, it is synonymous to poll host host.

The mailfrom argument can be a comma-separated list of email addresses, which can be
useful for servers that are unusually picky about sender addresses. It is advised, however,
that this list always contain the ‘<>’ address. For example:

_pollhost($client_addr, $f, "domain", "postmaster@my.net,<>")
See also Section 7.8 [conf-callout], page 208.

Before returning, all described functions set the following built-in variables:

Variable Contains

last_poll_host Host name or IP address of the last polled host.

last_poll_sent Last SMTP command, sent to this host. If nothing was sent,
it contains literal string ‘nothing’.

last_poll_recv Last SMTP reply received from this host. In case of multi-line

replies, only the first line is stored. If nothing was received
the variable contains the string ‘nothing’.

cache_used 1 if cached data were used instead of polling, 0 otherwise.
This variable is set by stdpoll and strictpoll. If it equals
1, none of the above variables are modified. See [cache_used
example|, page 64, for an example.

Table 5.1: Variables set by polling functions

5.22 Internet address manipulation functions

Following functions operate on IPv4 addresses and CIDRs.

number ntohl (number n) [Built-in Function]
Converts the number n, from host to network byte order. The argument n is treated
as an unsigned 32-bit number.

number htonl (number n) [Built-in Function]
Converts the number n, from network to host byte order. The argument n is treated
as an unsigned 32-bit number.

number ntohs (number n) [Built-in Function]
The argument n is treated as an unsigned 16-bit number. The function converts this
number from network to host order.

number htons (number n) [Built-in Function]
The argument n is treated as an unsigned 16-bit number. The function converts this
number from host to network order.



148 Mailfromd Manual

number inet_aton (string s) [Built-in Function]
Converts the Internet host address s from the standard numbers-and-dots notation
into the equivalent integer in host byte order.

inet_aton("127.0.0.1") = 2130706433

The numeric data type in MFL is signed, therefore on machines with 32 bit integers,
this conversion can result in a negative number:

inet_aton("255.255.255.255") = -1

However, this does not affect arithmetical operations on IP addresses.

string inet_ntoa (number n) [Built-in Function]
Converts the Internet host address n, given in host byte order to string in standard
numbers-and-dots notation:

inet_ntoa(2130706433) = "127.0.0.1"

number len_to_netmask (number n) [Built-in Function]
Convert number of masked bits n to IPv4 netmask:

inet_ntoa(len_to_netmask(24)) = 255.255.255.0
inet_ntoa(len_to_netmask(7)) = 254.0.0.0

If n is greater than 32 the function raises e_range exception.

number netmask_to_len (number mask) [Built-in Function]
Convert IPv4 netmask mask into netmask length (number of bits preserved by the
mask):

netmask_to_len(inet_aton("255.255.255.0")) = 24
netmask_to_len(inet_aton("254.0.0.0")) = 7

boolean match_cidr (string ip, string cidr) [Library Function]
This function is defined in the module match_cidr.mf (see Section 4.21 [Modules],
page 101).

It returns true if the IP address ip pertains to the IP range cidr. The first argument,
ip, is a string representation of an IP address. The second argument, cidr, is a string
representation of a IP range in CIDR notation, i.e. "A.B.C.D/N", where A.B.C.D is
an IPv4 address and N specifies the prefix length — the number of shared initial bits,
counting from the left side of the address.

The following example will reject the mail if the IP address of the sending machine
does not belong to the block 10.10.1.0/19:

if not match_cidr(${client_addr}, "10.10.1.0/19")
reject
fi

5.23 DNS Functions

MFL offers two sets of functions for querying the Domain Name System. The dns_query
function and associated dns_reply_ functions provide a generalized DNS API.

Other functions provide a simplified API.



Chapter 5: The MFL Library Functions 149

5.23.1 dns_query

number dns_query (number type, string domain; number [Built-in Function]
sort, number resolve)
This function looks up the domain name name. The type argument specifies type
of the query to perform. On success, the function returns DNS reply descriptor, a
non-negative integer number identifying the reply. It can then be passed to any of
the ‘dns_reply_’ functions discussed below in order to retrieve the information from
it.

If no matching records were found, the function returns ‘-1’
On error, it throws a corresponding exception.

The type argument is one of the following constants (defined in the module ‘dns’):

DNS_TYPE_A
Query the ‘A’ record. The domain should be the hostname to look up.

DNS_TYPE_NS
Query the ‘NS’ records.

DNS_TYPE_PTR
Query the ‘PTR’ record. The domain address should be the IP address in
dotted-quad form.

DNS_TYPE_MX
Query the ‘MX’ records.

DNS_TYPE_TXT
Query the ‘TXT’ records.

If the query returns multiple RR sets, the optional argument sort controls whether
they should be returned in the same order as obtained from the DNS (0, the default),
or should be sorted (1).

The optional argument resolve is consulted for type DNS_TYPE_MX and DNS_TYPE_NS.
If it is 1, the DNS_TYPE_MX query will return host names of the MX servers (by default,
it returns IP addresses) and the DNS_TYPE_NS query will return IP addresses of the
name servers (by default it returns hostnames).

To extract actual data from the dns_query return value, use the functions dns_
reply_count and dns_reply_string. The usual processing sequence is:

require dns

# Send the query and save the reply descriptor
set n dns_query(DNS_TYPE_NS, domain_name)

if n>=0
# If non-empty set is returned, iterate over each value in it:
loop for set i O,
while i < dns_reply_count(n),
set i i+ 1
do



150 Mailfromd Manual

# Get the actual data:
echo dns_reply_string(n, i)
done
# Release the memory associated with the reply.
dns_reply_release(n)
fi

void dns_reply_release (number rd) [Built-in Function]
Release the memory associated with the reply rd. If rd is -1, the function does nothing.

number dns_reply_count (number rd) [Built-in Function]
Return the number of records in the reply rd. For convenience, if rd is -1, the function
returns 0. If rd is negative (excepting -1), a ‘e_failure’ exception is thrown.

string dns_reply_string (number rd, number n) [Built-in Function]
Returns nth record from the DNS reply rd.

number dns_reply_ip (number rd, number n) [Built-in Function]
Returns nth record from the DNS reply rd, if the reply contains IP addresses.

5.23.2 Simplified DNS functions

These functions are implemented in two layers: primitive built-in functions which raise ex-
ceptions if the lookup fails, and library calls that are warranted to always return meaningful
value without throwing exceptions.

The built-in layer is always available. The library calls become available after requesting
the dns module (see Section 4.21 [Modules|, page 101):

require dns

string dns_getaddr (string domain) [Library Function]
Returns a whitespace-separated list of IP addresses (A records) for domain.

string dns_getname (string ipstr) [Library Function]
Returns a whitespace-separated list of domain names (PTR records) for the IPv4 ad-
dress ipstr.

string getmx (string domain [, boolean ip|) [Library Function]
Returns a whitespace-separated list of ‘MX’ names (if ip is not given or if it is 0) or
‘MX’ IP addresses (if ip!=0)) for domain. Within the returned string, items are sorted
in order of increasing ‘MX’ priority. If domain has no ‘MX’ records, an empty string is
returned. If the DNS query fails, getmx raises an appropriate exception.

Examples:
getmx("mafra.cz") = "smtpl.mafra.cz smtp2.mafra.cz relay.iol.cz"
getmx ("idnes.cz") = "smtpl.mafra.cz smtp2.mafra.cz relay.iol.cz"

getmx("gnu.org") = "mx10.gnu.org mx20.gnu.org"
getmx ("org.pl") = "

Notes:

1. Number of items returned by getmx (domain) can differ from that obtained from
getmx (domain, 1), e.g.:



Chapter 5: The MFL Library Functions 151

getmx ("aol.com")
= mailin-01.mx.aol.com mailin-02.mx.aol.com
mailin-03.mx.aol.com mailin-04.mx.aol.com
getmx ("aol.com", 1)
= 64.12.137.89 64.12.137.168 64.12.137.184
64.12.137.249 64.12.138.57 64.12.138.88
64.12.138.120 64.12.138.185 205.188.155.89
205.188.156.185 205.188.156.249 205.188.157.25
205.188.157.217 205.188.158.121 205.188.159.57
205.188.159.217

2. This function is a wrapper over dns_query.

If you intend to iterate over returned values, better use dns_query directly, e.g.
instead of doing
string_list_iterate(getmx(domain), ¢ ’, MX, ‘do_something(MX)’)
use
set n dns_query(DNS_TYPE_MX, domain)
if n >=0
loop for set i O,
while i < dns_reply_count(n),
set 1 i+ 1
do
do_something(dns_reply_string(n, i))
done
dns_reply_release(n)
fi
See Section 5.23.1 [dns_query], page 149, for details about the dns_query function
and associated dns_reply_x* calls.
3. This interface is semi-deprecated.

It will most probably be removed in future releases, when array data types are
implemented.

boolean primitive_hasmx (string domain) [Built-in Function]
Returns true if the domain name given by its argument has any ‘MX’ records.

If the DNS query fails, this function throws failure or temp_failure.

boolean hasmx (string domain) [Library Function]
Returns true if the domain name given by its argument has any ‘MX’ records.

Otherwise, if domain has no ‘MX’s or if the DNS query fails, hasmx returns false.

string primitive_hostname (string ip) [Built-in Function]
The ip argument should be a string representing an IP address in dotted-quad no-
tation. The function returns the canonical name of the host with this IP address
obtained from DNS lookup. For example

primitive_hostname (${client_addr})

returns the fully qualified domain name of the host represented by Sendmail variable
‘client_addr’.



152 Mailfromd Manual

If there is no ‘PTR’ record for ip, primitive_hostname raises the exception e_not_
found.

If DNS query fails, the function raises failure or temp_failure, depending on the
character of the failure.

string hostname (string ip) [Library Function]
The ip argument should be a string representing an IP address in dotted-quad no-
tation. The function returns the canonical name of the host with this TP address
obtained from DNS lookup.

If there is no ‘PTR’ record for ip, or if the lookup fails, the function returns ip un-

changed.
The previous mailfromd versions used the following paradigm to check if an TP address
resolves:
if hostname(ip) != ip
boolean primitive_ismx (string domain, string host) [Built-in Function]

The domain argument is any valid domain name, the host is a host name or IP address.
The function returns true if host is one of the ‘MX’ records for the domain.
If domain has no ‘MX’ records, primitive_ismx raises exception e_not_found.

If DNS query fails, the function raises failure or temp_failure, depending on the
character of the failure.

boolean ismx (string domain, string host) [Library Function]
The domain argument is any valid domain name, the host is a host name or IP address.

The function returns true if host is one of the ‘MX’ records for the domain. Otherwise
it returns false.

If domain has no ‘MX’ records, or if the DNS query fails, the function returns false.

string primitive_resolve (string host, [string domain)) [Built-in Function)]
Reverse of primitive_hostname. The primitive_resolve function returns the IP
address for the host name specified by host argument. If host has no A records, the
function raises the exception e_not_found.

If DNS lookup fails, the function raises failure or temp_failure, depending on the
character of the failure.

If the optional domain argument is given, it will be appended to host (with an inter-
mediate dot), before querying the DNS. For example, the following two expressions
will return the same value:
primitive_resolve("puszcza.gnu.org.ua")
primitive_resolve("puszcza", "gnu.org.ua")
There is a considerable internal difference between one-argument and two-argument
forms of primitive_resolve: the former queries DNS for an ‘A’ record, whereas the
latter queries it for any record matching host in the domain domain and then selects
the most appropriate one. For example, the following two calls are equivalent:

primitive_hostname("213.130.0.22")



Chapter 5: The MFL Library Functions 153

primitive_resolve("22.0.130.213", "in-addr.arpa")

This makes it possible to use primitive_resolve for querying DNS black listing
domains. See [match_dnsbl], page 178, for a working example of this approach. See
also [match_rhsbl], page 178, for another practical example of the use of the two-
argument form.

string resolve (string host, [string domain)|) [Library Function]
Reverse of hostname. The resolve function returns IP address for the host name
specified by host argument. If the host name cannot be resolved, or a DNS failure
occurs, the function returns ‘"0"’.

This function is entirely equivalent to primitive_resolve (see above), except that
it never raises exceptions.

string ptr_validate (string ip) [Built-in Function]
Tests whether the DNS reverse-mapping for ip exists and correctly points to a domain
name within a particular domain.

First, it obtains all PTR records for ip. Then, for each record returned, a look up for
A records is performed and IP addresses of each record are compared against ip. The
function returns true if a matching A record is found.

boolean primitive_hasns (string domain) [Built-in Function]

Returns ‘True’ if the domain domain has at least one ‘NS’ record. Throws exception
if DNS lookup fails.

boolean hasns (string domain) [Library Function]
Returns ‘True’ if the domain domain has at least one ‘NS’ record. Returns ‘False’ if
there are no ‘NS’ records or if the DNS lookup fails.

string getns (string domain ; boolean resolve, boolean [Library Function]
sort)
Returns a whitespace-separated list of all the ‘NS’ records for the domain domain.
Optional parameters resolve and sort control the formatting. If resolve is 0 (the
default), the resulting string will contain IP addresses of the NS servers. If resolve
is not 0, hostnames will be returned instead. If sort is 1, the returned items will be
sorted.

If the DNS query fails, getns raises an appropriate exception.
Notes:

1. This function is a wrapper over dns_query.

If you intend to iterate over returned values, better use dns_query directly, e.g.
instead of doing

string_list_iterate(getns(domain), ¢ ’, NS, ‘do_something(NS)’)

use



154 Mailfromd Manual

set n dns_query(DNS_TYPE_NS, domain)
if n >=0
loop for set i O,
while i < dns_reply_count(n),
set 11+ 1
do
do_something(dns_reply_string(n, i))
done
dns_reply_release(n)
fi

See Section 5.23.1 [dns_query], page 149, for details about the dns_query function
and associated dns_reply_x* calls.

2. This interface is semi-deprecated.

It will most probably be removed in future releases, when array data types are
implemented.

5.24 Geolocation functions

The geolocation functions allow you to identify the country where the given IP address or
host name is located. These functions are available only if the 1libmaxminddb library is
installed and mailfromd is compiled with the ‘GeoIP2’ support.

The libmaxminddb library is distributed by ‘MaxMind’ under the terms of the Apache
License Version 2.0. It is available from https://dev.maxmind.com/geoip/geoip2/
downloadable/#MaxMind_APIs.

Historically, mailfromd supports also the legacy ‘GeoIP’ library. If you are interested in
it, please refer to Section 5.24.1 [Legacy geoip support], page 156.

void geoip2_open (string filename) [Built-in Function]
Opens the geolocation database file filename. The database must be in GeolP2 format.

If the database cannot be opened, geoip2_open throws the e_failure exception.

If this function is not called, geolocation functions described below will try to open
the database file ‘/usr/share/GeoIP/GeoLite2-City.mmdb’.

string geoip2_dbname (void) [Built-in Function]
Returns the name of the geolocation database currently in use.

The geolocation database for each IP address, which serves as a look up key, stores a
set of items describing this IP. This set is organized as a map of key-value pairs. Each key
is a string value. A value can be a scalar, another map or array of values. Using JSON
notation, the result of a look up in the database might look as:


https://dev.maxmind.com/geoip/geoip2/downloadable/#MaxMind_APIs
https://dev.maxmind.com/geoip/geoip2/downloadable/#MaxMind_APIs

Chapter 5: The MFL Library Functions 155

"country":{
"geoname_id":2921044,
"iso_code":"DE",
"names" : {
"en": "Germany",
"de": "Deutschland",
"fr":"Allemagne"

s

3,

"continent":{
"code":"EU",
"geoname_id" :6255148,
"names": {

Hen":"Europe"’
"de":"Europa",
"fr":"Europe"

s

"location":{
"accuracy_radius":200,
"latitude":49.4478,
"longitude":11.0683,
"time_zone":"Europe/Berlin"

3,

"city":{
"geoname_id":2861650,
"names" :{

"en":"Nuremberg",
"de":"Nirnberg",
"fr":"Nuremberg"

},

"subdivisions": [{
"geoname_id":2951839,
"iso_code":"BY",
"names" : {

"en":"Bavaria",
Hde":"Bayern"’
"fr":"Baviere"

Each particular data item in such structure is identified by its search path, which is a
dot-delimited list of key names leading to that value. For example, using the above map,
the name of the city in English can be retrieved using the key city.names.en.



156 Mailfromd Manual

string geoip2_get (string ip, string path) [Built-in Function]
Looks up the IP address ip in the geolocation database. If found, returns data item
identified by the search path path.

The function can throw the following exceptions:

e_not_found
The ip was not found in the database.

e_range The path does not exist the returned map.

e_failure  General error occurred. E.g. the database cannot be opened, ip is not a
valid IP address, etc.

string geoip2_get_json (string ip [; number indent) [Built-in Function]
Looks up the ip in the database and returns entire data set associated with it, for-
matted as a JSON object. If the optional parameter indent is supplied and is greater
than zero, it gives the indentation for each nesting level in the JSON object.

Applications may test whether the GeolP2 support is present and enable the corre-
sponding code blocks conditionally, by testing if the ‘WITH_GEOIP2’ m4 macro is defined.
For example, the following code adds to the message the ‘X-Originator-Country’ header,
containing the 2 letter code of the country where the client machine is located. If mailfromd
is compiled without ‘GeoIP’ support, it does nothing:

m4_ifdef (‘WITH_GEOIP2’, °
try
do
header_add("X-Originator-Country", geoip2_get($client_addr,
’country.iso_code’))
done
catch e_not_found or e_range
do
pass
done

”)
5.24.1 Legacy geoip support

For compatibility with older releases, mailfromd supports the legacy ‘GeoIP’ library. This
support is going to be removed in the next release, so its use is not recommended. Please
use ‘GeoIP2’ instead.

The support for the legacy GeoIP library is available if mailfromd is compiled with
the ‘GeoIP’ support (the —-with-geoip configure option). The m4 macro ‘WITH_GEOIP’ is
defined if it is so.

The legacy GeoIP is distributed by ‘MaxMind’ under the terms of the GNU Lesser General
Public License. The library is available from http://www.maxmind.com/app/c.

string geoip_country_code_by_addr ( string ip [, bool [Built-in Function]
tlc))
Look up the ‘IS0 3166-1" country code corresponding to the IP address ip. If tic is
given and is not zero, return the 3 letter code, otherwise return the 2 letter code.


http://www.maxmind.com/app/c

Chapter 5: The MFL Library Functions 157

string geoip_country_code_by_name ( string name [, bool [Built-in Function]
tlc))
Look up the ‘IS0 3166-1" country code corresponding to the host name name. If tlc
is given and is not zero, return the 3 letter code, otherwise return the 2 letter code.

If it is impossible to locate the country, both functions raise the e_not_found exception.
If an error internal to the ‘GeoIP’ library occurs, they raise the e_failure exception.

Applications may test whether the GeolP support is present and enable corresponding
code blocks conditionally, by testing if the ‘WITH_GEOIP’ m4 macro is defined. For example,
the following code adds to the message the ‘X-Originator-Country’ header, containing the
2 letter code of the country where the client machine is located. If mailfromd is compiled
without ‘GeoIP’ support, it does nothing:

m4_ifdef (‘WITH_GEOIP’, ¢
header_add("X-Originator-Country", geoip_country_code_by_addr($client_addr))|}
)

5.25 Database Functions

The functions described below provide a user interface to DBM databases.

Each DBM database is a separate disk file that keeps key/value pairs. The interface
allows to retrieve the value corresponding to a given key. Both ‘key’ and ‘value’ are null-
terminated character strings. To lookup a key, it is important to know whether its length
includes the terminating null byte. By default, it is assumed that it does not.

Another important database property is the file mode of the database file. The default
file mode is ‘640’ (i.e. ‘rw-r----", in symbolic notation).
Both properties can be configured using the dbprop pragma:
#pragma dbprop pattern prop [propl]
The pattern is the database name or shell-style globbing pattern. Properties defined by

that pragma apply to each database whose name matches this pattern. If several dbprop
pragmas match the database name, the one that matches exactly is preferred.

The rest of arguments define properties for that database. The valid values for prop are:
1. The word ‘null’, meaning that the terminating null byte is included in the key length.

Setting ‘null’ property is necessary, for databases created with makemap -N hash com-
mand.

2. File mode for the disk file. It can be either an octal number, or a symbolic mode
specification in ls-like format. E.g., the following two formats are equivalent:

640
TW-r——--
For example, consider the following pragmas:
#pragma dbprop /etc/mail/whitelist.db 640

It tells that the database file whitelist.db has privileges ‘640’ and do not include null
in the key length.

Similarly, the following pragma:
#pragma dbprop ‘/etc/mail/*.db’ null 600



158 Mailfromd Manual

declares that all database files in directory /etc/mail have privileges ‘640’ and include null
terminator in the key length. Notice, the use of m4 quoting characters in the example below.
Without them, the sequence ‘/*’ would have been taken as the beginning of a comment.

Additionally, for compatibility with previous versions (up to 5.0), the terminating null
property can be requested via an optional argument to the database functions (in description
below, marked as null).

boolean dbmap (string db, string key, [boolean null]) [Built-in Function)]
Looks up key in the DBM file db and returns true if it is found.

See above for the meaning of null.

See [whitelisting], page 29, for an example of using this function.

string dbget (string db, string key [, string default, [Built-in Function]
boolean null))
Looks up key in the database db and returns the value associated with it. If the key
is not found returns default, if specified, or empty string otherwise.

See above for the meaning of null.

void dbput (string db, string key, string value [, boolean [Built-in Function]
null, number mode |)
Inserts in the database a record with the given key and value. If a record with the
given key already exists, its value is replaced with the supplied one.

See above for the meaning of null. Optional mode allows to explicitly specify the file
mode for this database. See also #pragma dbprop, described above.

void dbinsert (string db, string key, string value [, boolean  [Built-in Function]
replace, boolean null, number mode |)
This is an improved variant of dbput, which provides a better control on the actions
to take if the key already exists in the database. Namely, if replace is ‘True’, the old
value is replaced with the new one. Otherwise, the ‘e_exists’ exception is thrown.

void dbdel (string db, string key [, boolean null, number [Built-in Function]
model)
Delete from the database the record with the given key. If there are no such record,
return without signalling error.

If the optional null argument is given and is not zero, the terminating null character
will be included in key length.

Optional mode allows to explicitly specify the file mode for this database. See also
#pragma dbprop, described above.

The functions above have also the corresponding exception-safe interfaces, which return
cleanly if the ‘e_dbfailure’ exception occurs. To use these interfaces, request the safedb
module:

require safedb

The exception-safe interfaces are:



Chapter 5: The MFL Library Functions 159

string safedbmap (string db, string key [, string default, [Library Function]
boolean null))
This is an exception-safe interface to dbmap. If a database error occurs while attempt-
ing to retrieve the record, safedbmap returns default or ‘0’, if it is not defined.

string safedbget (string db, string key [, string default, [Library Function]
boolean null))
This is an exception-safe interface to dbget. If a database error occurs while at-
tempting to retrieve the record, safedbget returns default or empty string, if it is
not defined.

void safedbput (string db, string key, string value |, [Library Function]
boolean null))
This is an exception-safe interface to dbput. If a database error occurs while attempt-
ing to retrieve the record, the function returns without raising exception.

void safedbdel (string db, string key [, boolean null]) [Library Function]
This is an exception-safe interface to dbdel. If a database error occurs while attempt-
ing to delete the record, the function returns without raising exception.

The verbosity of ‘safedb’ interfaces in case of database error is controlled by the value
of safedb_verbose variable. If it is ‘0’ these functions return silently. This is the de-
fault behavior. Otherwise, if safedb_verbose is not ‘0’, these functions log the detailed
diagnostics about the database error and return.

The following functions provide a sequential access to the contents of a DBM database:

number dbfirst (string name) [Built-in Function]
Start sequential access to the database name. The return value is an opaque identifier,
which is used by the remaining sequential access functions. This number is ‘0’ if the
database is empty.

number dbnext (number dn) [Built-in Function]
Select next record form the database. The argument dn is the access identifier,
returned by a previous call to dbfirst or dbnext.

Returns new access identifier. This number is ‘0’ if all records in the database have
been visited.

The usual approach for iterating over all records in a database dbname is:

loop for number dbn dbfirst(dbname)
do

done while dbnext (dbn)

The following two functions can be used to access values of the currently selected data-
base record. Their argument, dn, is the access identifier, returned by a previous call to
dbfirst or dbnext.

string dbkey (number dn) [Built-in Function]
Return the key from the selected database record.



160 Mailfromd Manual

string dbvalue (number dn) [Built-in Function]
Return the value from the selected database record.

number db_expire_interval (string fmt) [Built-in Function]
The fmt argument is a database format identifier (see Section 3.15.1 [Database For-
mats], page 31). If it is valid, the function returns the expiration interval for that
format. Otherwise, db_expire_interval raises the e_not_found exception.

string db_name (string fmtid) [Built-in Function]
The fmtid argument is a database format identifier (see Section 3.15.1 [Database
Formats], page 31). The function returns the file name for that format. If fmtid does
not match any known format, db_name raises the e_not_found exception.

number db_get_active (string fmtid) [Built-in Function]
Returns the flag indicating whether the cache database fmtid is currently enabled. If
fmtid does not match any known format, db_name raises the e_not_found exception.

void db_set_active (string fmtid, boolean enable) [Built-in Function]
Enables the cache database fmtid if enable is ‘True’, or disables it otherwise. For
example, to disable DNS caching, do:

db_set_active("dns", 0)

boolean relayed (string domain) [Built-in Function]
Returns true if the string domain is found in one of relayed domain files (see
Section 7.2 [conf-base], page 202). The usual construct is:

if relayed(hostname(${client_addr}))

which yields true if the IP address from Sendmail variable ‘client_addr’ is relayed
by the local machine.

5.26 System functions

boolean access (string pathname, number mode) [Built-in Function]
Checks whether the calling process can access the file pathname. If pathname is a
symbolic link, it is dereferenced. The function returns ‘True’ if the file can be accessed
and ‘False’ otherwise?.

Symbolic values for mode are provided in module status:

F_OK Tests for the existence of the file.
R_-OK Tests whether the file exists and grants read permission.
W_OK Tests whether the file exists and grants write permission.
X_OK Tests whether the file exists and grants execute permission.
string getenv (string name) [Built-in Function]

Searches the environment list for the variable name and returns its value. If the
variable is not defined, the function raises the exception ‘e_not_found’.

4 Note, that the return code is inverted in respect to the system function ‘access(2)’.



Chapter 5: The MFL Library Functions 161

string gethostname ([bool fqn|) [Built-in Function]
Return the host name of this machine.

If the optional fqn is given and is ‘true’, the function will attempt to return fully-
qualified host name, by attempting to resolve it using DNS.

string getdomainname () [Built-in Function]
Return the domain name of this machine. Note, that it does not necessarily coincide
with the actual machine name in DNS.

Depending on the underlying ‘1ibc’ implementation, this call may return empty string
or the string ‘(none)’. Do not rely on it to get the real domain name of the box
mailfromd runs on, use localdomain (see below) instead.

string localdomain () [Library Function]
Return the local domain name of this machine.

This function first uses getdomainname to make a first guess. If it does not return a
meaningful value, localdomain calls gethostname (1) to determine the fully qualified
host name of the machine, and returns its domain part.

To use this function, require the localdomain module (see Section 4.21 [Modules],
page 101), e.g.: require localdomain.

number time () [Built-in Function]

Return the time since the Epoch (00:00:00 UTC, January 1, 1970), measured in
seconds.

string strftime (string fmt, number timestamp) [Built-in Function]

string strftime (string fmt, number timestamp, boolean [Built-in Function]
gmt)

Formats the time timestamp (seconds since the Epoch) according to the format spec-
ification format. Ordinary characters placed in the format string are copied to the
output without conversion. Conversion specifiers are introduced by a ‘%’ character.
See Appendix B [Time and Date Formats], page 259, for a detailed description of the
conversion specifiers. We recommend using single quotes around fmt to prevent ‘%’
specifiers from being interpreted as Mailfromd variables (See Section 4.5 [Literals],
page 56, for a discussion of quoted literals and variable interpretation within them).

The timestamp argument can be a return value of time function (see above).
For example:
strftime C%Y-%m-%d %H:%M:%S %Z’, 1164477564)
= 2006-11-25 19:59:24 EET
strftime (°%Y-Ym-%d %H:%M:%S %Z’, 1164477564, 1)
= 2006-11-25 17:59:24 GMT

string uname (string format) [Built-in Function]
This function returns system information formatted according to the format speci-
fication format. Ordinary characters placed in the format string are copied to the
output without conversion. Conversion specifiers are introduced by a ‘%’ character.
The following conversions are defined:

Yos Name of this system.



162 Mailfromd Manual

%n Name of this node within the communications network to which this node
is attached. Note, that it does not necessarily coincide with the actual
machine name in DNS.

Yor Kernel release.
%ov Kernel version.
%m Name of the hardware type on which the system is running.

For example:
uname (’%n runs %s, release %r on %m’)
= "Trurl runs Linux, release 2.6.26 on i686"

Notice the use of single quotes.

void unlink (string name) [Built-in Function]
Unlinks (deletes) the file name. On error, throws the e_failure exception.

number system (string str) [Built-in Function]
The function system executes a command specified in str by calling /bin/sh -c
string, and returns -1 on error or the return status of the command otherwise.

void sleep (number secs|, usec|) [Built-in Function]
Sleep for secs seconds. If optional usec argument is given, it specifies additional
number of microseconds to wait for. For example, to suspend execution of the filter
for 1.5 seconds:
sleep(1,500000)

This function is intended mostly for debugging and experimental purposes.

number umask (number mask) [Built-in Function]
Set the umask to mask & 0777. Return the previous value of the mask.

5.27 System User Database

string getpwnam (string name) [Built-in Function]

string getpwuid (number uid) [Built-in Function]
Look for the user name (getpwnam) or user ID uid (getpwuid) in the system pass-
word database and return the corresponding record, if found. If not found, raise the
‘e_not_found’ exception.

The returned record consists of six fields, separated by colon sign:

uname:passwd:uid:gid:gecos:dir:shell

Field Meaning
uname user name
passwd user password
uid user 1D

gid group ID
gecos real name

dir home directory



Chapter 5: The MFL Library Functions 163

shell shell program
For example:
getpwnam("gray")
= '"gray:x:1000:1000:Sergey Poznyakoff:/home/gray:/bin/bash"

Following two functions can be used to test for existence of a key in the user database:

boolean mappwnam (string name) [Built-in Function]
boolean mappwuid (number uid) [Built-in Function]
Return ‘true’ if name (or uid) is found in the system user database.

5.28 Sieve Interface

‘Sieve’ is a powerful mail filtering language, defined in RFC 3028. Mailfromd supports an
extended form of this language. For a description of the language and available extensions,
see Section “Sieve Language” in GNU Mailutils Manual.

boolean sieve (number msg, string script [, number flags,  [Built-in Function]
string file, number line])
Compile the Sieve program script and execute it over the message identified by the
descriptor nmsg.
Optional flags modify the behavior of the function. It is a bit-mask field, consisting
of a bitwise or of one or more of the following flags, defined in sieve.mf:

MF_SIEVE_FILE
The script argument specifies the name of a Sieve program file. This is
the default.

MF_SIEVE_TEXT
The script argument is a string containing entire Sieve program. Op-
tional arguments file and line can be used to fix source locations in Sieve
diagnostic messages (see below).

MF_SIEVE_LOG
Log every executed ‘Sieve’ action.

MF_SIEVE_DEBUG_TRACE
Trace execution of ‘Sieve’ tests.

MF_SIEVE_DEBUG_INSTR
Log every instruction, executed in the compiled ‘Sieve’ code. This pro-
duces huge amounts of output and is rarely useful, unless you suspect
some bug in ‘Sieve’ implementation and wish to trace it.

For example, MF_SIEVE_LOG|MF_SIEVE_DEBUG_TRACE enables logging ‘Sieve’ actions
and tests.

The sieve function returns true if the message was accepted by the script program,
and false otherwise. Here, the word accepted means that some form of ‘KEEP’ action
(see Section “Actions” in GNU Mailutils Manual) was executed over the message.
While executing the Sieve script, Sieve environment (RFC 5183) is initialized as
follows:

domain The domain name of the server Sieve is running on.



164 Mailfromd Manual

host Host name of the server Sieve is running on.
location The string ‘MTA’.

name The string ‘GNU Mailutils’.

phase The string ‘pre’.

remote-host
Defined to the value of ‘client_ptr’ macro, if it was required.

remote-ip Defined to the value of ‘client_addr’ macro, if it was required.

version The version of GNU Mailutils.

The following example discards each message not accepted by the ‘Sieve’ program
/etc/mail/filter.siv:

require ’sieve’

group eom
do
if not sieve(current_message(), "/etc/mail/filter.siv", MF_SIEVE_LOG)
discard
fi
done
The Sieve program can be embedded in the MFL filter, as shown in the example below:

require ’sieve’

prog eom
do
if not sieve(current_message(),
"require \"fileinto\";\n"
"fileinto \"/tmp/sieved.mbox\";",
MF_SIEVE_TEXT | MF_SIEVE_LOG)
discard
fi
done
In such cases, any Sieve diagnostics (error messages, traces, etc.) will be marked with
the locations relative to the line where the call to sieve appears. For example, the above
program produces the following in the log:

prog.mf:7: FILEINTO; delivering into /tmp/sieved.mbox

Notice, that the line number correctly refers to the line where the fileinto action
appears in the source. However, there are cases where the reported line number is incorrect.
This happens, for instance, if script is a string variable defined elsewhere. To handle such
cases, sieve accepts two optional parameters which are used to compute the location in
the Sieve program. The file parameter specifies the file name where the definition of the
program appears, and the line parameter gives the number of line in that file where the
program begins. For example:

require ’sieve’



Chapter 5: The MFL Library Functions 165

const sieve_prog_line __line__ + 2
string sieve_prog <<EQOT

require "fileinto";

fileinto "/tmp/sieved.mbox";

EQT

prog eom
do
if not sieve(current_message(),
sieve_prog, MF_SIEVE_TEXT | MF_SIEVE_LOG,
__file__, sieve_prog_line)
discard
fi
done
The actual Sieve program begins two lines below the sieve_prog_line constant defini-
tion, which is reflected in its initialization.

5.29 Interfaces to Third-Party Programs

A set of functions is defined for interfacing with other filters via TCP. Currently imple-
mented are interfaces with SpamAssassin spamd daemon and with ClamAV anti-virus.

Both interfaces work much the same way: the remote filter is connected and the message
is passed to it. If the remote filter confirms that the message matches its requirements, the
function returns true. Notice that in practice that means that such a message should be
rejected or deferred.

The address of the remote filter is supplied as the second argument in the form of a
standard URL:

proto://pathl[:port]

The proto part specifies the connection protocol. It should be ‘tcp’ for the TCP connection
and ‘file’ or ‘socket’ for the connection via UNIX socket. In the latter case the proto part
can be omitted. When using TCP connection, the path part gives the remote host name
or IP address and the optional port specifies the port number or service name to use. For
example:

# connect to ‘remote.filter.net’ on port 3314:
tcp://remote.filter.net:3314

# the same, using symbolic service name (must be defined in
# /etc/services):
tcp://remote.filter.net:spamd

# Connect via a local UNIX socket (equivalent forms):
/var/run/filter.sock
file:///var/run/filter.sock
socket:///var/run/filter.sock

The description of the interface functions follows.



166 Mailfromd Manual

5.29.1 SpamAssassin

boolean spamc (number msg, string url, number prec, [Built-in Function]
number command)
Send the message msgt to the SpamAssassin daemon (spamd) listening on the given
url. The command argument identifies what kind of processing is needed for the
message. Allowed values are:

SA_SYMBOLS
Process the message and return 1 or 0 depending on whether it is diag-
nosed as spam or not. Store SpamAssassin keywords in the global variable
sa_keywords (see below).

SA_REPORT
Process the message and return 1 or 0 depending on whether it is diag-
nosed as spam or not. Store entire SpamAssassin report in the global
variable sa_keywords.

SA_LEARN_SPAM
Learn the supplied message as spam.

SA_LEARN_HAM
Learn the supplied message as ham.

SA_FORGET
Forget any prior classification of the message.

The second argument, prec, gives the precision, in decimal digits, to be used when
converting SpamAssassin diagnostic data and storing them into mailfromd variables.
The floating point SpamAssassin data are converted to the integer mailfromd vari-
ables using the following relation:

var = int(sa-var * 10**xprec)
where sa-var stands for the SpamAssassin value and var stands for the corresponding

mailfromd one. int() means taking the integer part and ‘**’ denotes the exponen-
tiation operator.

The function returns additional information via the following variables:
sa_score The spam score, converted to integer as described above. To convert

it to a floating-point representation, use sa_format_score function (see
Section 5.3 [String manipulation], page 113). See also the example below.

sa_threshold
The threshold, converted to integer form.

sa_keywords
If command is ‘SA_SYMBOLS’, this variable contains a string of comma-
separated SpamAssassin keywords identifying this message, e.g.:

ADVANCE_FEE_1,AWL,BAYES_99

If command is ‘SA_REPORT’, the value of this variable is a spam report
message. It is a multi-line textual message, containing detailed descrip-
tion of spam scores in a tabular form. It consists of the following parts:

1. A preamble.



Chapter 5: The MFL Library Functions 167

2. Content preview.

The words ‘Content preview’, followed by a colon and an excerpt of
the message body.

3. Content analysis details.
It has the following form:
Content analysis details: (score points, max required)|j
where score and max are spam score and threshold in floating point.
4. Score table.

The score table is formatted in three columns:

pts The score, as a floating point number with one decimal
digit.
rule name SpamAssassin rule name that contributed this score.

description
Textual description of the rule

The score table can be extracted from sa_keywords using
sa_format_report_header function (see Section 5.3 [String
manipulation], page 113), as illustrated in the example below.

The value of this variable is undefined if command is ‘SA_LEARN_SPAM’,
‘SA_LEARN_HAM’ or ‘SA_FORGET’.

The spamc function can signal the following exceptions: e_failure if the connection
fails, e_url if the supplied URL is invalid and e_range if the supplied port number
is out of the range 1-65535.

An example of using this function:

prog eom
do

if spamc(current_message(), "tcp://192.168.10.1:3333", 3,

SA_SYMBOLS)
reject 550 5.7.0
"Spam detected, score %sa_score with threshold %sa_threshold"|

fi

done
Here is a more advanced example:

prog eom
do
set prec 3
if spamc(current_message(),
"tcp://192.168.10.1:3333", prec, SA_REPORT)
add "X-Spamd-Status" "SPAM"
else
add "X-Spamd-Status" "OK"
fi
add "X-Spamd-Score" sa_format_score(sa_score, prec)



168 Mailfromd Manual

add "X-Spamd-Threshold" sa_format_score(sa_threshold, prec)
add "X-Spamd-Keywords" sa_format_report_header(sa_keywords)
done

boolean sa (string url, number prec; number command) [Library Function]
Additional interface to the spamc function, provided for backward compatibility. It
is equivalent to

spamc (current_message(), url, prec, command)
If command is not supplied, ‘SA_SYMBOLS’ is used.

5.29.2 DSPAM

DSPAM is a statistical spam filter distributed under the terms of the GNU General Public
License. It is available from http://dspam.sourceforge.net.

MFL provides an interface to DSPAM functionality if the 1ibdspam library is installed
and mailfromd is linked with it. The m4 macro ‘WITH_DSPAM’ is defined if it is so.

The DSPAM functions and definitions become available after requiring the ‘dspam’ mod-
ule:

require ’dspam’

number dspam (number msg, number mode_flags; number [Built-in Function]
class_source)

Analyze a message using DSPAM. The message is identified by its descriptor, passed
in the msg argument.

The mode_flags argument controls the function behavior. Its value is a bitwise OR
of operation mode, flag, tokenizer and training mode. Operation mode defines what
dspam is supposed to do with the message. Its value is either ‘DSM_PROCESS’ if full
processing of the message is intended (the default), or ‘DSM_CLASSIFY’, if the message
must only be classified.

Optional flag bits turn on additional functionality. The ‘DSF_SIGNATURE’ bit instructs
dspam to create a signature for the message — a unique string which can subsequently
be used to identify that particular message. Upon return from the function, the
signature is stored in the dspam_signature variable.

The ‘DSF_NOISE’ bit enables Bayesian noise reduction, and ‘DSF_WHITELIST’ enables
automatic whitelisting.

Additional flags are available for defining the algorithm to split the message into
tokens (tokenizer) and training mode. See Section 5.29.2.1 [flags-dspam], page 170,
for a complete list of these. All these are optional, any missing values will be read
from the DSPAM configuration file.

The configuration file must always be present. Its full file name must be stored in the
global variable dspam_config. There is no default value, so make sure this variable
is initialized. If a specific profile section should be read, store the name of that profile
in the variable dspam_profile.

When called to process or classify the message, dspam returns an integer code of the
class of the message. The value ‘DSR_ISSPAM’ means that this message was classified
as spam. The value ‘DSR_ISINNOCENT’ means it is a clean (“ham”) message.


http://dspam.sourceforge.net

Chapter 5: The MFL Library Functions 169

The probability and confidence values are returned in global variables dspam_
probability and dspam_confidence. Since MFL lacks floating-point data type,
both variables keep integers, obtained from the corresponding floating point values
by shifting the decimal point dspam_prec digits to the right and rounding the
resulting value to the nearest integer. The same method is used in spamc function
(see [sa-floating-point-conversion], page 166). The default value for dspam_prec
variable is 3. You can use the sa_format_score function to convert these values to
strings representing floating point numbers, e.g.:

require ’dspam’
require ’sa’

prog eom
do
if dspam(current_message(), DSM_PROCESS | DSM_SIGNATURE)
== DSR_ISSPAM
header_add ("X-DSPAM-Result", "Spam")
else
header_add ("X-DSPAM-Result", "Innocent")
fi

header_add ("X-DSPAM-Probability",
sa_format_score(dspam_probability, dspam_prec))
header_add ("X-DSPAM-Confidence",
sa_format_score(dspam_confidence, dspam_prec))
header_add ("X-DSPAM-Signature", dspam_signature)
done

Optional class_source argument is used when training the DSPAM classifier. It is a
bitwise OR of the message class and message source values. Message class specifies the
class this message belongs to. Possible values are ‘DSR_ISSPAM’, for spam messages,
and ‘DSR_ISINNOCENT’, for clean messages. Message source informs DSPAM where
this message comes from. The value ‘DSS_ERROR’ means the message was previously
misclassified by DSPAM. The value ‘DSS_CORPUS’ indicates the message comes from
a corpus feed. Finally, the value ‘DSS_INOCULATION’ means that the message is in
pristine form, and should be trained as an inoculation. Inoculation is a more intense
mode of training, usually used on honeypots.

The following example calls dspam to train the classifier on the current message if
it was sent to a honeypot address, and uses dspam to analyze the message class
otherwise. The honeypot variable is supposed to be set elsewhere in the code (e.g.
in the ‘envrcpt’ handler):



170 Mailfromd Manual

prog eom
do
number res
if honeypot
set res dspam(current_message(), DSM_PROCESS,
DSR_ISSPAM | DSS_INOCULATION)

discard
else
if dspam(current_message(), DSM_PROCESS | DSM_SIGNATURE)
== DSR_ISSPAM
header_add ("X-DSPAM-Result", "Spam")
else
header_add ("X-DSPAM-Result", "Innocent")
fi

header_add ("X-DSPAM-Probability",
sa_format_score(dspam_probability, dspam_prec))
header_add ("X-DSPAM-Confidence"
sa_format_score(dspam_confidence, dspam_prec))
header_add ("X-DSPAM-Signature", dspam_signature)
fi
done

5.29.2.1 DSPAM Operation Modes and Flags.

The tables below summarize flags which can be used in the mode_flags argument to dspam
function. The argument is a bitwise OR of operation mode, flags, tokenizer and training
mode bits. Only one operation mode bit can be used. Flags, tokenizer and training mode
are optional. Any number of flags, but no more than one tokenizer type and one training
mode bit are allowed. Missing values will be supplied from the configuration file.

Mode Meaning
DSM_PROCESS Process message
DSM_CLASSIFY Classify message only (do not write changes)

Table 5.2: DSPAM Operation modes

Flag Meaning

DSF_SIGNATURE Create a signature
DSF_NOISE Use Bayesian Noise Reduction
DSF_WHITELIST Use Automatic Whitelisting

Table 5.3: DSPAM flags



Chapter 5: The MFL Library Functions 171

Constant Meaning
DSZ_WORD Use WORD tokenizer
DSZ_CHAIN Use CHAIN tokenizer
DSZ_SBPH Use SBPH tokenizer
DSZ_OSB Use OSB tokenizer

Table 5.4: DSPAM Tokenizer bits

Mode Meaning
DST_TEFT Train Everything
DST_TOE Train-on-Error
DST_TUM Train-until-Mature

Table 5.5: DSPAM Training Modes

5.29.2.2 DSPAM Class and Source Bits

The tables below summarize flags which can be used in the class_source argument to dspam
function. The argument is a bitwise OR of classification and source bits. At most one
classification and one source bit can be given. If not supplied, ‘DSR_NONE|DSS_NONE’ is
used.

The classification flags are also used as the return code, as shown in the following table.

Mode As return value As argument
DSR_NONE N/A Classify message
DSR_ISSPAM Message is spam Learn as spam
DSR_ISINNOCENT Message is innocent Learn as innocent

Table 5.6: DSPAM Classification

Source Meaning

DSS_NONE No classification source (use only with DSR_NONE)
DSS_ERROR Misclassification by libdspam

DSS_CORPUS Message came from a corpus feed
DSS_INOCULATION Message inoculation

Table 5.7: DSPAM Source

5.29.2.3 DSPAM Global Variables

Following global variables affect the behavior of the dspam function:

string dspam_config [Built-in variable]
Name of the DSPAM configuration file. You must set this variable prior to calling
dspam. There is no default value.



172 Mailfromd Manual

string dspam_profile [Built-in variable]
Name of the configuration profile to be used. If empty (the default), use global
configuration settings.

string dspam_user [Built-in variable]
Name of the user on behalf of which dspam is called. Default is empty (no user).

string dspam_group [Built-in variable]
Name of the user group on behalf of which dspam is called. Default is empty (no
group).

number dspam_prec [Built-in variable]

Number of decimal digits to retain in the dspam_probability and dspam_confidence
values. See [dspam probability and confidence], page 168, for more information and
examples.

Before returning, dspam stores additional information in the following variables:

string dspam_signature [Built-in variable]
Signature of the classified message. This variable is initialized if ‘DSF_SIGNATURE’ bit
is set in the mode_flags argument (see [dspam classify example], page 169),

number dspam_probability [Built-in variable]
Spam probability value converted to integer by shifting decimal point dspam_prec
positions to the right and rounding the resulting number. See [dspam probability and
confidence|, page 168, for more information and examples.

number dspam_confidence [Built-in variable]
Spam confidence converted to integer using the same algorithm as for dspam_
probability.  See [dspam probability and confidence], page 168, for more
information and examples.

5.29.3 ClamAV

boolean clamav (number msg, string url) [Built-in Function]
Pass the message msg to the ClamAV daemon at url. Return true if it detects a
virus in it. Return virus name in clamav_virus_name global variable.

The clamav function can signal the following exceptions: e_failure if failed to con-
nect to the server, e_url if the supplied URL is invalid and e_range if the supplied
port number is out of the range 1-65535.

An example usage:
prog eom
do
if clamav(current_message(), "tcp://192.168.10.1:6300")
reject 550 5.7.0 "Infected with Y%clamav_virus_name"
fi
done



Chapter 5: The MFL Library Functions 173

5.30 Rate limiting functions

number rate (string key, number sample-interval, [Built-in Function]
[number min-samples, number threshold))

Returns the mail sending rate for key per sample-interval. Optional min-samples, if
supplied, specifies the minimal number of mails needed to obtain the statistics. The
default is 2. Optional threshold controls rate database updates. If the observed rate
(per sample-interval seconds) is higher than the threshold, the hit counters for that
key are not incremented and the database is not updated. Although the threshold
argument is optional®, its use is strongly encouraged. Normally, the value of threshold
equals the value compared with the return from rate, as in:

if rate("$f-$client_addr", rate_interval, 4, maxrate) > maxrate
tempfail 450 4.7.0 "Mail sending rate exceeded. Try again later"|
fi

This function is a low-level interface. Instead of using it directly, we advise to use the
rateok function, described below.

boolean rateok (string key, number sample-interval, [Library Function]
number threshold,
[number min-samples])

To use this function, require the rateok module (see Section 4.21 [Modules],
page 101), e.g.: require rateok.

The rateok function returns ‘True’ if the mail sending rate for key, computed for the
interval of sample-interval seconds is less than the threshold. Optional min-samples
parameter supplies the minimal number of mails needed to obtain the statistics. It
defaults to 4.

See Section 3.12 [Sending Rate], page 25, for a detailed description of the rateok and its
use. The interval function (see [interval], page 114) is often used in the second argument
to rateok or rate.

boolean tbf_rate (string key, number cost, number [Built-in Function]
sample-interval, number burst-size)

This function implements a classical token bucket filter algorithm. Tokens are added
to the bucket identified by the key at constant rate of 1 token per sample-interval
microseconds, to a maximum of burst-size tokens. If no bucket is found for the
specified key, a new bucket is created and initialized to contain burst-size tokens. If
the bucket contains cost or more tokens, cost tokens are removed from it and tbf_
rate returns ‘True’. Otherwise, the function returns ‘False’.

For a detailed description of the Token Bucket Algorithm and its use to limit mail
rates, see [TBF], page 26.

5 Tt is made optional in order to provide backward compatibility with the releases of mailfromd prior to
5.0.93.



174 Mailfromd Manual

5.31 Greylisting functions

boolean greylist (string key, number interval) [Built-in Function]
Returns ‘True’ if the key is found in the greylist database (controlled by database
greylist configuration file statement, see Section 7.10 [conf-database], page 209).
The argument interval gives the greylisting interval in seconds. The function stores
the number of seconds left to the end of greylisting period in the global variable
greylist_seconds_left. See Section 3.13 [Greylisting], page 27, for a detailed ex-
planation.

The function greylist can signal e_dbfailure exception.

boolean is_greylisted (string key [Built-in Function]
Returns ‘True’ if the key is still greylisted. If ‘true’ is returned, the function also
stores the number of seconds left to the end of greylisting period in the global variable
greylist_seconds_left.

This function is available only if Con Tassios implementation of greylisting is used.
See [greylisting types|, page 28, for a discussion of available greylisting implemen-
tations. See Section 4.2.5 [greylist], page 55, for a way to switch to Con Tassios
implementation.

5.32 Special Test Functions

boolean portprobe (string host, [number port]) [Library Function]

boolean listens (string host, [number port]) [Library Function]
Returns true if the IP address or host name given by host argument listens on the
port number port (default 25).

This function is defined in the module portprobe.

boolean validuser (string name) [Built-in Function]
Returns true if authenticity of the user name is confirmed using mailutils authen-
tication system. See Section 3.14 [Local Account Verification], page 30, for more
details.

boolean valid_domain (string domain) [Library Function]
Returns true if the domain name domain has a corresponding A record or if it has
any ‘MX’ records, i.e. if it is possible to send mail to it.

To use this function, require the valid_domain module (see Section 4.21 [Modules],
page 101):

require valid_domain

number heloarg_test (string arg, string remote_ip, string [Library Function]
local_ip)
Verify if an argument of ‘HELO’ (‘EHLO’) command is valid. To use this function,
require the heloarg_test module (see Section 4.21 [Modules], page 101).

Arguments:

arg ‘HELO’ (‘EHLO’) argument. Typically, the value of $s Sendmail macro;



Chapter 5: The MFL Library Functions 175

remote_ip IP address of the remote client. Typically, the value of $client_addr
Sendmail macro;

local_ip IP address of this SMTP server;

The function returns a number describing the result of the test, as described in the
following table.

Code Meaning

HELO_SUCCESS arg successfully passes all tests.

HELO_MYIP arg is our IP address.

HELO_IPNOMATCH arg is an IP, but it does not match the remote
party IP address.

HELO_ARGNORESOLVE arg is an IP, but it does not resolve.

HELO_ARGNOIP arg is in square brackets, but it is not an IP
address.

HELO_ARGINVALID arg is not an IP address and does not resolve to
one.

HELO_MYSERVERIP arg resolves to our server IP.

HELO_IPMISMATCH arg does not resolve to the remote client IP
address.

5.33 Mail Sending Functions

The mail sending functions are new interfaces, introduced in version 3.1.

The underlying mechanism for sending mail, called mailer, is specified by --mailer
command line option. This global setting can be overridden using the last optional argument
to a particular function. In any case, the mailer is specified in the form of a URL.

Mailer URL begins with a protocol specification. Two protocol specifications are cur-
rently supported: ‘sendmail’ and ‘smtp’. The former means to use a sendmail-compatible
program to send mails. Such a program must be able to read mail from its standard input
and must support the following options:

-oi Do not treat ‘.’ as message terminator.
-f addr  Use addr as the address of the sender.
-t Get recipient addresses from the message.
These conditions are met by most existing MTA programs, such as exim or postfix (to

say nothing of sendmail itself).

Following the protocol specification is the mailer location, which is separated from it
with a colon. For the ‘sendmail’ protocol, the mailer location sets the full file name of the
Sendmail-compatible MTA binary, for example:

sendmail:/usr/sbin/sendmail

A special form of a sendmail URL, consisting of protocol specification only (‘sendmail:’)
is also allowed. It means “use the sendmail binary from the _PATH_SENDMAIL macro in your
/usr/include/paths.h file”. This is the default mailer.



176 Mailfromd Manual

The ‘smtp’ protocol means to use an SMTP server directly. In this case the mailer location
consists of two slashes, followed by the TP address or host name of the SMTP server, and,
optionally, the port number. If the port number is present, it is separated from the rest of
URL by a colon. For example:

smtp://remote.server.net
smtp://remote.server.net:24

void send_mail (string msg [, string to, string from, string [Built-in Function]
mailer])
Sends message msg to the email address to. The value of msg must be a valid RFC
2822 message, consisting of headers and body. Optional argument to can contain
several email addresses. In this case the message will be sent to each recipient specified
in to. If it is not specified, recipient addresses will be obtained from the message
headers.

Other optional arguments are:
from Sets the sender address. By default ‘<>’ is used.
mailer The URL of the mailer to use

Sample usage:

set message <<- EQOT
Subject: Test message
To: Postmaster <postmaster@Qgnu.org.ua>
From: Mailfromd <devnull@gnu.org.ua>
X-Agent: Y__package__ (%__version__)

Dear postmaster,

This is to notify you that our /etc/mailfromd.mf
needs a revision.

Mailfromd filter administrator
EOT
send_mail (message, "postmaster@gnu.org.ua")

void send_text (string text, string headers [, string to, [Built-in Function]
string from, string mailer])
A more complex interface to mail sending functions.

Mandatory arguments:

text Text of the message to be sent.
headers Headers for the message.
Optional arguments:

to Recipient email addresses.
from Sender email address.

mailer URL of the mailer to use.



Chapter 5: The MFL Library Functions 177

The above example can be rewritten using send_text as follows:

set headers << -EQOT
Subject: Test message
To: Postmaster <postmaster@gnu.org.ua>
From: Mailfromd <devnull@gnu.org.ua>
X-Agent: Y__package__ (%__version__)
EOT
set text <<- EOT

Dear postmaster,

This is to notify you that our /etc/mailfromd.mf
needs a revision.
Mailfromd filter administrator

EQT

send_text(text, headers, "postmaster@gnu.org.ua")

void send_message (number msg [string to, string from, [Built-in Function]
string mailer])
Send the message identified by descriptor msg (see Section 5.18 [Message functions],

page 139).
Optional arguments are:
to Recipient email addresses.
from Sender email address.
mailer URL of the mailer to use.
void send_dsn (string to, string sender, string rcpt, string [Built-in Function]

text [, string headers, string from, string mailer])
This is an experimental interface which will change in the future versions. It sends
a message disposition notification (RFC 2298, RFC 1894), of type ‘deleted’ to the
email address to. Arguments are:

to Recipient email address.

sender Original sender email address.
rept Original recipient email address.
text Notification text.

Optional arguments:

headers Message headers
from Sender address.
mailer URL of the mailer to use.
void create_dsn (string sender, string rcpt, string text |, [Built-in Function]

string headers, string from|)
Creates DSN message and returns its descriptor. Arguments are:

sender Original sender email address.



178 Mailfromd Manual

rept Original recipient email address.
text Notification text.

headers Message headers

from Sender address.

5.34 Blacklisting Functions

The functions described in this subsection allow to check whether the given IP address is
listed in certain black list DNS zone.

boolean match_dnsbl (string address, string zone, string [Library Function]
range)
This function looks up address in the DNS blacklist zone zone and checks if the return
falls into the given range of IP addresses.

It is intended as a replacement for the Sendmail macros ‘dnsbl’ and ‘enhdnsbl’.

To use match_dnsbl, require the match_dnsbl module (see Section 4.21 [Modules],
page 101).

Arguments:
address IP address of the SMTP server to be tested.
zone FQDN of the DNSbI zone to test against.

range The range of IP addresses in CIDR notation or the word ‘ANY’, which
stands for ‘127.0.0.0/8".

The function returns true if dns lookup for address in the zone dnsbl yields an IP
that falls within the range, specified by cidr. Otherwise, it returns false.

This function raises the following exceptions: e_invip if address is invalid and e_
inveidr if cidr is invalid.

boolean match_rhsbl (string email, string zone, string [Library Function]
range)
This function checks if the IP address, corresponding to the domain part of email is
listed in the RHS DNS blacklist zone zone, and if so, whether its record falls into the
given range of IP addresses range.

It is intended as a replacement for the Sendmail macro ‘rhsbl’ by Derek J. Balling.

To use this function, require the match_rhsbl module (see Section 4.21 [Modules],

page 101).

Arguments:

email E-mail address, whose domain name should be tested (usually, it is $£)
zone Domain name of the RHS DNS blacklist zone.

range The range of IP addresses in CIDR notation.



Chapter 5: The MFL Library Functions 179

5.35 SPF Functions

Sender Policy Framework, or SPF for short, is an extension to SMTP protocol that allows
to identify forged identities supplied with the MAIL FROM and HELO commands. The frame-
work is explained in detail in RFC 4408 (http://tools.ietf.org/html/rfc4408) and on
the SPF Project Site (http://www.openspf.org/). The following description is a short
introduction only, and the users are encouraged to refer to the original specification for the
detailed description of the framework.

The domain holder publishes an SPF record — a special DNS resource record that contains
a set of rules declaring which hosts are, and are not, authorized to use a domain name for
HELO and MAIL FROM identities. This resource record is usually of type TXT.6

The MFL script can verify if the identity matches the published SPF record by calling
check_host function and analyzing its return code. The function can be called either in
helo or in envfrom handler. Its arguments are:

ip The TP address of the SMTP client that is emitting the mail. Usually it is
$client_addr.

domain The domain that provides the sought-after authorization information; Normally
it is the domain portion of the MAIL FROM or HELO identity.

sender The MAIL FROM identity.

helo_domain
The HELO identity.

my_domain
The SMTP domain served by the local server.

The function returns a numeric result code. For convenience, all possible return values
are defined as macros in module spf.mf. The table below describes each value along with
the recommended actions for it:

None A result of None means that no records were published by the domain or that
no checkable sender domain could be determined from the given identity. The
checking software cannot ascertain whether or not the client host is authorized.
Such a message can be subject to further checks that will decide about its fate.

Neutral The domain owner has explicitly stated that he cannot or does not want to
assert whether or not the IP address is authorized. This result must be treated
exactly like None; the distinction between them exists only for informational
purposes

Pass The client is authorized to send mail with the given identity. The message can
be subject to further policy checks with confidence in the legitimate use of the
identity or it can be accepted in the absence of such checks.

Fail The client is not authorized to use the domain in the given identity. The proper
action in this case can be to mark the message with a header explicitly stating
it is spam, or to reject it outright.

6 Although RFC 4408 introduces a special SPF record type for this purpose, it is not yet widely used. As
of version 8.14, MFL does not support SPF DNS records.


http://tools.ietf.org/html/rfc4408
http://www.openspf.org/

180 Mailfromd Manual

If you choose to reject such mails, we suggest to use reject 550 5.7.1, as
recommended by RFC 4408. The reject can return either a default explanation
string, or the one supplied by the domain that published the SPF records, as
in the example below:

reject 550 5.7.1 "SPF check failed:\n)spf_explanation"

(for the description of spf_explanation, see [spf_explanation], page 181)

SoftFail The domain believes the host is not authorized but is not willing to make that
strong of a statement. This result code should be treated as somewhere in
between a Fail and a Neutral. It is not recommended to reject the message
based solely on this result.

TempError
A transient error occurred while performing SPF check. The proper action in
this case is to accept or temporarily reject the message. If you choose the latter,
we suggest to use SMTP reply code of ‘451" and DSN code ‘4.4.3’, for example:

tempfail 451 4.4.3
"Transient error while performing SPF verification"

PermError
This result means that the domain’s published records could not be correctly
interpreted. This signals an error condition that requires manual intervention
to be resolved, as opposed to the TempError result.

The following example illustrates the use of SPF verification in envfrom handler:

require ’status’
require ’spf’

prog envfrom

do

switch check_host($client_addr, domainpart($f), $f, $s)
do
case Fail:

string text ""

if spf_explanation != ""

set text "text\n¥%spf_explanation"

fi

reject 550 5.7.1 "SPF MAIL FROM check failed: %text"
case Pass:

accept

case TempError:
tempfail 451 4.4.3
"Transient error while performing SPF verification"

default:
on poll $f do



Chapter 5: The MFL Library Functions 181

when success:
accept
when not_found or failure:
reject 550 5.1.0 "Sender validity not confirmed"
when temp_failure:
tempfail 450 4.7.0 "Temporary failure during sender verification"
done
done
done

The SPF support is implemented in MFL in two layers: a built-in layer that provides
basic support, and a library layer that provides a convenience wrapper over the library
function.

The library layer is implemented in the module spf.mf (see Section 4.21 [Modules],
page 101).

The rest of this node describes available SPF functions and variables.

number spf_check_host (string ip, string domain, string [Built-in Function]
sender, string helo_domain, string my_domain)
This function is the basic implementation of the check_host function, defined in RFC
4408, chapter 4. It fetches SPF records, parses them, and evaluates them to determine
whether a particular host (ip) is or is not permitted to send mail from a given email
address (sender). The function returns an SPF result code.

Arguments are:

ip The IP address of the SMTP client that is emitting the mail. Usually it
is $client_addr.

domain The domain that provides the sought-after authorization information;
Normally it is the domain portion of the MAIL FROM or HELO identity.

sender The MAIL FROM identity.

helo_domain
The HELO identity.

my_domain
The SMTP domain served by the local server.

Before returning the spf_check_host function stores additional information in global
variables:

spf_explanation
If the result code is Fail, this variable contains the explanation string as
returned by the publishing domain, prefixed with the value of the global
variable spf_explanation_prefix.

For  example, if  spf_explanation_prefix  contains  ‘The
domain %{o} explains: ’, and the publishing domain
‘example.com’ returns the explanation string ‘Please see



182 Mailfromd Manual

http://www.example.com/mailpolicy.html’, than the wvalue of
spf_explanation will be:

The domain example.com explains:
Please see http://www.example.com/mailpolicy.html

(see RFC 4408 (http://tools.ietf.org/html/rfc4408), chapter 8, for
the description of SPF macro facility).

spf_mechanism
Name of the SPF mechanism that decided about the result code of the
SPF record. If one or more ‘include’ or ‘redirect’ mechanisms were
traversed before arriving at that mechanism, their values are appended
in the reverse order.

number spf_test_record (string record, string ip, string [Built-in Function]
domain, string sender, string helo_domain, string my_domain)
Evaluate SPF record record as if it were published by domain. The rest of arguments
are the same as for spf_check_host above.

This function is designed primarily for testing and debugging purposes. You would
hardly need to use it.

The spf_test_record function sets the same global variables as spf_check_host.

number check_host (string ip, string domain, string sender, [Library Function]
string helo)
This function implements the check_host function, defined in RFC 4408, chapter
4. It fetches SPF records, parses them, and evaluates them to determine whether a
particular host (ip) is or is not permitted to send mail from a given email address
(sender). The function returns an SPF result code.

This function is a wrapper over the built-in spf_check_host.
The arguments are:

ip The TP address of the SMTP client that is emitting the mail. Usually it
is the same as the value of $client_addr.

domain The domain that provides the sought-after authorization information;
Normally it is the domain portion of the MAIL FROM or HELO identity.

sender The MAIL FROM identity.
helo The HELO identity.

string spf_status_string (number code) [Library Function]
Converts numeric SPF result code to its string representation.

string spf_explanation [Built-in variable]
If check_host (or spf_check_host or spf_test_record) returned Fail, this variable
contains the explanation string as returned by the publishing domain, prefixed with
the value of the global variable spf_explanation_prefix.

For example, if spf_explanation_prefix contains ‘The domain %{o} explains: ’,
and the publishing domain ‘example.com’ returns the explanation string ‘Please see


http://tools.ietf.org/html/rfc4408

Chapter 5: The MFL Library Functions 183

http://www.example.com/mailpolicy.html’, than the value of spf_explanation
will be:

The domain example.com explains:
Please see http://www.example.com/mailpolicy.html

string spf_mechanism [Built-in variable]
Set to the name of a SPF mechanism that decided about the result code of the SPF
record.

string spf_explanation_prefix [Built-in variable]

The prefix to be appended to the explanation string before storing it in the spf_
explanation variable. This string can contain valid SPF macros (see RFC 4408
(http://tools.ietf.org/html/rfc4408), chapter 8), for example:

set spf_explanation_prefix "%{o} explains: "

The default value is ‘"""’ (an empty string).

5.36 DKIM

DKIM or DomainKeys Identified Mail is an email authentication method that allows recip-
ients to verify if an email was authorized by the owner of the domain that email claims to
originate from. It does so by adding a digital signature which is verified using a public key
published as a DNS TXT record. For technical details about DKIM, please refer to RFC
6376 (http://tools.ietf.org/html/rfc6376).

MFL provides functions for DKIM signing and verification.

number dkim_verify (number msg) [Built-in Function]
Verifies the message msg (a message descriptor, obtained from a call to current_
message, mailbox_get_message, message_from_stream or a similar function).

Return value (constants defined in the ‘status’ module):

DKIM_VERIFY_OK [dkim_verify status]
The message contains one or more ‘DKIM-Signature’ headers and one of them
verified successfully.

DKIM_VERIFY_PERMFAIL [dkim_verify status]
The message contains one or more ‘DKIM-Signature’ headers, all of which failed
to verify.

DKIM_VERIFY_TEMPFAIL [dkim_verify status]

The message was not signed using DKIM, or the DNS query to obtain the public
key failed, or an internal software error occurred during verification.

The following two global variables are always set upon return from this function:
dkim_explanation and dkim_explanation_code. These can be used to clarify the
verification result to the end user. The variable dkim_signing_algorithm is initial-
ized with the name of the algorithm used to sign the message.

Upon successful return, the variable dkim_verified_signature is set to the value of
the successfully verified DKIM signature.


http://tools.ietf.org/html/rfc4408
http://tools.ietf.org/html/rfc4408
http://tools.ietf.org/html/rfc6376

184 Mailfromd Manual

string dkim_signing_algorithm [Built-in variable]
Name of the algorithm used to sign the message (either ‘rsa-shal’ or ‘rsa-sha256’).
If the algorithm was not specified (e.g. the signature is malformed), this variable is
assigned an empty value.

string dkim_explanation [Built-in variable]
An explanatory message clarifying the verification result.

number dkim_explanation_code [Built-in variable]
A numeric code corresponding to the ‘dkim_explanation’ string. Its possible values
are defined in ‘status.mf’:

DKIM_EXPL_0OK [DKIM explanation code]
‘DKIM verification passed’
DKIM_EXPL_OK [DKIM explanation code]

‘DKIM verification passed’

DKIM_EXPL_NO_SIG [DKIM explanation code]
‘No DKIM signature’

DKIM_EXPL_INTERNAL_ERROR [DKIM explanation code]
‘internal error’

DKIM_EXPL_SIG_SYNTAX [DKIM explanation code]

‘signature syntax error’

DKIM_EXPL_SIG_MISS [DKIM explanation code]
‘signature is missing required tag’
According to the DKIM specification, required tags are: a=, b=, bh=, d=, h=,
s=, v=.

DKIM_EXPL_DOMAIN_MISMATCH [DKIM explanation code]
‘domain mismatch’

The domain part of the i= tag does not match and is not a subdomain of the
domain listed in the d= tag.

DKIM_EXPL_BAD_VERSION [DKIM explanation code]
‘incompatible version’

Incompatible DKIM version listed in the v= tag.

DKIM_EXPL_BAD_ALGORITHM [DKIM explanation code]
‘unsupported signing algorithm’

Either the a= tag of the DKIM signature contains an unsupported algorithm
(currently supported algorithms are: ‘rsa-shal’ and ‘rsa-sha256’) or this al-
gorithm, while being supported by mailfromd, is not listed in the h= tag of the
public DKIM key.

DKIM_EXPL_BAD_QUERY [DKIM explanation code]
‘unsupported query method’

The g= tag of the public DKIM key contains something other than ‘dns/txt’.



Chapter 5: The MFL Library Functions 185

DKIM_EXPL_FROM [DKIM explanation code]
‘From field not signed’

DKIM_EXPL_EXPIRED [DKIM explanation code]
‘signature expired’

DKIM_EXPL_DNS_UNAVAIL [DKIM explanation code]
‘public key unavailable’

DKIM_EXPL_DNS_NOTFOUND [DKIM explanation code]
‘public key not found’

DKIM_EXPL_KEY_SYNTAX [DKIM explanation code]
‘key syntax error’

DKIM_EXPL_KEY_REVOKED [DKIM explanation code]
‘key revoked’

DKIM_EXPL_BAD_BODY [DKIM explanation code]
‘body hash did not verify’

DKIM_EXPL_BAD_BASE64 [DKIM explanation code]
‘can’t decode b= tag’

Base64 decoding of the b= tag failed.

DKIM_EXPL_BAD_SIG [DKIM explanation code]
‘signature did not verify’

DKIM_EXPL_BAD_KEY_TYPE [DKIM explanation code]
‘unsupported public key type’

The k= tag of the public DKIM signature contains a value, other than ‘rsa’.

string dkim_verified_signature [Built-in variable]
Upon successful return from the dkim_verify function, this variable holds the value
of the successfully verified DKIM header. This value is unfolded and all whitespace
is removed from it.

An example of using the ‘dkim_verify’ function:



186 Mailfromd Manual

require status
require dkim

prog eom
do
string result
switch dkim_verify(current_message())
do
case DKIM_VERIFY_OK:
set result "pass; verified for "
dkim_verified_signature_tag(’i’)
case DKIM_VERIFY_PERMFAIL:
set result "fail (%dkim_explanation)"
case DKIM_VERIFY_TEMPFAIL:
set result "neutral"
done
header_add("X-Verification-Result", "dkim=Yresult")
done

The ‘dkim’ module defines convenience functions for manipulating with DKIM signa-
tures:

dkim_signature_tag (string sig, string tag) [Library Function]
Extracts the value of the tag tag from the DKIM signature sig. Signature must be
normalized by performing the header unwrapping and removing whitespace charac-
ters.

If the tag was not found, returns empty string, unless tag is one of the tags listed
in the table below. If any of these tags are absent, the following values are returned

instead:
Tag Default value
c ‘simple/simple’
‘dns/txt’
i ‘@’ + the value of the ‘d’ tag.
string dkim_verified_signature_tag (string tag) [Library Function]

Returns the value of tag tag from the ‘dkim_verified_signature’ variable.

void dkim_sign (string d, string s, string keyfile, | string [Built-in Function]
ch, string cb, string headers, string algo |)
This function is available only in the eom handler.

Signs the current message. Notice, that no other modification should be attempted
on the message after calling this function. Doing so would make the signature invalid.

Mandatory arguments:
d Name of the domain claiming responsibility for an introduction of a mes-

sage into the mail stream. It is also known as the signing domain identifier
(SDID).



Chapter 5: The MFL Library Functions 187

keyfile

The selector name. This value, along with d identifies the location of the
DKIM public key necessary for verifying the message. The public key is
stored in the DNS TXT record for

s._domainkey.d

Name of the disk file that keeps the private key for signing the message.
The file must be in PEM format.

Optional arguments:

ch

cb

headers

Canonicalization algorithm for message headers. Valid values are:
‘simple’ and ‘relaxed’. ‘simple’ is the default.

Canonicalization algorithm for message body. Valid and default values
are the same as for ch.

A colon-separated list of header field names that identify the header fields
that must be signed. Optional whitespace is allowed at either side of
each colon separator. Header names are case-insensitive. This list must
contain at least the ‘From’ header.

It may contain names of headers that are not present in the message being
signed. This provides a way to explicitly assert the absence of a header
field. For example, if headers contained ‘X-Mailer’ and that header is
not present in the message being signed, but is added by a third party
later, the signature verification will fail.

Similarly, listing a header field name once more than the actual number
of its occurrences in a message allows you to prevent any further addi-
tions. For example, if there is a single ‘Comments’ header field at the
time of signing, putting ‘Comments:Comments:’ in the headers parameter
is sufficient to prevent any surplus ‘Comments’ headers from being added
later on.

Multiple instances of the same header name are allowed. They mean that
multiple occurrences of the corresponding header field will be included in
the header hash. When such multiple header occurrences are referenced,
they will be presented to the hashing algorithm in the reverse order.
E.g. if the header list contained ‘Received:Received’) and the current
message contained three ‘Received’ headers:

Received: A
Received: B
Received: C

then these headers will be signed in the following order:

Received: C
Received: B

The default value for this parameter, split over multiple lines for read-
ability, is as follows:

e "From:From:"
e "Reply-To:Reply-To:"



188 Mailfromd Manual

e "Subject:Subject:"

e "Date:Date:"
e "To:"
° IICC:II

e "Resent-Date:"

e "Resent-From:"

e "Resent-To:"

e "Resent-Cc:"

e "In-Reply-To:"

e "References:"

e "List-Id:"

e "List-Help:"

e "List-Unsubscribe:"
e "List-Subscribe:"
e "List-Post:"

e "List-Owner:"

e "List-Archive"

algo Signing algorithm: either ‘rsa-sha256’ or ‘rsa-shal’. Default is
‘rsa-sha256’.

An example of using this function:

precious string domain "example.org"
precious string selector "s2048"

prog eom
do
dkim_sign("example.org", "s2048", "/etc/pem/my-private.pem",
"relaxed", "relaxed", "from:to:subject")
done

Note on interaction of dkim_sign with Sendmail

When sending a signed message, it is critical that no other modifications be applied to the
message after it has been signed. Unfortunately, it is not always the case when mailfromd
is used with Sendmail. Before sending the message over SMTP, Sendmail reformats the
headers that contain a list of email addresses, by applying to them a procedure called in its
parlance commaization. The following headers are modified: Apparently-To, Bcc, Cc,
Disposition-Notification-To, Errors-To, From, Reply-To, Resent-Bcc, Resent-Cc,
Resent-From, Resent-Reply-To, Resent-Sender, Resent-To, Sender, To. Thus, if your
dkim_sign includes any of these in the signature (which is the default) and some of them
happen to be formatted other way than the one Sendmail prefers, the DKIM signature
would not verify on the recipient side. To prevent this from happening, dkim_sign mimics
the Sendmail behavior and reformats those headers before signing the message. This should
ensure that the message signed and the message actually sent are the same. This default
behavior is controlled by the following global variable:



Chapter 5: The MFL Library Functions 189

number dkim_sendmail_commaize [Built-in variable]
“Commaize” the address headers (see the list above) of the message the same way
Sendmail does, and then sign the resulting message.

The default value is 1 (true). You can set it to 0 (false) if this behavior is not what
you want (e.g. if you are using postfix or some other MTA).

Note on interaction of dkim_sign with MMQ

The functions header_add and header_insert (see Section 5.10 [Header modification func-
tions], page 132) as well as the add action (see [header manipulation], page 86) cannot in-
teract properly with dkim_sign due to the shortcomings of the Milter API. If any of these
was called, dkim_sign will throw the e_badmmqg exception with the diagnostics following
diagnostics:

MMQ incompatible with dkim_sign: op on h, value v

where op is the operation code (‘ADD HEADER’ or ‘INSERT HEADER’), h is the header name
and v is its value.

The following example shows one graceful way of handling such exception:

prog eom
do
try
do
dkim_sign("example.org", "s2048", "/etc/pem/my-private.pem")
done
catch e_badmmqg
do
# Purge the message modification queue
mmq_purge ()
# and retry
dkim_sign("example.org", "s2048", "/etc/pem/my-private.pem")
done
done

See Section 5.12 [Message modification queue], page 134, for a discussion of the message
modification queue.

5.36.1 Setting up a DKIM record
Follow these steps to set up your own DKIM record:
1. Generate a key pair:
Use the openssl genrsa command. Run:
openssl genrsa -out private.pem 2048
The last argument is the size of the private key to generate in bits.
2. Extract the public key:

openssl rsa -in private.pem -pubout -outform PEM -out public.pem



190 Mailfromd Manual

3. Set up a DKIM record in your domain:

A DKIM record is a TXT type DNS record that holds the public key part for verifying
messages. Its format is defined in RFC 48717. The label for this record is composed as
follows:
s._domainkey.d

where d is your domain name, and s is the selector you chose to use. You will use these
two values as parameters to the dkim_sign function in your eom handler. E.g. if your
domain in ‘example.com’ and selector is ‘s2048’, then the DKIM TXT record label is
‘s2048. _domainkey.example.com’.

The public key file generated in step 2 will have the following contents:

where base64 is the key itself in base64 encoding. The minimal DKIM TXT record
will be:

"v=DKIM1; p=base64"
The only mandatory tag is in fact ‘p=". The use of ‘v="is recommended. More tags

can be added as needed. In particular, while testing the DKIM support, it is advisable
to add the ‘t=y’ tag.

i

5.37 Sockmap Functions

Socket map (sockmap for short) is a special type of database used in Sendmail and MeTA1.
It uses a simple server/client protocol over INET or UNIX stream sockets. The server listens
on a socket for queries. The client connects to the server and sends it a query, consisting of
a map name and a key separated by a single space. Both map name and key are sequences
of non-whitespace characters. The map name serves to identify the type of the query. The
server replies with a response consisting of a status indicator and result, separated by a
single space. The result part is optional.
For example, following is the query for key ‘smith’ in map ‘aliases’:
11:aliases news,
A possible reply is:
18:0K root@domain.net,
This reply means that the key ‘news’ was found in the map, and the value corresponding
to that key is ‘root@domain.net’.
The following reply means the key was not found:
8:NOTFOUND,
For a detailed description of the sockmap protocol, see Section “Protocol” in Smap
manual.

The MFL library provides two primitives for dealing with sockmaps. Both primitives
become available after requiring the sockmap module.

" https://tools.ietf. org/html/rfc4871


https://tools.ietf.org/html/rfc4871

Chapter 5: The MFL Library Functions 191

string sockmap_lookup (number fd, string map, string key) [Library Function]
This function look ups the key in the map. The fd refers to the sockmap to use. It
must be obtained as a result of a previous call to open with the URL of the sockmap
as its first argument (see Section 5.6 [I/O functions|, page 120). For example:

number fd open("@ unix:///var/spool/metal/smap/socket")
string ret sockmap_query(fd, "aliases", $rcpt_to)
if ret matches "O0K (.+)"
set alias \1
fi
close(£fd)

string sockmap_single_lookup (string url, string map, [Library Function]
string key)

This function connects to the sockmap identified by the url, queries for key in map

and closes the connection. It is useful when you need to perform only a single lookup
on the sockmap.

5.38 National Language Support Functions

The National Language Support functions allow you to write your scripts in such a way, that
any textual messages they display are automatically translated to your native language, or,
more precisely, to the language required by your current locale.

This section assumes the reader is familiar with the concepts of program international-
ization and localization. If not, please refer to Section “The Purpose of GNU gettext” in
GNU gettext manual, before reading further.

In general, internationalization of any MFL script follows the same rules as described
in the GNU gettext manual. First of all, you select the program message domain, i.e. the
identifier of a set of translatable messages your script contain. This identifier is then used
to select appropriate translation. The message domain is set using textdomain function.
For the purposes of this section, let’s suppose the domain name is ‘myfilter’. All NLS
functions are provided in the nls module, which you need to require prior to using any of
them.

To find translations of textual message to the current locale, the underlying gettext
mechanism will look for file dirname/locale/LC_MESSAGES/domainname.mo, where
dirname is the message catalog hierarchy name, locale is the locale name, and domainname
is the name of the message domain. By default dirname is /usr/local/share/locale,
but you may change it using bindtextdomain function. The right place for this initial NLS
setup is in the ‘begin’ block (see Section 4.12 [begin/end], page 71). To summarize all the
above, the usual NLS setup will look like:

require nls

begin
do
textdomain("myfilter")
bindtextdomain("myfilter", "/usr/share/locale");
done



192 Mailfromd Manual

For example, given the settings above, and supposing the environment variable
LC_ALL is set to ‘pl’, tranmslations will be looked in file /usr/share/locale/pl/LC_
MESSAGES/myfilter.mo.

Once this preparatory work is done, you can request each message to be translated by
using gettext function, or _ (underscore) macro. For example, the following statement will
produce translated textual description for ‘450’ response:

tempfail 450 4.1.0 _("Try again later")

Of course it assumes that the appropriate myfile.mo file already exists. If it does not,
nothing bad happens: in this case the macro _ (as well as gettext function) will simply
return its argument unchanged, so that the remote party will get the textual message in
English.

The ‘mo’ files are binary files created from ‘po’ source files using msgfmt utility, as
described in Section “Producing Binary MO Files” in GNU gettext manual. In turn, the
format of ‘po’ files is described in Section “The Format of PO Files” in GNU gettext manual.

string bindtextdomain (string domain, string dirname) [Built-in Function]
This function sets the base directory of the hierarchy containing message catalogs for
a given message domain.

domain is a string identifying the textual domain. If it is not empty, the base directory
for message catalogs belonging to domain domain is set to dirname. It is important
that dirname be an absolute pathname; otherwise it cannot be guaranteed that the
message catalogs will be found.

If domain is ‘""’, bindtextdomain returns the previously set base directory for domain
domain.

The rest of this section describes the NLS functions supplied in the nls module.

string dgettext (string domain, string msgid) [Built-in Function]
dgettext attempts to translate the string msgid into the currently active locale,
according to the settings of the textual domain domain. If there is no translation
available, dgettext returns msgid unchanged.

string dngettext (string domain, string msgid, string [Built-in Function]
msgid_plural, number n)
The dngettext functions attempts to translate a text string into the language spec-
ified by the current locale, by looking up the appropriate singular or plural form of
the translation in a message catalog, set for the textual domain domain.

See Section “Additional functions for plural forms” in GNU gettext utilities, for a
discussion of the plural form handling in different languages.

string textdomain (string domain) [Library Function]

The textdomain function sets the current message domain to domain, if it is not
empty. In any case the function returns the current message domain. The current
domain is ‘mailfromd’ initially. For example, the following sequence of textdomain
invocations will yield:

textdomain("") = "mailfromd"

textdomain("myfilter") = "myfilter"

textdomain("") = "myfilter"



Chapter 5: The MFL Library Functions 193

string gettext (string msgid) [Library Function]
gettext attempts to translate the string msgid into the currently active locale, ac-
cording to the settings of the current textual domain (set using textdomain function).
If there is no translation available, gettext returns msgid unchanged.

string ngettext (string msgid, string msgid_plural, [Library Function]
number n)
The ngettext functions attempts to translate a text string into the language specified
by the current locale, by looking up the appropriate singular or plural form of the
translation in a message catalog, set for the current textual domain.

See Section “Additional functions for plural forms” in GNU gettext utilities, for a
discussion of the plural form handling in different languages.

5.39 Syslog Interface

The basic means for outputting diagnostic messages is the ‘echo’ instruction (see
Section 4.16.4 [Echo], page 87), which sends its arguments to the currently established
logging channel. In daemon mode, the latter is normally connected to syslog, so any
echoed messages are sent there with the facility selected in mailfromd configuration and
priority ‘info’.

If you want to send a message to another facility and/or priority, use the ‘syslog’
function:

void syslog (number priority, string text) [Built-in Function]
Sends text to syslog. The priority argument is formed by ORing the facility and
the level values (explained below). The facility level is optional. If not supplied, the
currently selected logging facility is used.

The facility specifies what type of program is logging the message, and the level
indicates its relative severity. The following symbolic facility values are declared in
the syslog module: ‘LOG_KERN’, ‘LOG_USER’, ‘LOG_MAIL’, ‘LOG_DAEMON’, ‘LOG_AUTH’,
‘LOG_SYSLOG’, ‘LOG_LPR’, ‘LOG_NEWS’, ‘LOG_UUCP’, ‘LOG_CRON’, ‘LOG_AUTHPRIV’, ‘LOG_FTP’
and ‘LOG_LOCALO’ through ‘LOG_LOCALT7’

The declared severity levels are: ‘LOG_EMERG’, ‘LOG_ALERT’, ‘LOG_CRIT’, ‘LOG_ERR’,
‘LOG_WARNING’, ‘LOG_NOTICE’, ‘LOG_INFO’ and ‘LOG_DEBUG’.

5.40 Debugging Functions
These functions are designed for debugging the MFL programs.

void debug (string spec) [Built-in Function]
Enable debugging. The value of spec sets the debugging level. See [debugging level
specification|, page 42, for a description of its format.

For compatibility with previous versions, this function is also available under the
name ‘mailutils_set_debug_level’.

number debug_level ([string srcname]) [Built-in Function]
This function returns the debugging level currently in effect for the source module
srcname, or the global debugging level, if called without arguments.



194

Mailfromd Manual

For example, if the program was started with --debug=’all.trace5;
engine.trace8’ option, then:

debug_level() = 127

debug_level("engine") = 1023

debug_level("db") = 0

boolean callout_transcript ([boolean value]) [Built-in Function]

Returns the current state of the callout SMTP transcript. The result is 1 if the
transcript is enabled and 0 otherwise. The transcript is normally enabled either by
the use of the -—transcript command line option (see [SMTP transcript|, page 45) or
via the ‘transcript’ configuration statement (see Section 7.4 [conf-server]|, page 204).

The optional value, supplies the new state for SMTP transcript. Thus, calling
‘callout_transcript (0)’ disables the transcript.

This function can be used in bracket-like fashion to enable transcript for a certain
part of MFL program, e.g.:

number xstate callout_transcript(1l)
on poll $f do

done
set xstate callout_transcript(0)

Note, that the use of this function (as well as the use of the -—transcript option)
makes sense only if callouts are performed by the mailfromd daemon itself. It will not
work if a dedicated callout server is used for that purpose (see Chapter 10 [calloutd],
page 227).

string debug_spec ([string catnames, bool showunset]) [Built-in Function]

Returns the current debugging level specification, as given by --debug command
line option or by the debug configuration statement (see Section 7.6 [conf-debug],
page 206).
If the argument srcnames is specified, it is treated as a semicolon-separated list of
categories for which the debugging specification is to be returned.
For example, if mailfromd was started with --debug=all.traceb;spf.tracel;
engine.trace8;db.trace0, then:
debug_spec() = "all.traceb,engine.trace8"
debug_spec("all;engine") = "all.traceb,engine.trace8"
debug_spec("engine;db") = "db.trace0;engine.trace8"
debug_spec("prog") = ""
When called without arguments, debug_spec returns only those categories which
have been set, as shown in the first example above.
Optional showunset parameters controls whether to return unset module specifica-
tions. To print all debugging specifications, whether set or not, use
debug_spec("", 1)

These three functions are intended to complement each other. The calls to debug can
be placed around some piece of code you wish to debug, to enable specific debugging infor-
mation for this code fragment only. For example:



Chapter 5: The MFL Library Functions 195

/* Save debugging level for dns.c source */
set dlev debug_spec("dns", 1)

/* Set new debugging level */
debug("dns.trace8")

/* Restore previous level */
debug(dlev)

void program_trace (string module) [Built-in Function]
Enable tracing for a set of modules given in module argument. See [~trace-program],
page 217, for a description of its format.

void cancel_program_trace (string module) [Built-in Function]
Disable tracing for given modules.

This pair of functions is also designed to be used together in a bracket-like fashion. They
are useful for debugging mailfromd, but are not advised to use otherwise, since tracing slows
down the execution considerably.

void stack_trace () [Built-in Function]
Generate a stack trace in this point. See [tracing runtime errors|, page 47, for the
detailed description of stack traces.

The functions below are intended mainly for debugging MFL run-time engine and for
use in mailfromd testsuite. You will hardly need to use them in your programs.

void _expand_dataseg (number n) [Built-in Function]
Expands the run-time data segment by at least n words.

number _reg (number r) [Built-in Function]
Returns the value of the register r at the moment of the call. Symbolic names for
run-time registers are provided in the module _register:

Name Register
REG_PC Program counter
REG_TOS Top of stack
REG_TOH Top of heap
REG_BASE Frame base
REG_REG General-purpose accumulator
REG_MATCHSTR Last matched string pointer
void _wd ([number n)) [Built-in Function)]

Enters a time-consuming loop and waits there for n seconds (by default — indefinitely).
The intention is to facilitate attaching to mailfromd with the debugger. Before
entering the loop, a diagnostic message is printed on the ‘crit’ facility, informing
about the PID of the process and suggesting the command to be used to attach to it,
e.g.:

mailfromd: process 21831 is waiting for debug



196 Mailfromd Manual

mailfromd: to attach: gdb -ex ’set variable mu_wd::_count_down=0’
/usr/sbib/mailfromd 21831



197

6 Using the GNU Emacs MFL Mode

MFL sources are usual ASCII files and you may edit them with any editor you like. However,
the best choice for this job (as well as for many others) is, without doubt, GNU Emacs. To
ease the work of editing script files, the mailfromd package provides a special Emacs mode,
called MFL mode.

The elisp source file providing this mode, mfl-mode.el, is installed automatically, pro-
vided that GNU Emagcs is present on your machine. To enable the mode, add the following
lines to your Emacs setup file (either system-wide site-start.el, or your personal one,
~/.emacs):

(autoload ’mfl-mode "mfl-mode")
(setq auto-mode-alist (append auto-mode-alist
> (("/etc/mailfromd.mf" . mfl-mode)
("\\.mf$" . mfl-mode))))
The first directive loads the MFL mode, and the second one tells Emacs to apply it to
any file whose name ends in /etc/mailfromd.mf! or in a ‘.mf’ suffix.

MFL mode provides automatic indentation and syntax highlighting for MFL sources.
The default indentation setup is the same as the one used throughout this book:

e Handler and function definitions start at column 1;

e A block statement, i.e. ‘do’, ‘done’, ‘if’, ‘else’, ‘elif’ and ‘fi’, occupies a line by
itself, with the only exception that ‘do’ after an ‘on’ statement is located on the same
line with it;

e A ‘do’ statement that follows function or handler definition is placed in column 1.

e FEach subsequent level of nesting is indented two columns to the right (see [mfl-basic-
offset], page 198).

e A closing statement (‘done’, ‘else’, ‘elif’, ‘fi’) is placed at the same column as the
corresponding opening statement;

e Branch statements (‘case’ and ‘when’) are placed in the same column as their control-
ling keyword (‘switch’ and ‘on’, correspondingly (see [mfl-case-line-offset], page 198).

e Loop substatements (see Section 4.18 [Loops|, page 89) are offset 5 columns to the
right from the controlling loop keyword. (see [mfl-loop-statement-offset], page 199).
Continuation statements within loop header are offset 5 columns from the indentation
of their controlling keyword, either for or while (see [mfl-loop-continuation-offset],
page 199).

The mode provides two special commands that help navigate through the complex filter
scripts:

C-M-a Move to the beginning of current function or handler definition.
C-M-e Move to the end of current function or handler definition.

Here, current function or handler means the one within which your cursor currently
stays.

1 This will match most existing installations. In the unlikely case that your $sysconfdir does not end in
/etc, you will have to edit the directive accordingly.



198 Mailfromd Manual

You can use C-M-e repeatedly to walk through all function and handler definitions in
your script files. Similarly, repeatedly pressing C-M-a will visit all the definitions in the
opposite direction (from the last up to the very first one).

Another special command, C-c C-c, allows to verify the syntax of your script file. This
command runs mailfromd in syntax check mode (see Section 3.16 [Testing Filter Scripts],
page 33) and displays its output in a secondary window, which allows to navigate through
eventual diagnostic messages and to jump to source locations described by them.

All MFL mode settings are customizable. To change any of them, press M-x customize
and visit ‘Environment/Unix/Mf1’ customization group. This group offers two subgroups:
‘Mf1 Lint group’ and ‘Mfl Indentation group’.

‘Mf1 Lint group’ controls invocation of mailfromd by C-c C-c. This group contains two
variables:

mfl-mailfromd-command [MFL-mode setting]
The mailfromd to be invoked. By default, it is ‘mailfromd’. You will have to change
it, if mailfromd cannot be found using PATH environment variable, or if you wish to
pass it some special options. However, do not include --1int or -I options in this
variable. The --1int option is given automatically, and include paths are controlled
by mfl-include-path variable (see below).

mfl-include-path [MFL-mode setting]
A list of directories to be appended to mailfromd include search path (see [include
search path], page 51). By default it is empty.

‘Mfl Indentation group’ controls automatic indentation of MFL scripts. This group
contains the following settings:

mfl-basic-offset [MFL-mode setting]
This variable sets the basic indentation increment. It is set to 2, by default, which
corresponds to the following indentation style:
prog envfrom
do
if §f = "
accept
else

fi
done

mfl-case-line-offset [MFL-mode setting]
Indentation offset for case and when lines, relative to the column of their controlling
keyword. The default is 0, i.e.:
switch x
do
case O:

default:



Chapter 6: Using the GNU Emacs MFL Mode 199

done
mfl-returns-offset [MFL-mode setting]

Indentation offset of returns and alias statements, relative to the controlling func
keyword. The default value is 2, which corresponds to:

func foo()
alias bar
returns string

mfl-comment-offset [MFL-mode setting]
Indentation increment for multi-line comments. The default value is 1, which makes:

/* first comment line
second comment line */

mfl-loop-statement-offset [MFL-mode setting]
Indentation increment for parts of a loop statement. The default value is 5, which
corresponds to the following style:

loop for stmt,
while cond,
incr

do

mfl-loop-continuation-offset [MFL-mode setting]
If any of the loop parts occupies several lines, the indentation of continuation lines
relative to the first line is controlled by mfl1-loop-continuation-offset, which de-

faults to 5:
loop for set n O
set z 1,
while n != 10
or z != 2,

set nn+ 1






201

7 Configuring mailfromd

Upon startup, mailfromd checks if the file /etc/mailfromd.conf exists.! If it does, the
program attempts to retrieve its configuration settings from that file.

The mailfromd.conf file must be written in the GNU mailutils configuration format,
as described in Section “conf-syntax” in GNU Mailutils Manual. This format can be sum-
marized as follows:

Comments
Inline comments begin with ‘//’ or ‘4’ and end at the end of the line. Multiline
comments are delimited by ‘/*’ and ‘*/’. Multiline comments cannot be nested,
but can contain inline comment markers.

Empty lines and whitespace
Empty lines are ignored. Whitespace characters (i.e. horizontal, vertical space,
and newline) are ignored, except as they serve to separate tokens.

Statements
A statement consists of a keyword and a value, separated by whitespace. State-
ments terminate with a semicolon. E.g.

pidfile /var/run/mailfromd.pid;

Block statements
A block statement consists of a keyword and a list of statements enclosed in
‘{’ and ‘} characters. Optional label can appear between the keyword and
opening curly brace. E.g.:
logging {
syslog on;
facility mail;
}

Block statement is not required to terminate with a semicolon, although it is
allowed to.

File Inclusion
The include statement causes inclusion of the file listed as its value:

include /usr/share/mailfromd/config.inc;

The mailfromd.conf file is used by all programs that form the ‘mailfromd’ package,
i.e. mailfromd, calloutd, mfdbtool, and pmult. Since the sets of statements understood
by each of them differ, special syntactic means are provided to separate program-specific
configurations from each other.

First of all, if the argument to include is a directory, then the program will search that
directory for a file with the same name as the base name of the program itself. If found,
this file will be loaded after finishing parsing the mailfromd.conf file. Otherwise, this
statement is ignored.

1 The exact location is determined at compile time: the /etc directory is the system configuration directory
set when building mailfromd (see Chapter 2 [Building], page 9).



202 Mailfromd Manual

Secondly, the special block statement program tag is processed only if tag matches the
base name of the program being run. Again, it is processed after the main mailfromd. conf
file.

Thus, if you need to provide configuration for the calloutd component, there are two
ways of doing so. First, you can place it to a file named calloutd placed in a separate direc-
tory (say, /etc/mailfromd.d), and use the name of that directory in a include statement
in the main configuration file:

include /etc/mailfromd.d;
Secondly, you can use the program statement as follows:

program calloutd {

}

7.1 Special Configuration Data Types

In addition to the usual data types (see Section “Statements” in GNU Mailutils Manual),
mailfromd configuration introduces the following two special ones:

time interval specification
The time interval specification is a string that defines an interval, much the
same way we do this in English: it consists of one or more pairs ‘number’-‘time
unit’. For example, the following are valid interval specifications:

1 hour
2 hours 35 seconds
1 year 7 months 2 weeks 2 days 11 hours 12 seconds

The pairs can occur in any order, however unusual it may sound to a human
ear, e.g. ‘2 days 1 year’. If the ‘time unit’ is omitted, seconds are supposed.

Connection URL
unix://file

unix:file
local://file
local:file A named pipe (socket).

inet://address:port

inet:port@address
An IPv4 connection to host address at port port. Port must be
specified either as a decimal number or as a string representing the
port name in /etc/services.

inet6:port@Qaddress
An IPv6 connection to host address at port port. This port type is
not yet supported.

7.2 Base Mailfromd Configuration

script-file file [Mailfromd Conf]
Read filter script from file. By default it is read from sysconfdir/mailfromd.mf.



Chapter 7: Configuring mailfromd 203

setvar name value [Mailfromd Conf]
Initialize MFL variable name to value.

include-path path [Mailfromd Conf]
Add directories to the list of directories to be searched for header files. See [include
search path], page 51.

Argument is a list of directory names separated by colons.

state-directory dir [Mailfromd Conf]
Set program state directory. See [statedir], page 11.

relayed-domain-file file [Mailfromd Conf]
Append domain names from the named file to the list of relayed domains. This list can
be inspected from MFL script using the ‘relayed’ function (see [relayed], page 160).

The file argument is either a single file name or a list of file names, e.g.:

relayed-domain-file /etc/mail/sendmail.cw;
relayed-domain-file (/etc/mail/sendmail.cw, /etc/mail/relay-domains);]j

source-ip ipaddr [Mailfromd Conf]
Set source IP address for outgoing TCP connections.

pidfile file [Mailfromd Conf]
Set the name of the file to store PID value in. The file must be writable for the user
or group mailfromd runs as (see Section 7.9 [conf-priv], page 209).

7.3 DNS Resolver Configuration

DNS resolver settings are configured using the resolver compound statement:

resolver {
config filename;
max-cname—-chain num;

by

config filename [resolver]
Name of the resolver configuration file to wuse, instead of the default
/etc/resolv.conf.

max-cname-chain num [resolver]
Maximum allowed length of a DNS CNAME chain that will be followed. A CNAME
chain is a sequence of CNAME records pointing to another CNAMEs. Although CNAME
chains are not considered a good practice, many sites still use them. By default the
mailfromd resolver allows at most one CNAME record pointing to a CNAME (this
corresponds to max-cname-chain 2). If you need to follow longer chains, raise this
value. Note however, that using values greater than 5 is not a good idea, anyway.



204 Mailfromd Manual

7.4 Server Configuration

A single mailfromd daemon can run several servers. These are configured in the following
statement:

server type {
id name;
listen url;
backlog num;
max-instances num;
single-process bool;
reuseaddr bool;
option list;
default bool;
callout url;
acl { ... }

}

server type [Mailfromd Conf]
Define a server. The type is either ‘milter’ or ‘callout’. See Section 3.7 [SMTP
Timeouts], page 19, for a description of various types of servers.

The substatements in the server block provide parameters for configuring this server.

id name [server]
Assign an identifier to this server. This identifier is used as a suffix to syslog tag (see
[syslog tag], page 41) in messages related to this server. For example, if a server block
had the following statement in it:

id main;
then all messages related to this server will be marked with tag ‘mailfromd#main’.

The part before the ‘#’ is set using the tag statement in logging block (see Section
“Logging Statement” in GNU Mailutils Manual).

listen url [server]
Listen for connections on the given URL. See [milter port specification], page 202, for
a description of allowed url formats.

Example:
listen inet://10.10.10.1:3331;

backlog num [server]
Configures the size of the queue of pending connections. Default value is 8.

max-instances number [server]
Sets the maximum number of instances allowed for this server.

single-process bool [server]
When set to ‘yes’, this server will run in single-process mode, i.e. it will not fork sub-
processes to serve requests. This option is meant exclusively to assist in debugging
mailfromd. Don’t use it for anything else but for debugging!



Chapter 7: Configuring mailfromd 205

reuseaddr bool [server]
When set to ‘yes’, mailfromd will attempt to reuse existing socket addresses. This
is the default behavior.

If the server type is ‘callout’, the following statement is also allowed:

option list [server]
Configures server options. As of version 8.14 only one option is defined:

default Mark this server as the default one. This means it will be used by every
milter server that doesn’t define the callout-url statement.

default bool [server]
When set to ‘yes’, this server is marked as a default callout server for all milter servers
declared in the configuration. This is equivalent to option default.

if the server type is ‘milter’, you can use the following statement to query a remote
callout server:

callout url [server]
Use a callout server at url (see [milter port specification], page 202).

You can also set a global callout server, which will be used by all milter servers that do
not set the callout statement:

callout-url url [Mailfromd Conf]
Set global callout server. See [milter port specification|, page 202, for allowed url
formats.

7.5 Milter Connection Configuration

milter-timeout time [Mailfromd Conf]
Sets the timeout value for connection between the filter and the MTA. Default value
is 7210 seconds. You normally do not need to change this value.

acl [Mailfromd Conf]
This block statement configures access control list for incoming Milter connections.
See Section “ACL Statement” in GNU Mailutils Manual, for a description of its
syntax. E.g.:

acl {
allow from 10.10.10.0/24;
deny from any;

}



206 Mailfromd Manual

7.6 Logging and Debugging configuration

logger mech [Mailfromd Conf]
Set default logger mechanism. Allowed values for mech are:
stderr Log everything to the standard error.
syslog Log to syslog.

syslog:async
Log to syslog using the asynchronous syslog implementation.

See Section 3.18 [Logging and Debugging], page 40, for a detailed discussion. See also
[syslog-async|, page 11, for information on how to set default syslog implementation
at compile time.

debug spec [Mailfromd Conf]
Set mailfromd debug verbosity level. The spec must be a valid debugging level
specification (see [debugging level specification], page 42).

stack-trace bool [Mailfromd Conf]
Enables stack trace dumps on runtime errors. This feature is useful for locating the
source of an error, especially in complex scripts. See [tracing runtime errors|, page 47,
for a detailed description.

trace-actions bool [Mailfromd Conf]
Enable action tracing. If bool is ‘true’, mailfromd will log all executed actions. See
Section 3.18 [Logging and Debugging], page 40, for a detailed description of action
tracing.

trace-program modlist [Mailfromd Conf]
Enable program instruction tracing for modules in modlist, a comma-separated list
of source code modules, e.g.:

trace-program (bi_io,bi_db);

This statement enables tracing for functions from modules bi_io.c and bi_db.c
(notice, that you need not give file suffixes).

This tracing is useful for debugging mailfromd, but is not advised to use otherwise,
since it is very time-costly.

transcript bool [Mailfromd Conf]
Enable transcripts of call-out SMTP sessions. See [SMTP transcript], page 45, for a
detailed description of SMTP transcripts.

7.7 Timeout Configuration

The SMTP timeouts used in callout sessions are configured via smtp-timeout statement:



Chapter 7: Configuring mailfromd 207

Syntax

smtp-timeout type {

connection interval;
initial-response interval;
helo interval;

mail interval;

rcpt interval;

rset interval;

quit interval;

}

smtp-timeout type [Mailfromd Conf]
Declare SMTP timeouts of the given type, which may be ‘soft’ or ‘hard’.
Callout SMTP sessions initiated by polling functions, are controlled by two sets of
timeouts: ‘soft’ and ‘hard’. Soft timeouts are used by the mailfromd milter servers.
Hard timeouts are used by callout servers (see [callout server|, page 19). When a soft
timeout is exceeded, the calling procedure is delivered an ‘e_temp_failure’ exception
and the session is scheduled for processing by a callout server. The latter re-runs the
session using hard timeouts. If a hard timeout is exceeded, the address is marked as
‘not_found’ and is stored in the cache database with that status.
Normally, soft timeouts are set to shorter values, suitable for use in MFL scripts
without causing excessive delays. Hard timeouts are set to large values, as requested
by RFC 2822 and guarantee obtaining a definite answer (see below for the default
values).

Statements

The time argument for all smtp-timeout sub-statements is expressed in time interval units,
as described in [time interval specification], page 202.

connection time [smtp-timeout)
Sets initial connection timeout for callout tests. If the connection is not established
within this time, the corresponding callout function returns temporary failure.

initial-response time [smtp-timeout]
Sets the time to wait for the initial SMTP response.

helo time [smtp-timeout)
Timeout for a response to ‘HELO’ (or ‘EHLO’) command.

mail time [smtp-timeout)
Timeout for a response to ‘MAIL’ command.

rcpt time [smtp-timeout]
Timeout for a response to ‘RCPT’ command.

rset time [smtp-timeout)
Timeout for a response to ‘RSET’ command.

quit time [smtp-timeout)
Timeout for a response to ‘QUIT’ command.



208

Default Values

The default timeout settings are:

Timeout
connection
initial-response
helo

mail

rept

rset

quit

Table 7.1: Default SMTP timeouts

io-timeout time

Soft
10s

30s

I/0
I/0
I/0
I/0
I/0

Mailfromd Manual

Hard
5m
5m
5m
10m
5m
5m
2m

[Mailfromd Conf]

Sets a general SMTP I/0 operation timeout. This timeout is used as the default for
entries marked with ‘I/0’ in the above table. The default is 3 seconds.

7.8 Call-out Configuration

ehlo-domain string

[Mailfromd Conf]

Sets default domain used in ‘EHLO’ (or ‘HELO’) SMTP command when probing the
remote host. This value can be overridden by ‘from’ parameter to poll command

(see [poll], page 100).

This statement assigns the value string to the ‘ehlo_domain’ variable (see

[ehlo_domain], page 64), and is therefore equivalent to

setvar ehlo_domain string;

mail-from-address string

[Mailfromd Conf]

Sets default email addresses used in ‘MAIL FROM:” SMTP command when probing the
remote host. This value can be overridden by ‘as’ parameter to poll command (see

[poll], page 100).

This statement assigns the value string to the ‘mailfrom_address’ variable (see

[mailfrom_address]|, page 65), and is therefore equivalent to

setvar mailfrom_address string;

enable-vrfy bool

[Mailfromd Conf]

Enables the use of SMTP VRFY statement prior to normal callout sequence. If
VRFY is supported by the remote server, mailfromd relies on its reply and does not

perform normal callout.

The use of this statement is not recommended, because many existing VRFY imple-
mentations always return affirmative result, no matter is the requested email handled

by the server or not.

The default is enable-vrfy no, i.e. VRFY is disabled.



Chapter 7: Configuring mailfromd 209

7.9 Privilege Configuration

user name [Mailfromd Conf]
Switch to this user’s privileges after startup. See Section 8.2 [Starting and Stopping],
page 218, for a discussion of the privileges mailfromd runs under and the options
that affect them. See also group below.

group name [Mailfromd Conf]
Retain the supplementary group name when switching to user privileges. By default
mailfromd clears the list of supplementary groups when switching to user privileges,
but this statement allows to retain the given group. It can be specified multiple times
to retain several groups. This option may be necessary to maintain proper access
rights for various files. See Section 8.2 [Starting and Stopping], page 218.

7.10 Database Configuration

Syntax

database dbname {
file name;
enable bool;
expire-interval interval;
positive-expire-interval interval;
negative-expire-interval interval;

¥

database dbname [Mailfromd Conf]
The database statement controls run-time parameters of a DBM database identified
by dbname. Allowed values for the latter are: ‘cache’, ‘rate’ and ‘greylist’ for
main cache, DNS lookup, sending rate and greylisting databases, correspondingly.

Statements

file name [database]
Set the database file name.

enable bool [database]
Enable or disable this database.

expire-interval time [database]
Set the expiration interval for this database dbname. See [time interval specification],
page 202, for a description of time format.

positive-expire-interval time [database]
This statement is valid only for ‘cache’ database. It sets the expiration interval for
positive (‘success’) cache entries.

negative-expire-interval time [database]
This statement is valid only for ‘cache’ database, where it sets expiration interval for
negative (‘not_found’) cache entries.



210 Mailfromd Manual

Additional Statements

database-type type [Mailfromd Conf]
Set default database type. type is one of the database types supported by mailutils
(i.e., for Mailutils 3.0: ‘gdbm’, ‘ndbm’, ‘bdb’, ‘kc’, and ‘tc’). Run
mailfromd --show-defaults | grep ’supported databases:’

to get a list of type names supported by your build of mailfromd.

database-mode mode [Mailfromd Conf]
Defines file mode for newly created database files. mode must be a valid file mode in
octal.

lock-retry-count number [Mailfromd Conf]

Set maximum number of attempts to acquire the lock. The time between each two
successive attempts is given by lock-retry-timeout statement (see below). After
the number of failed attempts, mailfromd gives up.

lock-retry-timeout time [Mailfromd Conf]
Set the time span between the two locking attempts. Any valid time interval specifi-
cation (see [time interval specification], page 202) is allowed as argument.

7.11 Runtime Constants Configuration

runtime { statements } [Mailfromd Conf]
The statements in the runtime section configure various values used by MFL builtin
functions.

max-streams number [runtime]

Sets the maximum number of stream descriptors that can be opened simultaneously.
Default is 1024. See Section 5.6 [I/O functions], page 120.

max-open-mailboxes number [runtime]
Sets the maximum number of available mailbox descriptors. This value is used by
MFL mailbox functions (see Section 5.17 [Mailbox functions], page 138).

max-open-messages number [runtime]
Sets the maximum number of messages that can be opened simultaneously using the
mailbox_get_message function. See Section 5.18 [Message functions|, page 139, for
details.

7.12 Standard Mailutils Statements

The following standard Mailutils statements are understood:

Statement Reference

auth See Section “auth statement” in GNU Mailutils
Manual.

debug See Section “debug statement” in GNU Mailutils

Manual.



Chapter 7: Configuring mailfromd

include
logging

mailer

locking

See Section “include” in GNU Mailutils Manual.
See Section “logging statement” in GNU Mailutils
Manual.

See Section “mailer statement” in GNU Mailutils
Manual.

See Section “locking statement” in GNU Mailutils
Manual.

211






213

8 Mailfromd Command Line Syntax

The mailfromd binary is started from the command line using the following syntax (brackets
indicate optional parts):
$ mailfromd [options] [asgn] [script]

The meaning of each invocation part is described in the table below:
options The command line options (see Section 8.1 [options|, page 213).

asgn Sendmail macro assignments. These are currently meaningful only with the
--test option (see [test mode], page 34), but this may change in the future.
Each assignment has the form:

var=value

where var is the name of a Sendmail macro and value is the value to be assigned
to it.

script The file name of the filter script, if other than the default one.

8.1 Command Line Options.

8.1.1 Operation Modifiers

--daemon Run in daemon mode (default).

—--run[=start]
Load the script named in the command line and execute the function named
start, or ‘main’, if start is not given. See Section 3.17 [Run Mode], page 35, for
a detailed description of this feature.

--show-defaults
Show compilation defaults. See Section 3.15 [Databases|, page 31.

-t [statel

--test [=state]
Run in test mode. See Section 3.16 [Testing Filter Scripts|, page 33. Default
state is ‘envfrom’. This option implies -—stderr (see [-stderr], page 218).

8.1.2 General Settings

--callout-socket=string
Set socket for the default callout server. This is mainly useful together with
the ——-mtasim option.

--foreground
Stay in foreground. When given this option, mailfromd will not disconnect
itself from the controlling terminal and will run in the foreground.

-g name
-—group=name
Retain the group name when switching to user privileges. See Section 8.2
[Starting and Stopping], page 218.



214

Mailfromd Manual

This option complements the group configuration statement (see Section 7.9
[conf-priv], page 209).

——-include=dir

-1 dir

Add the directory dir to the list of directories to be searched for header files.
This will affect the functioning of #include statement. See [include], page 51,
for a discussion of file inclusion.

--mailer=url

-M url

Set the URL of the mailer to use. See Section 5.33 [Mail Sending Functions],
page 175.

--mtasim This option is reserved for use by mtasim (see Chapter 12 [mtasim], page 237).

-0[levell

--optimize[=level]

-p string

Set optimization level for code generator. Two levels are implemented: ‘0’
meaning no optimization, and ‘1’, meaning full optimization.

--port=string
--milter-socket=string

Set communication socket. Overrides the listen configuration statement,
which you are advised to use instead (see Section 7.5 [conf-milter], page 205).

--pidfile=file

Set pidfile name. Overrides the pidfile configuration statement, which you
are advised to use instead (see Section 7.2 [conf-base|, page 202).

--relayed-domain-file=file

Read relayed domains from file. Overrides the relayed-domain-file configu-
ration statement (see Section 7.2 [conf-base], page 202), which you are advised
to use instead. See Section 3.8 [Avoiding Verification Loops|, page 20, and the
description of relayed function (see [relayed], page 160) for more information.

—-resolv-conf-file=file

Read resolver settings from file, instead of the default /etc/resolv.conf.

--state-directory=dir

-8 ip

Set new program state directory. See [statedir], page 11, for the descrip-
tion of this directory and its purposes. This option overrides the settings of
state-directory configuration statement, described in Section 7.2 [conf-base],
page 202.

--source-ip=ip

Set source address for TCP connections. Overrides the ‘source-ip’ configura-
tion statement, which you are advised to use instead (see Section 7.2 [conf-base],
page 202).



Chapter 8: Mailfromd Command Line Syntax 215

-u name
--user name
Switch to this user privileges after startup. Overrides the user configuration
file statement, which you are advised to use instead (see Section 7.9 [conf-priv],
page 209). Default user is ‘mail’.

-v var=value

--variable var=value
Assign value to the global variable var. The variable must be declared in your
startup script. See [overriding initial values], page 34, for a detailed discussion
of this option.

8.1.3 Preprocessor Options

Following command line options control the preprocessor feature. See Section 4.22 [Prepro-
cessor], page 103, for a detailed discussion of these.

—-NO-preprocessor
Do not run the preprocessor.

--preprocessor=command
Use command as the external preprocessor instead of the default m4.

-D name[=value]
--define=name[=value]
Define a preprocessor symbol name to have a value value.

-U name
-—undefine=name
Undefine the preprocessor symbol name.

-E Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

8.1.4 Timeout Control

See [time interval specification], page 202, for information on interval format.

--milter-timeout=interval
Set MTA connection timeout. Overrides milter-timeout statement in the
mailfromd configuration file, which you are advised to use instead (see
Section 7.5 [conf-milter|, page 205).

8.1.5 Logging and Debugging Options

--location-column

--no-location-column
Mention column number in error messages. See Section 3.16 [location-column)],
page 33. Use ——no-location-column to disable

-d string
-—-debug=string
Set debugging level. See Section 3.18 [Logging and Debugging], page 40.



216

——dump—

——du.mp—

__dump_

Mailfromd Manual

code
Parse and compile the script file and dump the disassembled listing of the
produced code to the terminal. See Section 3.18 [Logging and Debugging],
page 40.

grammar-trace
Enable debugging the script file parser. While parsing the file, the detailed
dump of the parser states and tokens seen will be output.

lex-trace
Enable debugging the lexical analyzer. While parsing the script file, the detailed
dump of the lexer states and matched rules will be output.

—--dump-macros

Show Sendmail macros used in the script file. The macro names are displayed as
comma-separated lists, grouped by handler names. See Section 9.1 [Sendmail],
page 221, for a detailed description of this option and its usage.

—-—dump-tree

Parse and compile the script file and dump the parse tree in a printable form
to the terminal.

—-—dump-xref

—--lint

Print a cross-reference of variables used in the filter script. See Section 3.16
[Testing Filter Scripts], page 33.

Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.
See Section 4.22 [Preprocessor], page 103.

Check script file syntax and exit. If the file is OK, return 0 to the shell, otherwise
print appropriate messages to stderr and exit with code 78 (‘configuration
error’).

--single-process

Do not fork sub-processes to serve requests. This option is meant to assist in
debugging mailfromd. Don’t use it for anything else but for debugging, as it
terribly degrades performance!

—--stack-trace
--no-stack-trace

Add MFL stack trace information to runtime error output.  Overrides
stack-trace configuration statement. Use the —-no-stack-trace to disable
trace information.

See [tracing runtime errors|, page 47, for more information on this feature.

--gacopyz-log=Ilevel

Set desired logging level for gacopyz library (see Appendix A [Gacopyz],
page 257). There are five logging levels. The following table lists them in order
of decreasing priority:

fatal Log fatal errors.

err Log €IrTor messages.



Chapter 8: Mailfromd Command Line Syntax 217

warn Log warning messages.

info Log informational messages. In particular, this enables printing
messages on each subprocess startup and termination, which look
like that:

Apr 28 09:00:11 host mailfromd[9411]: connect
from 192.168.10.1:50398

Apr 28 09:00:11 host mailfromd[9411]: finishing
connection

This level can be useful for debugging your scripts.
debug Log debugging information.

proto Log Milter protocol interactions. This level prints huge amounts of
information, in particular it displays dumps of each Milter packet
sent and received.

Although it is possible to set these levels independently of each other, it is
seldom practical. Therefore, the option ——gacopyz-log=level enables all log-
ging levels from level up. For example, -—gacopyz-log=warn enables log levels
‘warn’, ‘err’ and ‘fatal’. It is the default. If you need to trace each subprocess
startup and shutdown, set --gacopyz-log=info. Setting the logging level to
‘proto’ can be needed only for Gacopyz developers, to debug the protocol.

See Section 3.16 [Testing Filter Scripts|, page 33.

--logger=mech
Set logger mechanism (mech is one of ‘stderr’, ‘syslog’, ‘syslog:async’). See
Section 3.18 [Logging and Debugging], page 40.

-—log-facility=facility
Output logs to syslog facility.

--log-tag=string
Tag syslog entries with the given string, instead of the program name.

--source-info

--no-source-info
Include ¢ source information in debugging messages. This is similar to setting
line-info yes in the debug configuration block (see Section “debug statement”
in GNU Mailutils Manual).

The —-—no-source-info can be used to cancel the effect of the line-info yes
configuration statement.

You do not need this option, unless you are developing or debugging mailfromd.

--syntax-check
Synonym for --1lint.

-—trace

—--no-trace
Enable or disable action tracing. If --trace is given, mailfromd will log all
executed actions. See Section 3.18 [Logging and Debugging], page 40.



218 Mailfromd Manual

--trace-program[=string]
Enable program instruction tracing. With this option mailfromd will log execu-
tion of every instruction in the compiled filter program. The optional arguments
allows to specify a comma-separated list of source code modules for which the
tracing is to be enabled, for example --trace-program=bi_io,bi_db enables
tracing for functions from modules bi_io.c and bi_db.c (notice, that you need
not give file suffixes in string).
This option is useful for debugging mailfromd, but is not advised to use oth-
erwise, since it is very time-costly.

-X

-—transcript

—--no-transcript

Enable or disable transcript of the SMTP sessions to the log channel. See
Section 3.18 [Logging and Debugging], page 40.

--syslog Selects default syslog mechanism for diagnostic output.
—--stderr Directs all logging to standard output. Similar to —-logger=stderr.

—-xref Same as -—dump-xref. See Section 3.18 [Logging and Debugging], page 40.

8.1.6 Informational Options

-7

--help Give a short help summary.
--usage Give a short usage message.

-V
--version
Print program version.

8.2 Starting and Stopping

Right after startup, when mailfromd has done the operations that require root privileges, it
switches to the privileges of the user it is configured to run as (see [default user privileges],
page 10) or the one given in its configuration file (see Section 7.9 [conf-priv], page 209).
During this process it will drop all supplementary groups and switch to the principal group
of that user.

Such limited privileges of the daemon can cause difficulties if your filter script needs to
access some files (e.g. Sendmail databases) that are not accessible to that user and group.
For example, the following fragment using dbmap function:

if dbmap("/etc/mail/aliases.db", $f, 1)

fi

will normally fail, because /etc/mail/aliases.db is readable only to the root and members
of the group ‘smmsp’.

In such situations you need to instruct mailfromd to retain the privileges of one or
several supplementary groups when switching to the user privileges. This is done using



Chapter 8: Mailfromd Command Line Syntax 219

group statement in the mailfromd configuration file (see Section 7.9 [conf-priv], page 209).
In example above, you need to use the following settings:

group smmsp;
(The same effect can be achieved with --group command line option: mailfromd --
group=smmsp).

To stop a running instance of mailfromd use one of the following signals: SIGQUIT,
SIGTERM, SIGINT. All three signals have the same effect: the program cancels handling
any pending requests, uninitializes the communication socket (if it is a UNIX socket, the
program unlinks it) and exits.

To restart the running mailfromd instance, send it SIGHUP. For restart to be possible,
two conditions must be met: mailfromd must be invoked with the full file name, and the
configuration file name must be full as well. If either of them is not met, mailfromd displays
a similar warning message:

warning: script file is given without full file name
warning: restart (SIGHUP) will not work

or:

warning: mailfromd started without full file name
warning: restart (SIGHUP) will not work

The reaction of mailfromd on SIGHUP in this case is the same as on the three signals
described previously, i.e. cleanup and exit immediately.

The PID of the master instance of mailfromd is kept on the pidfile, which is named
mailfromd.pid and is located in the program state directory. Assuming the default location
of the latter, the following command will stop the running instance of the daemon:

kill -TERM ‘head -nl /usr/local/var/mailfromd/mailfromd.pid*

The default pidfile location is shown in the output of mailfromd --show-defaults (see
Section 3.15 [Databases|, page 31), and can be changed at run time using pidfile statement
(see Section 7.2 [conf-base], page 202).

To facilitate the use of mailfromd, it is shipped with a shell script that can be used
to launch it on system startup and shut it down when the system goes down. The script,
called rc.mailfromd, is located in the directory /etc of the distribution. It takes a single
argument, specifying the action that should be taken:

start Start the program.

stop Shut down the program

reload Reload the program, by sending it SIGHUP signal.

restart Shut down the program and start it again.

status Display program status. It displays the PID of the master process and its

command line, for example:

$ /etc/rc.d/rc.mailfromd status
mailformd appears to be running at 26030
26030 /usr/local/sbin/mailfromd --group smmsp

If the second line is not displayed, this most probably mean that there is a
‘stale’ pidfile, i.e. the one left though the program is not running.



220 Mailfromd Manual

An empty rc.mailfromd status output means that mailfromd is not running.

configtest [file]
Check the script file syntax, report any errors found and exit. If file is given it
is checked instead of the default one.

macros [-c| [file]
Parse the script file (or file, if it is given, extract the names of Sendmail macros
it uses and generate corresponding export statements usable in the Sendmail
configuration file. By default, mc statements are generated. If -c (--cf) is
given, the statements for sendmail.cf are output. See the next chapter for the
detailed description of this mode.

You can pass any additional arguments to mailfromd by editing ARGS variable near line
22.

The script is not installed by default. You will have to copy it to the directory where
your system start-up scripts reside and ensure it is called during the system startup and
shut down. The exact instructions on how to do so depend on the operating system you
use and are beyond the scope of this manual.



221

9 Using mailfromd with Various MTAs

The following sections describe how to configure various Milter-capable MTAs to work with
mailfromd.

9.1 Using mailfromd with Sendmail.

This chapter assumes you are familiar with Sendmail configuration in general and with
Milter configuration directives in particular. It concentrates only on issues, specific for
mailfromd.

To prepare Sendmail to communicate with mailfromd you need first to set up the milter
port. This is done with INPUT_MAIL_FILTER statement in your Sendmail file:

INPUT_MAIL_FILTER(‘mailfrom’, ‘S=unix:/usr/local/var/mailfromd/mailfrom’)l}

Make sure that the value of ‘S’ matches the value of listen statement in your
mailfromd.conf file (see Section 7.5 [conf-milter|, page 205). Notice, however, that they
may not be literally the same, because listen allows to specify socket address in various
formats, whereas Sendmail’s ‘S’ accepts only milter format.

If you prefer to fiddle directly with sendmail.cf file, use this statement instead:
Xmailfrom, S=unix:/usr/local/var/mailfromd/mailfrom

If you are using Sendmail version 8.14.0 or newer, you may skip to the end of this section.
These versions implement newer Milter protocol that enables mailfromd to negotiate with
the MTA the macros it needs for each state.

Older versions of Sendmail do not offer this feature. For Sendmail versions prior to 8.14.0,
you need to manually configure Sendmail to export macros you need in your mailfromd.mf
file. The simplest way to do so is using rc.mailfromd script, introduced in the previ-
ous chapter. Run it with macros command line argument and copy its output to your
sendmail .mc configuration file:

$ rc.mailfromd macros
If you prefer to work with sendmail.cf directly, use -c¢ (--cf) command line option:
$ rc.mailfromd macros -c

Finally, if you use other mailfromd script file than that already installed (for example,
you are preparing a new configuration while the old one is still being used in production
environment), give its name in the command line:

$ rc.mailfromd macros newscript.mf
# or:
$ rc.mailfromd macros -c newscript.mf

If you use this method, you can skip the rest of this chapter. However, if you are a
daring sort of person and prefer to do everything manually, follow the instructions below.

First of all you need to build a list of macros used by handlers in your mailfromd.mf
file. You can obtain it running mailfromd --dump-macros. This will display all macros
used in your handlers, grouped by handler name, for example:

envfrom i, f, {client_addr}
envrcpt f, {client_addr}, {rcpt_addr}



222 Mailfromd Manual

Now, modify confMILTER_MACROS_handler macros in your mc file. Here, handler means
the uppercase name of the mailfromd handler you want to export macros to, i.e. the
first word on each line of the above mailfromd --dump-macros output. Notice, that in
addition to these macros, you should also export the macro i for the very first handler
(rc.mailfromd macros takes care of it automatically, but you preferred to do everything
yourself...) It is necessary in order for mailfromd to include ‘Message-ID’ in its log messages
(see [Message-ID], page 41).

For example, given the above macros listing, which corresponds to our sample configu-
ration (see Section 4.23 [Filter Script Example], page 106), the sendmail .mc snippet will
contain:

define (‘confMILTER_MACROS_ENVFROM’,dnl
confMILTER_MACROS_ENVFROM ¢, i, f, {client_addr}’)

define (‘confMILTER_MACROS_ENVRCPT’,dnl
confMILTER_MACROS_ENVRCPT ¢, f, {client_addr}, {rcpt_addr}’)

Special attention should be paid to s macro (‘HELO’ domain name). In Sendmail versions
up to 8.13.7 (at least) it is available only to helo handler. If you wish to make it available
elsewhere you will need to use the method described in Section 3.9 [HELO Domain], page 22,

Now, if you are a really daring person and prefer to do everything manually and to hack
your sendmail.cf file directly, you certainly don’t need any advices. Nonetheless, here’s
how the two statements above could look in this case:

0 Milter.macros.envfrom=i, {auth_type}, {auth_authen}, \
{auth_ssf}, {auth_author}, {mail_mailer}, {mail_host}, \
{mail_addr} ,{mail_addr}, {client_addr}, f

0 Milter.macros.envrcpt={rcpt_mailer}, {rcpt_host}, \
{rcpt_addr} ,i, f, {client_addr}

9.2 Using mailfromd with MeTAl.

MeTA1 (http://www.metal.org) is an MTA of next generation which is designed to provide
the following main features:

e Security

e Reliability

e Efficiency

e Configurability

e Extendibility

Instead of using Sendmail-compatible Milter protocol, it implements a new protocol,
called policy milter, therefore an additional program is required to communicate with
mailfromd. This program is a Pmilter—Milter multiplexer pmult, which is part of the

‘Mailfromd’ distribution. See Chapter 13 [pmult], page 247, for a detailed description of
its configuration.

The configuration of ‘Metal--Mailfromf’ interaction can be subdivided into three tasks.
1. Configure mailfromd

This was already covered in previous chapters. No special ‘MeTA1’-dependent configu-
ration is needed.


http://www.meta1.org

Chapter 9: Using mailfromd with Various MTAs 223

2. Configure pmult to communicate with mailfromd
This is described in detail in Chapter 13 [pmult], page 247.
3. Set up MeTA1 to communicate with pmult

The MeTA1 configuration file is located in /etc/metal/metal.conf. Configure the
smtps component, by adding the following section:
policy_milter {
socket {
type = type;
address = addr;
[path = path;]
[port = port-no;]

};
[timeout = interval;]
[flags = { flag };]
+;
Statements in square brackets are optional. The meaning of each instruction is as
follows:

type = type
Set the type of the socket to communicate with pmult. Allowed values for
type are:

inet Use INET socket. The socket address and port number are set
using the address and port statements (see below).

unix Use UNIX socket. The socket path is given by the path state-
ment (see below).

Notice, that depending on the type setting you have to set up either
address/port or path, but not both.

address = addr
Configure the socket address for type = inet. Addr is the IP address on
which pmult is listening (see Section 13.1.1 [pmult-conf], page 248).

port = port-no
Port number pmult is listening on (see Section 13.1.1 [pmult-conf],
page 248).

path = socket-file
Full pathname of the socket file, if type = unix.

timeout = interval
Sets the maximum amount of time to wait for a reply from pmult.
The behavior of smtps in case of time out depends on the flags settings:

flags = { flag }
Flag is one of the following:

abort If pmult does not respond, abort the current SMTP session
with a ‘421’ error.



224 Mailfromd Manual

accept_but_reconnect
If pmult does not respond, continue the current session but try
to reconnect for the next session.

For example, if the pmult configuration has:
listen inet://127.0.0.1:3333;

then the corresponding part in /etc/metal/metal.conf will be

smtps {
policy_milter {
socket {
type = inet;
address = 127.0.0.1;
port = 3333;
};
3
s

Similarly, if the pmult configuration has:
listen unix:///var/spool/metal/pmult/socket;

then the /etc/metal/metal.conf should have

smtps {
policy_milter {
socket {
type = unix;
path = /var/spool/metal/pmult/socket;
s
3
s

9.3 Using mailfromd with Postfix

To configure postfix to work with your filter, you need to inform it about the socket
your filter is listening on. The smtpd_milters (or non_smtpd_milters) statement in
/etc/postfix/main.cf serves this purpose. If the filter is to handle mail that arrives
via SMTP, use smtpd_milters. If it is to handle mail submitted locally to the queue, use
non_smtpd_milters. In both cases, the value is a whitespace-separated list of socket ad-
dresses. Note, that Postfix syntax for socket addresses differs from that used by Sendmail
and mailfromd. The differences are summarized in the following table:



Chapter 9: Using mailfromd with Various MTAs 225

Sendmail Mailfromd Postfix
inet:port@host inet://host:port inet:host:port
unix:file unix://file unix:file

Table 9.1: Socket addresses in various formats
For example, if your mailfromd listens on ‘inet://127.0.0.1:4111’, add the following
to /etc/postfix/main.cf:

smtpd_milters = inet:127.0.0.1:4111

Mailfromd uses Milter protocol version 6. Postfix, starting from version 2.6 uses the
same version. Older versions of Postfix use Milter protocol 2 by default. Normally, it
should not be a problem, as mailfromd tries to detect what version the server is speaking.
If, however, it fails to select the proper version, you will have to instruct Postfix what
version to use. To do so, add the following statement to /etc/postfix/main.cf:

milter_protocol = 6

The way Postfix handles macros differs from that of Sendmail. Postfix emulates a limited
subset of Sendmail macros, and not all of them are are available when you would expect them
to. In particular, the ‘i’ macro is not available before the ‘DATA’ stage, which brings two
consequences. First, mailfromd log messages will not include message ID until the ‘DATA’
stage is reached. Secondly, you cannot use ‘i’ in handlers ‘connect’, ‘helo’, ‘envfrom’ and
‘envrcpt’,

If you wish to tailor Postfix defaults to export the actual macros used by your filter, run
mailfromd --dump-macros and filter its output through the postfix-macros.sed filter,
which is installed to the prefix/share/mailfromd directory, e.g.:

$ mailfromd --dump-macros | \

sed -f /usr/share/mailfromd/postfix-macros.sed
milter_helo_macros = {s}
milter_mail_macros = {client_addr} {s} {f}
milter_rcpt_macros = {rcpt_addr} {f} {client_addr}
milter_end_of_data_macros = {i}

Cut and paste its output to your /etc/postfix/main.cf.

For more details regarding Postfix interaction with Milter and available Postfix con-
figuration options, see Postfix before-queue Milter support (http://www.postfix.org/
MILTER_README.html)


http://www.postfix.org/MILTER_README.html
http://www.postfix.org/MILTER_README.html




227

10 calloutd

The callout verification is usually performed by a special instance of mailfromd (see [callout
server|, page 19). However, it is also possible to set up a dedicated callout server on a
separate machine. You can choose to do so, for instance, in order to reduce the load on the
server running mailfromd.

This stand-alone callout facility is provided by the calloutd daemon.

10.1 Calloutd Configuration

Main configuration file /etc/mailfromd.conf is used (see Chapter 7 [Mailfromd Configu-
ration], page 201). The configuration statements are basically the same as for mailfromd.

The address to listen on is defined in the server statement. Basically, it is the only
statement the configuration file is required to have. The minimal configuration can look
like:

program calloutd {
server {
listen inet://198.51.100.1:3535;
}
}

To instruct the mailfromd daemon to use this server, the following statement should be
added to the /etc/mailfromd.conf file:

program mailfromd {
callout-url inet://198.51.100.1:3535;
3

The server statement differs a little from the similar statement for mailfromd. This and
another calloutd-specific statements are described in detail in the subsections that follow.
The rest of statements is shared with mailfromd. The following table lists all supported
configuration statements along with cross-references to the correspondent descriptions:

Statement Reference

acl See Section “acl statement” in GNU Mailutils Man-
ual.

auth See Section “auth statement” in GNU Mailutils
Manual.

database See Section 7.10 [conf-database], page 209.

database-mode
database-type
debug (section)

debug
ehlo-domain
enable-vrfy

group
include

See Section 7.10 [conf-database|, page 209.

]

See Section 7.10 [conf-database|, page 209.
]

” in GNU Mailutils

See Section “debug statement”
Manual.

See Section 10.1.3 [conf-calloutd-log], page 229.
See Section 7.8 [conf-callout], page 208.

See Section 7.8 [conf-callout], page 208.

See Section 7.9 [conf-priv], page 209.

See Section “include” in GNU Mailutils Manual.



228

io-timeout
locking

lock-retry-count
lock-retry-timeout
logger

logging
mailer

mail-from-address
pidfile

server

source-ip
smtp-timeout
state-directory
transcript

user

Mailfromd Manual

See Section 7.7 [conf-timeout], page 206.

See Section “locking statement” in GNU Mailutils
Manual.

See Section 7.10 [conf-database], page 209.

See Section 7.10 [conf-database], page 209.

See Section 10.1.3 [conf-calloutd-log], page 229.

See Section “logging statement” in GNU Mailutils
Manual.

See Section “mailer statement” in GNU Mailutils
Manual.

See Section 7.8 [conf-callout], page 208.

See Section 10.1.1 [conf-calloutd-setup|, page 228.
See Section 10.1.2 [conf-calloutd-server|, page 228.
See Section 10.1.1 [conf-calloutd-setup|, page 228.
See Section 7.7 [conf-timeout], page 206.

See Section 10.1.1 [conf-calloutd-setup|, page 228.
See Section 10.1.3 [conf-calloutd-log], page 229,

See Section 7.9 [conf-priv], page 209.

10.1.1 calloutd General Setup

source-ip IP

[Calloutd Conf]

Sets source IP address for TCP connections.

pidfile filename

[Calloutd Conf]

Defines the name of the file to store PID value in.

state-directory dir

[Calloutd Conf]

Sets the name of the program state directory. See [statedir]|, page 11.

10.1.2 The server statement

The server statement configures how calloutd will communicate with the -client

mailfromd server.
server {
id name;
listen url;

backlog num;
max-instances num;
single-process bool;
reuseaddr bool;
default bool;
callout url;
acl { ... }

}

server [Calloutd Conf]
Define a server. Optional label may follow the server keyword. The label is ignored.

The substatements in the server block provide parameters for configuring this server.



Chapter 10: calloutd 229

id name [server]
Assign an identifier to this server. This identifier is used as a suffix to syslog tag (see
[syslog tag], page 41) in messages related to this server. For example, if a server block
had the following statement in it:

id main;
then all messages related to this server will be marked with tag ‘calloutd#main’.

The part before the ‘#’ is set using the tag statement in logging block (see Section
“Logging Statement” in GNU Mailutils Manual).

listen url [server]
Listen for connections on the given URL. See [milter port specification], page 202, for
a description of allowed url formats.
Example:

listen inet://10.10.10.1:3331;

backlog num [server]
Configures the size of the queue of pending connections. Default value is 8.

max-instances number [server]
Sets the maximum number of instances allowed for this server.

single-process bool [server]
When set to ‘yes’, this server will run in single-process mode, i.e. it will not fork sub-
processes to serve requests. This option is meant exclusively to assist in debugging
calloutd. Don’t use it for anything else but for debugging!

reuseaddr bool [server]
When set to ‘yes’, calloutd will attempt to reuse existing socket addresses. This is
the default behavior.

acl statements [server]
Defines access control list for this server. See Section “ACL Statement” in GNU
Mailutils Manual, for a detailed discussion.

If the global ACL is defined as well, an incoming connection is checked against both
lists: first the per-server ACL, then the global one. The connection will be permitted
only if it passes both checks.

10.1.3 calloutd logging

logger mech [Calloutd Conf]
Set default logger mechanism. Allowed values for mech are:
stderr Log everything to the standard error.
syslog Log to syslog.

syslog:async
Log to syslog using the asynchronous syslog implementation.
See Section 3.18 [Logging and Debugging], page 40, for a detailed discussion. See also

[syslog-async|, page 11, for information on how to set default syslog implementation
at compile time.



230 Mailfromd Manual

debug spec [Calloutd Conf]
Set mailfromd debug verbosity level. The spec must be a valid debugging level
specification (see [debugging level specification|, page 42).

transcript bool [Calloutd Conf]
If the boolean value bool is ‘true’, enables the transcript of call-out SMTP sessions.

10.2 Calloutd Command-Line Options

The calloutd invocation syntax is:
calloutd [option...]

The following options are available:

Server configuration modifiers

--foreground
Stay in foreground. When given this option, calloutd will not disconnect itself
from the controlling terminal and will run in the foreground.

-g name
--group=name
Retain the group name when switching to user privileges. See Section 8.2
[Starting and Stopping], page 218.

--pidfile=file
Set pidfile name. Overrides the pidfile configuration statement, which you
are advised to use instead (see Section 7.2 [conf-base|, page 202).

--resolv-conf-file=file
Read resolver settings from file, instead of the default /etc/resolv.conf.

-S ip

—--source-ip=ip
Set source address for TCP connections. Overrides the ‘source-ip’ configura-
tion statement, which you are advised to use instead (see Section 7.2 [conf-base],
page 202).

--single-process
Do not fork sub-processes to serve requests. This option is meant to assist in
debugging calloutd. Don’t use it for anything else but for debugging, as it
terribly degrades performance!

--state-directory=dir
Set new program state directory. See [statedir], page 11, for the description of
this directory and its purposes.

-u name
--user name
Switch to this user’s privileges after startup. Overrides the user configuration
file statement, which you are advised to use instead (see Section 7.9 [conf-priv],
page 209). Default user is ‘mail’.



Chapter 10: calloutd 231

Logging and debugging options

-d string
--debug=string
Set debugging level. See Section 3.18 [Logging and Debugging], page 40.

--log-facility=facility
Output logs to syslog facility.

--log-tag=string
Tag syslog entries with the given string, instead of the program name.

-—logger=mech
Set logger mechanism (mech is one of ‘stderr’, ‘syslog’, ‘syslog:async’). See
Section 3.18 [Logging and Debugging], page 40.

--syslog Selects default syslog mechanism for diagnostic output.
—--stderr Directs all logging to standard output. Similar to —-logger=stderr.
-S ip
—--source-ip=ip
Set source address for TCP connections. Overrides the ‘source-ip’ configura-

tion statement, which you are advised to use instead (see Section 7.2 [conf-base],
page 202).

--debug-level=level
Set  Mailutils debugging level. See http://mailutils.org/wiki/
Debug_level, for a detailed discussion of level argument.

--source-info

--no-source-info
Include € source information in debugging messages. This is similar to setting
line-info yes in the debug configuration block (see Section “debug statement”
in GNU Mailutils Manual).

The --no-source-info can be used to cancel the effect of the line-info yes
configuration statement.

You do not need this option, unless you are developing or debugging calloutd.

-X

-—transcript

—--no-transcript
Enable or disable transcript of the SMTP sessions to the log channel. See
Section 3.18 [Logging and Debugging], page 40.

Configuration file control

--config-file=file
Load this configuration file
-—config-lint

Check syntax of configuration files and exit. Exit code is 0 if the file or files are
OK, and 78 otherwise.


http://mailutils.org/wiki/Debug_level
http://mailutils.org/wiki/Debug_level

232 Mailfromd Manual

--config-verbose
Verbosely log parsing of the configuration files.

--no-site-config
--no-config
Don’t load site-wide configuration file.

--set=param=value
Set configuration parameter

Informational options

--config-help
Show configuration file summary.

--show-config-options

Show compilation options.
-7
--help Give a short help list.
--usage  Give a short usage message.
-V
--version

Print program version

10.3 The Callout Protocol

This section describes the protocol used to communicate with the calloutd server.

The protocol works over stream-oriented TCP/IP transport. Either UNIX or IPv4
socket can be used. Commands and responses are terminated by a single CR LF pair. Each
command occupies exactly one line. If the server succeeded in executing the command, it
replies with a line starting with the word ‘OK’. Depending on the command, this keyword
may be followed by a single space character and additional information. More information
can be returned in unsolicited replies before the ‘0K’ line. Each unsolicited reply line starts
with and asterisk followed by a single horizontal space character.

On error, the server replies with ‘NO’ followed by a horizontal space character and human-
readable description of the problem.

The valid commands are discussed below. In examples illustrating the commands, the
lines sent by the client are prefixed with C:, and lines sent by the server are prefixed with
S:.

vrfy email [option arg] [Command]
Adds email to the queue of email addresses to be verified. Available options are:
mode kw  Sets verification mode for this email address. Available modes are:

mxfirst

default The default mode.
If the host option is also given, its argument is taken as the
domain name. Otherwise, domain part of email is used.



Chapter 10: calloutd 233

The verification goes as follows. First, determine MX servers
for that domain. Query each of them in order of increasing
priority. First of them that replies determines the result of
the test.

If no MX servers are defined for that domain, look for its ‘A’
record. If available, run SMTP probe on that IP.

mxonly Query MX servers for the domain specified with the host
option.

hostonly  Query the server whose name or IP address is supplied with
the host option.

hostfirst ~ The reverse of mxfirst: first query the host, then the MX
servers. The domain must be specified using the host option.

host name Supplies the domain name for mxonly and mode, and host name or IP
address for hostfirst and hostonly modes. The use of this keyword
with any of these modes is mandatory.

ehlo string
Use string as the argument to the SMTP EHLO command.

mailfrom email
Use email in the SMTP MAIL FROM command.

On success, the server replies with ‘0K’, followed by a non-negative session ID for that

email:
C: VRFY grayQexample.org
S: 0K 0000000001
get arg [arg] [Command]

Query value of internal callout parameters. Valid values for arg are:
ehlo Return the string used as argument to the SMTP EHLO command.
mailfromd Return the email address that is used in the SM'TP MAIL FROM command.

On success, the server returns the requested value (if found) in an unsolicited reply:

C: GET ehlo timeout
S: * ehlo=example.net
S: OK

sid string [Command]
Sets string as session identifier for that session. Example:

C: SID deadbeef
S: OK

timeout connect initial helo mail rcpt rset quit [Command]
Sets timeouts for various stages of SMTP session. On success, ‘0K’ is returned.

C: timeout 300 300 300 600 300 300 120
S: OK timeouts set



234 Mailfromd Manual
run [Command]|
Runs callout session for emails registered with the vrfy command. On success, results
of the check are returned after the ‘OK’ keyword in a whitespace-separated list of
‘id=result’ pairs. In each pair, id is its identifier as returned in the reply to the VRFY
command and result is one of the following result strings: ‘success’, ‘not_found’,
‘failure’, ‘temp_failure’, ‘timeout’.
Additional information about each callout session is returned in unsolicited replies.
Fach such reply is prefixed with the email identifier and callout stage name. Stage
names are:
INIT remote_name
The calloutd server is establishing communication with the remote
SMTP server remote_name.
GRTNG line
calloutd received initial response from the remote server. line is the first
line of the reply.
HELO line calloutd received response to the EHLO (or HELO) command. In case of
multiline response, line is the first line.
SENT command
The SMTP command command has been sent to the remote server.
RECV line The remote server returned line in response. In case of multiline response,
line is the first line.
Example of verification session:
C: RUN
S: * 0000000000 INIT mx.example.org
S: * 0000000000 GRTNG 220 mx.example.org ESMTP Ready
S: * 0000000000 HELO 250-mx.example.org Hello tester
S: * 0000000000 SENT RCPT TO:<gray@example.org>
S: * 0000000000 RECV 250 Accepted
S: * 0000000001 INIT foo.example.net
S: * 0000000001 GRTNG 220 foo ESMTP server ready
S: * 0000000001 HELO 250-foo.example.net Hello
S: * 0000000001 SENT RCPT TO:<gray@example.net>
S: * 0000000001 RECV 450 4.7.0 You are greylisted for 3600 seconds
0K 0000000000=success 0000000001=temp_failure
drop serial [Command]
Drop the email with the given serial number from the verification queue. Example:
C: DROP 0000000002
S: OK
quit [Command]

Finishes the current session and disconnects from the callout server.

C: QUIT
S: OK bye



235

11 mfdbtool

The mfdbtool utility manages mailfromd databases.

11.1 Invoking mfdbtool

The following options request the operation to be performed on the database. Exactly
one of them must be specified. Each of them implied the --stderr option (see [-stderr],
page 218).

--list List the database. By default, ‘cache’ database is assumed. To list another
database, use ——format option (see [-format], page 236).

See Section 3.15.2 [Basic Database Operations], page 32.

--delete Delete given entries from the database (see [deleting from databases|, page 33).
By default, ‘cache’ database is assumed. To specify another database, use
--format option (see [-format], page 236).

See Section 3.15.2 [Basic Database Operations], page 32.

--expire Delete all expired entries from the database (see Section 3.15.3 [Database Main-
tenance], page 33). By default, ‘cache’ database is assumed. To specify another
database, use -—format option (see [-format], page 236). Full database name
can be given in the command line (see —-file option below), if it differs from
the one specified in the script file.

Use with the option --all (see [-all], page 235) to expire all databases.
See Section 3.15.3 [Database Maintenance], page 33.

--compact
Compact database (see [compaction], page 33). By default, ‘cache’ database is
compacted. To specify another database, use ——format option (see [-format|,
page 236). Full database name can be given in the command line (see —-file
option below), if it differs from the one specified in the script file.

Use with the option --all (see [-all], page 235) to compact all databases.

See [compaction], page 33.
The following options modify the behavior of mfdbtool:

--all When used with -—compact or ——expire option, applies the action to all avail-
able databases. See [compact cronjob], page 33.

-d string

--debug=string
Sets debugging level. The string argument must be a valid mailfromd debug
level specification, as described in [debugging level specification], page 42.

-e interval

--expire-interval=interval
Set expiration intervals for all databases to the specified interval. See [time
interval specification], page 202, for a description of interval format. The option
overrides the expire-interval configuration statement (see [expire-interval-
conf], page 209), which you are advised to use instead.



236 Mailfromd Manual

—-f filename

--file=filename
Set the name of the database to operate upon (for --compact, --delete,
--expire, and --1ist options). Useful if, for some reason, you need to operate
on a database whose file name does not match the one mfdbtool is configured
to use.

-H dbformat

-—format=dbformat
Use database of the given format, instead of the default ‘cache’. See
Section 3.15.2 [Basic Database Operations|, page 32.

--ignore-failed-reads
Ignore records that cannot be retrieved while compacting the database. With-
out this option, mfdbtool will abort the compaction if any such error is en-
countered.

--predict=rate-limit
Used with --1ist enables printing of the estimated times of sending along with
the ‘rate’ database dump. Implies --1list --format=rate. See [estimated
time of sending], page 32.

--state-directory=dir
Sets program state directory. See [statedir|, page 11, for the description of
this directory and its purposes. This option overrides the state-directory
configuration statement, described in Section 7.2 [conf-base|, page 202.

--time-format=format
Set format to be used for timestamps in listings, produced by --1list. The
format is any valid strftime format string, see Appendix B [Time and Date
Formats], page 259, for a detailed description. The default format is ‘%c’ (see
[%c time format], page 259). To analyze mfdbtool --list output using text
tools, such as awk or grep, the following format might be useful: ‘%s’ (see [%s
time format|, page 260). Another format I find useful is ‘%4Y-%m-%d_%H: %M: %S’.

11.2 Configuring mfdbtool

Configuration settings are read from the /etc/mailfromd.conf file (see Chapter 7 [Mail-
fromd Configuration], page 201). The following statements are understood:

Statement Reference

database See Section 7.10 [conf-database], page 209.
database-mode See Section 7.10 [conf-database], page 209.
database-type See Section 7.10 [conf-database], page 209.
debug See Section 10.1.3 [conf-calloutd-log], page 229.
lock-retry-count See Section 7.10 [conf-database], page 209.
lock-retry-timeout See Section 7.10 [conf-database], page 209.

state-directory See Section 10.1.1 [conf-calloutd-setup|, page 228.



237

12 mtasim — a testing tool

The mtasim utility is a MTA simulator for testing mailfromd filter scripts. By default
it operates in stdio mode, similar to that of sendmail -bs. In this mode it reads SMTP
commands from standard input and sends its responses to the standard output. There is
also another mode, called daemon, where mtasim opens a TCP socket and listens on it much
like any MTA does. In both modes no actual delivery is performed, the tool only simulates
the actions an MTA would do and responses it would give.

This tool is derived from the program mta, which I wrote for GNU Anubis test suite.

12.1 mtasim interactive mode mode

If you start mtasim without options, you will see the following;:

220 mtasim (mailfromd 8.14) ready
(mtasim) _

The first line is an usual RFC 2821 reply. The second one is a prompt, indicating that
mtasim is in interactive mode and ready for input. The prompt appears only if the package
is compiled with GNU Readline and mtasim determines that its standard input is connected
to the terminal. This is called interactive mode and is intended to save the human user some
typing by offering line editing and history facilities (see Section “Command Line Editing”
in GNU Readline Library). If the package is compiled without GNU Readline, you will see:

220 mtasim (mailfromd 8.14) ready

where ‘_’ represents the cursor. Whatever the mode, mtasim will wait for further input.

The input is expected to consist of valid SMTP commands and special mtasim statements.
The utility will act exactly like a RFC 2821-compliant MTA, except that it will not do actual
message delivery or relaying. Try typing HELP to get the list of supported commands. You
will see something similar to:

250-mtasim (mailfromd 8.14); supported SMTP commands:

250- EHLO
250- HELO
250- MAIL
250- RCPT
250- DATA
250- HELP
250- QUIT
250- HELP
250 RSET

You can try a simple SMTP session now:

220 mtasim (mailfromd 8.14) ready
(mtasim) ehlo localhost
250-pleased to meet you

250 HELP

(mtasim) mail from: <me@localhost>
250 Sender 0K



238 Mailfromd Manual

(mtasim) rcpt to: <him@domain>

250 Recipient OK

(mtasim) data

354 Enter mail, end with ‘.’ on a line by itself
(mtasim)

250 Mail accepted for delivery

(mtasim) quit

221 Done

Notice, that mtasim does no domain checking, so such thing as ‘rcpt to: <him@domain>’
was eaten without complaints.

So far so good, but what all this has to do with mailfromd? Well, that’s what we
are going to explain. To make mtasim consult any milter, use —-port (-X) command line
option. This option takes a single argument that specifies the milter port to use. The port
can be given either in the usual Milter format (See [milter port specification|, page 202, for
a short description), or as a full sendmail.cf style X command, in which case it allows to
set timeouts as well:

$ mtasim --port=inet:999@localhost
# This is also valid:
$ mtasim --port=’mailfrom, S=inet:999@localhost, F=T, T=C:100m;R:180s’

If the milter is actually listening on this port, mtasim will connect to it and you will get
the following initial prompt:

220-mtasim (mailfromd 8.14) ready
220 Connected to milter inet://localhost:999
(mtasim)

Notice, that it makes no difference what implementation is listening on that port, it may
well be some other filter, not necessarily mailfromd.

However, let’s return to mailfromd. If you do not want to connect to an existing
mailfromd instance, but prefer instead to create a new one and run your tests with it (a
preferred way, if you already have a stable filter running but wish to test a new script
without disturbing it), use ——port=auto. This option instructs mtasim to do the following:

1. Create a unique temporary directory in /tmp and create a communication socket within
it.

2. Spawn a new instance of mailfromd. The arguments and options for that instance may
be given in the invocation of mtasim after a double-dash marker (‘--")

3. Connect to that filter.

When mtasim exits, it terminates the subsidiary mailfromd process and removes the tem-
porary directory it has created. For example, the following command will start mailfromd
-I.-I../mflib test.rc:

$ mtasim -Xauto -- -I. -I../mflib test.rc

220-mtasim (mailfromd 8.14) ready

220 Connected to milter unix:/tmp/mtasim-j6tRLC/socket
(mtasim)



Chapter 12: mtasim — a testing tool 239

The /tmp/mtasim-j6tRLC directory and any files within it will exist as long as mtasim
is running and will be removed when you exit from it.! You can also instruct the subsidiary
mailfromd to use this directory as its state directory (see [statedir], page 11). This is done
by --statedir command line option:

$ mtasim -Xauto --statedir -- -I. -I../mflib test.rc
(notice that --statedir is the mtasim option, therefore it must appear before ‘==7)

Special care should be taken when using mtasim from root account, especially if used
with -Xauto and --statedir. The mailfromd utility executed by it will switch to privileges
of the user given in its configuration (see Section 8.2 [Starting and Stopping], page 218) and
will not be able to create data in its state directory, because the latter was created using
‘root’ as owner. To help in this case, mtasim understands --user and --group command
line options, that have the same meaning as for mailfromd.

Now, let’s try HELP command again:

250-mtasim (mailfromd 8.14); supported SMTP commands:

250- EHLO

250- HELO

250- MAIL

250- RCPT

250- DATA

250- HELP

250- QUIT

250- HELP

250- RSET

250-Supported administrative commands:

250- \Dname=value [name=value...] Define Sendmail macros
250- \Ecode Expect given SMTP reply code
250- \L[name] [name...] List macros

250- \Uname [name...] Undefine Sendmail macros

250 \Sfamily hostname address [port] Define sender socket address

While the SMTP commands do not need any clarification, some words about the admin-
istrative commands are surely in place. These commands allow to define, undefine and list
arbitrary Sendmail macros. Each administrative command consists of a backslash followed
by a command letter. Just like SMTP ones, administrative commands are case-insensitive.
If a command takes arguments, the first argument must follow the command letter without
intervening whitespace. Subsequent arguments can be delimited by arbitrary amount of
whitespace.

For example, the \D command defines Sendmail macros:

(mtasim) \Dclient_addr=192.168.10.1 f=sergiusz@localhost i=testmsg
(mtasim)

Notice that mailfromd does not send any response to the command, except if there was
some syntactic error, in which case it will return a ‘5602’ response.

1 However, this is true only if the program is exited the usual way (via QUIT or end-of-file). If it is aborted
with a signal like SIGINTR, the temporary directory is not removed.



240 Mailfromd Manual

Now, you can list all available macros:
(mtasim) \L
220-client_addr=192.168.10.1
220-f=sergiusz@localhost
220 i=testmsg
(mtasim)

or just some of them:
(mtasim) \Lclient_addr
220 client_addr=192.168.10.1
(mtasim)

To undefine a macro, use \U command:

(mtasim) \Ui

(mtasim) \1
220-client_addr=192.168.10.1
220 f=sergiusz@localhost
(mtasim)

The \S command declare sender socket and host name. These parameters are passed
to the connect handler, if one is declared (see [connect handler], page 66). To give you a
chance to use this command, mtasim does not invoke connect handler right after connecting
to the milter. Instead it waits until either the \S command or any SMTP command (except
‘HELP’) is given. After calling connect handler the \S is disabled (to reflect it, it also
disappears from the HELP output).

The \S command takes 1 to 4 arguments. The first argument supplies the socket family
(see Table 4.3). Allowed values are: ‘stdio’, ‘unix’, ‘inet’; ‘inet6’ or numbers from ‘0’ to
(37‘

The \S stdio (or \S 0) command needs no additional arguments. It indicates that the
SMTP connection is obtained from the standard input. It is the default if sender socket is
not declared explicitly.

The command \S unix indicates that the connection is accepted from a UNIX socket.
It requires two more argument. The first one supplies sender host name and the second one
supplies full path name of the socket file. For example:

\S unix localhost /var/run/smtp.sock

The commands \S inet and \S inet6 indicate that the connection came from an ‘INET’
IPv4 or IPv6 socket, correspondingly?. They require all four arguments to be specified.
The additional arguments are: host name, IP address, and port number, in that order. For
example:

\S inet relay.gnu.org.ua 213.130.31.41 34567
or
\S inet6 relay.gnu.org.ua 2001:470:1f0a:1bel::2 34567

Sender socket address can also be configured from the command line (see Section 12.6
[option summary], page 244).

2 Depending on how mailfromd is configured, ‘inet6’ may be not available.



Chapter 12: mtasim — a testing tool 241

Now, let’s try a real-life example. Suppose you wish to test the greylisting functionality
of the filter script described in Section 4.23 [Filter Script Example], page 106. To do this,
you start mtasim:

$ mtasim -Xauto -- -I. -I../mflib test.rc

220-mtasim (mailfromd 8.14) ready

220 Connected to milter unix:/tmp/mtasim-ak3DEc/socket
(mtasim)

The script in test.rc needs to know client_addr macro, so you supply it to mtasim:
(mtasim) \Dclient_addr=10.10.1.13
Now, you try an SMTP session:

(mtasim) ehlo yahoo.com

250-pleased to meet you

250 HELP

(mtasim) mail from: <gray@yahoo.com>

250 Sender OK

(mtasim) rcpt to: <gray@localhost>

450 4.7.0 You are greylisted for 300 seconds

OK, this shows that the greylisting works. Now quit the session:

(mtasim) quit
221 Done

12.2 mtasim expect commands

Until now we were using mtasim interactively. However, it is often useful in shell scripts, for
example the mailfromd test suite is written in shell and mtasim. To avoid the necessity to
use auxiliary programs like expect or DejaGNU, mtasim contains a built-in expect feature.
The administrative command \E introduces the SMTP code that the next command is
expected to yield. For example,

\E250
rcpt to: <foo@bar.org>

tells mtasim that the response to RCPT TO command must begin with ‘250’ code. If it does,
mtasim continues execution. Otherwise, it prints an error message and terminates with exit
code 1. The error message it prints looks like:

Expected 250 but got 470

The expect code given with the \E command may have less than 3 digits. In this case it
specifies the first digits of expected reply. For example, the command ‘\E2’ matches replies
2007, ‘220", etc.

This feature can be used to automate your tests. For example, the following script tests
the greylisting functionality (see the previous section):

# Test the greylisting functionality
#

\E220
\Dclient_addr=10.10.1.13
\E250



242 Mailfromd Manual

ehlo yahoo.com
\E250
mail from: <gray@yahoo.com>
\E450
rcpt to: <gray@localhost>
\E221
quit
This example also illustrates the fact that you can use ‘#’-style comments in the mtasim
input. Such a script can be used in shell programs, for example:
mtasim -Xauto --statedir -- -I. -I../mflib test.rc < scriptfile
if $7? -ne 0; then
echo "Greylisting test failed"
fi

12.3 Trace Files

It is possible to log an entire SMTP session to a file. This is called session tracing. Two

options are provided for this purpose:

-—trace-file=file
Sets the name of the trace file, i.e. a file to which the session transcript will
be written. Both the input commands, and the mtasim responses are logged.
If the file file exists, it will be truncated before logging. This, however, can be
changed using the following option:

-a

—-append If the trace file exists, append new trace data to it.

12.4 Daemon Mode

To start mtasim in daemon mode, use the -—daemon (or -bd) command line option. This
mode is not quite the same as Sendmail -bd mode. When started in daemon mode, mtasim
selects the first available TCP port to use from the range ‘1024 -- 65535’. It prints the
selected port number on the standard output and starts listening on it. When a connection
comes, it serves a single SMTP session and exits immediately when it is ended.

This mode is designed for use in shell scripts and automated test cases.

12.5 Summary of the mtasim Administrative Commands
This section provides a summary of administrative commands available in mtasim.

\D name=value [name=value...] [mtasim command]
Defines Sendmail macro name to the given value. Any number of name=value pairs
can be given as arguments.

See [D command], page 239.
\E code [mtasim command]

Instructs mtasim to expect next SMTP command to return given code (a three-digit
decimal number).

See Section 12.2 [expect commands], page 241.



Chapter 12: mtasim — a testing tool 243

\L [name...] [mtasim command]
Lists defined macros. See [L command], page 239.

\U name [name...| [mtasim command]
Undefines macros given as its arguments.

\S family [hostname address [port]] [mtasim command]
Declares the sender socket parameters. See [S command], page 240, for a detailed
description and examples.

This command is available only at the initial stage of a mtasim session, before the
first SMTP command was given. It is disabled if the --sender-socket option was
given in the command line (see Section 12.6 [option summary], page 244). The help
output reflects whether or not this command is available.

If neither this command nor the --sender-socket option were given, mtasim behaves
as if given the \S stdio command.

The family argument supplies the socket family, i.e. the first argument to the connect
handler (see [connect handler|, page 66). It can have either literal or numeric value,
as described in the table below:

Literal NumericMeaning

stdio 0 Standard input/output (the MTA is
run with -bs option)

unix 1 UNIX socket

inet 2 IPv4 protocol

inet6 3 IPv6 protocol

Table 12.1: Socket families
See also Table 4.3.

Depending on the family, the rest of arguments supply additional parameters:

stdio The hostname argument can be specified. It defines the first argument
of the connect handler (see [hostname in connect handler]|, page 66).

inet
inet6 All arguments must be specified.
argument connect meaning
argument
hostname 1 Sender host name
address 4 Sender IP address
port 3 Sender port number
unix Hostname and address must be supplied. The address argument must be

a full pathname of the UNIX socket.



244 Mailfromd Manual

12.6 mtasim command line options
This section summarizes all available mtasim command line options.

—--append
-a Append to the trace file. See Section 12.3 [traces], page 242.

—--body-chunk=number
Set the body chunk length (bytes) for xxfi_body calls.

—--daemon
-bd Run as daemon. See Section 12.4 [daemon mode], page 242.

-—define=macro=value

-D macro=value
Define Sendmail macro macro to the given value. It is similar to the \D admin-
istrative command (see [D command], page 239)

--gacopyz-log=level
Set desired logging level for gacopyz library (see Appendix A [Gacopyz],
page 257). See [gacopyz-log option|, page 216, for a detailed description of
level. Notice, that unless this option is used, the --verbose (-v) command
line option implies -—gacopyz-log=debug.

--group=name

-g name When switching to user’s privileges as requested by the -—user command line
option, retain the additional group name. Any number of ——group options may
be given to supply a list of additional groups.

-—user=name
-u name Run with this user privileges. This option and the --group option have effect
only if mtasim was started with root privileges.

--help
-7 Display a short help summary

--milter-version=version

Force wusing the given Milter protocol version number. The version
argument is either a numeric version (e.g. ‘2’), or a version string in form
‘major.minor[.patch]’, where square brackets indicate optional part. The
default is ‘1.0.0°. If version is any of ‘2’, ‘3" or ‘1.0.0’, the default protocol
capabilities and actions for that version are set automatically. This option is
intended for development and testing of the Gacopyz library (see Appendix A
[Gacopyz], page 257).

--milter-proto=bitmask
Set Milter protocol capabilities. See gacopyz/gacopyz.h for the meaning of
various bits in the bitmask. Look for the C macros with the prefix ‘SMFIP_’.

--milter-timeout=values
Set timeouts for various Milter operations. Values is a comma-separated list of
assignments ‘T=V’, where T is a timeout code, indicating which timeout to set,
and V is its new value. Valid timeout codes are:

C Timeout for connecting to a filter.



Chapter 12: mtasim — a testing tool 245

Timeout for sending information from the simulator to a filter.

Timeout for reading reply from the filter.

SR

Overall timeout between sending end-of-message to filter and re-
ceiving final acknowledgment. Indirectly, it configures the upper
limit on the execution time of the eom handler (see [eom handler],
page 70).

--milter-actions=bitmask
Set Milter actions. See gacopyz/gacopyz.h for the meaning of various bits in
the bitmask. Look for the C macros with the prefix ‘SMFIF_’.

--no-interactive
Not-interactive mode (disable readline). See Section “Command Line Editing”
in GNU Readline Library.

--port=port
-X port  Communicate with given Milter port. See [mtasim milter port], page 238.

--prompt=string
Set readline prompt. The default prompt string is ‘(mtasim) ’.

--sender-socket=family[,hostname,address[, port]]
Declare sender socket address. This option has the same effect as the S command.
See [S command], page 240, for a detailed discussion and a description of its
arguments.

--statedir
When using -Xauto, use the temporary directory name as mailfromd state
directory (see [statedir mtasim option]|, page 238).

--stdio
-bs Use the SMTP protocol on standard input and output. This is the default mode
for mtasim. See Section 12.1 [interactive mode], page 237.

--trace-file=file
Set name of the trace file. See Section 12.3 [traces], page 242.

--usage Display option summary

--verbose
-v Increase verbosity level. Implies -—gacopyz-log=debug, unless that option is
used explicitly.

--version
-V Print program version






247

13 Pmilter multiplexer program.

Pmult is a Pmilter—Milter multiplexer, i.e. a program that acts as a mediator between
the Pmilter server and one or several Milter clients. Usually, the former is an instance
of smtps from MeTAl, and the latter are running mailfromd instances. Pmult receives
Pmilter commands from the server, translates them into equivalent Milter commands and
passes the translated requests to a preconfigured set of Milter filters. When the filters
reply, the reverse operation is performed: Milter responses are translated into their Pmilter
equivalents and are sent back to the server.

e +
e >| Milter Client 1 |
| Fom +
|
Fom + o + | o +
I MeTA1 | <=====>| Pmult |<-—+----- >| Milter Client 1 |
o + e + | Fom +
|
4o >/
|
| e +
S >| Milter Client N |
e +

Due to the specifics nature of the threaded MeTA1 libraries, pmult does not detach from
the controlling terminal (i.e. does not become a daemon). To run it as a background process,
we recommend to use pies daemon. ‘Pies’ is a powerful utility that allows you to launch
several foreground-designed programs in the background and control their execution. See
Section “Pies” in Pies Manual, for a detailed description of the program. For a practical
advice on how to use it with pmult, see Section “Simple Pies” in Pies Manual. For a
description on how to start both pmult and MeTA1 from the same pies configuration file,
see Section “Hairy Pies” in Pies Manual.

13.1 Pmult Configuration

Pmult reads its configuration from the main configuration file /etc/mailfromd.conf. Un-
less it is the only component of the ‘Mailfromd’ package that is being run, its configuration
should be explicitly marked as such by using either program or include statement, as
described in Chapter 7 [Mailfromd Configuration], page 201.

The following standard Mailutils statements are understood:

Statement Reference

debug See Section “debug statement” in GNU Mailutils
Manual.

logging See Section “logging statement” in GNU Mailutils
Manual.

include See Section “include” in GNU Mailutils Manual.



248 Mailfromd Manual

13.1.1 Multiplexer Configuration.

Pmult listens for Pmilter requests on a socket, configured using listen statement:

listen url [Pmult Conf]
Listen on the given url. Argument is a valid Mailutils URL. See [milter port specifi-
cation], page 202, for a description of url.

Since pmult runs as a foreground program, it does not write its PID number to a file by
default. If this behavior is required, it can be enabled using the following statement:

pidfile file [Pmult Conf]
Store PID of the pmult process in file.

The following three limits require MeTA1 version ‘PreAlpha30.0’ or later.

max-threads-soft n [Pmult Conf]
“Soft” limit on the number of ‘pmilter’ threads. Default is 2.

max-threads-hard n [Pmult Conf]
“Hard” limit on the number of ‘pmilter’ threads. This is roughly equivalent to the
number of emails pmult is able to handle simultaneously. The default value is 6.
Raise this limit if you experience long delays when connecting to the SMTP port.

max-pmilter-fd n [Pmult Conf]
Maximum number of file descriptors ‘pmilter’ library is allowed to open simultane-
ously. Default is 10.

13.1.2 Translating MeTA1 macros.

MeTA1’s notion of macros differs considerably from that of Sendmail. Macros in MeTA1
are identified by integer numbers and only a limited number of macros can be provided for
each Pmilter stage. Pmilter stages mostly correspond to Milter states (see [handler names],
page 13), except that there are no distinct header and body stages, instead these two are
combined into a single ‘data’ stage. This comes unnoticed to mailfromd scripts, because
pmult takes care to invoke right Milter handlers within the single ‘data’ Pmilter state.
Therefore in the discussion that follows we will refer to Mailfromd handlers, rather than to
Pmilter stages.

The most important standard Milter macros are always provided by pmult itself. These
are:

client_addr
The IP address of the SMTP client. As of version 8.14, only IPv4 addresses are
supported. Defined in all handlers.

client_port
The port number of the SMTP client. Defined in all handlers.

i MeTA1 session ID. Defined in all handlers.

f The envelope sender (from) address. Defined in envfrom and subsequent han-
dlers.



Chapter 13: Pmilter multiplexer program. 249

nbadrcpts The number of bad recipients for a single message. Defined in envfrom and
envrcpt handlers.

ntries The number of delivery attempts. As of version 8.14 it is always ‘1’. Defined
in envfrom and subsequent handlers.

nrcpts The number of validated recipients for a single message. Defined in envfrom
and envrcpt handlers.

r Protocol used to receive the message. The value of this macro is always ‘SMTP’.
Defined in all handlers.

rcpt_host  The host from the resolved triple of the address given for the SMTP RCPT
command. Defined in envrcpt handler.

rcpt_addr The address part of the resolved triple of the address given for the SMTP RCPT
command. Defined in envrcpt handler.

s Sender’s helo domain (parameter to EHLO or HELO command).

Two additional macros are provided for all handlers that allow to identify whether the
message is processed via pmult:

multiplexer
Canonical name of the multiplexer program, i.e. ‘pmult’.

mult_version
Version of pmult.

These macros can be used in mailfromd filters to provide alternative processing for
messages coming from a MeTAl server.

Macros defined in MeTAl can be made available in Mailfromd handlers using the
define-macros statement.

define-macros handler macros [Pmult Conf]
Define a set of Sendmail macros for the given Mailfromd handler. Allowed values for
handler are: ‘connect’, ‘helo’, ‘mail’ (or ‘envfrom’), ‘rcpt’ (or ‘envrcpt’), ‘data’
(or ‘header’ or ‘body’), ‘dot’ (‘eom’). A list of these values is also accepted, in which
case macros are defined for each handler from the list.

The second argument specifies a list of names of the macros that should be defined
in this handler. Allowed macro names are:

hostname Hostname of SMTP server.

client_resolve
Result of client lookup.

tls_version TLS/SSL version used.

tls_cipher_suite
TLS cipher suite used.

tls_cipher_bits
Effective key length of the symmetric encryption algorithm.



250

Mailfromd Manual

tls_cert_subject
The DN (distinguished name) of the presented certificate.

tls_cert_issuer
The DN (distinguished name) of the CA (certificate authority) that signed
the presented certificate (the cert issuer).

tls_alg_bits
Maximum key length of the symmetric encryption algorithm. This may
be less than the effective key length for export controlled algorithms.

tls_vrfy The result of the verification of the presented cert.

tls_cn_subject
cn_subject The CN (common name) of the presented certificate.

tls_cn_issuer
cn_issuer  The CN (common name) of the CA that signed the presented certificate.

auth_type The mechanism used for SMTP authentication (only set if successful).

auth_authen
The client’s authentication credentials as determined by authentication
(only set if successful). The actual format depends on the mechanism
used, it might be just ‘user’, or ‘user@realm’, or something similar.

auth_author
The authorization identity, i.e. the ‘AUTH=" parameter of the SMTP MAIL
command if supplied.

taid MeTA1 transaction id.
msgid Message-Id of the message.
c The hop count. Basically, this is the number of ‘Received:’ headers.

Notice the following limitations:
1. ‘taid’ cannot be requested before ‘mail’ stage.
2. ‘msgid’ can be requested only in ‘dot’ stage.
3. All ‘t1s_*’ macros are valid only after a STARTTLS command.

4. The number of MeTA1 macros per stage is limited by PM_MAX_MACROS define
in include/sm/pmfdef.h. In MeTA1l versions up to and including 1.0.PreAl-

pha28.0, this number is 8. If you need more macros, increase this number and
recompile MeTA1.

auth-macros bool [Pmult Conf]

If bool is true (see Section “Statements” in GNU Mailutils Manual), pass auth macros
to mailfromd ‘mail’ handler. It is equivalent to:

define-macros mail (auth_type, auth_authen, auth_author);



Chapter 13: Pmilter multiplexer program. 251

13.1.3 Pmult Client Configuration.

In pmult terminology, remote Milters are clients. The number of clients pmult is able to
handle is not limited. Each client is declared using client statement:

client [ident] {
# Set remote protocol type.
type protocol-type;
# Set remote client URL.
url arg;
# Set write timeout.
write-timeout duration;
# Set read timeout.
read-timeout duration;
# Set timeout for EOM.
eom—-timeout duration;
# Set connect timeout.
connect-timeout duration;
# Set log verbosity level.
log-level level;

};

client [ident] { statements } [Pmult Contf]
Declare a Milter client. Optional ident gives the identifier of this client, which will be
used in diagnostics messages.

Statements are described below.

type typestr [Pmult Conf]
This statement is reserved for future use. In version 8.14 it is a no-op.

If given, the value of typestr must be ‘milter’.

In future versions this statement will declare the protocol to be used to interact with
this client. The syntax for typestr is

type [version]

where type is either ‘milter’ or ‘pmilter’, and optional version is minimal protocol

version.

url arg [Pmult Conf]
Set remote client URL. See [milter port specification], page 202, for a description of
url.

connect-timeout interval [Pmult Conf]

Configure Milter initial connection timeout. Default is 300.

See [time interval specification], page 202, for information on interval format.

write-timeout interval [Pmult Conf]
Configure Milter write timeout. Default is 10.

See [time interval specification], page 202, for information on interval format.



252 Mailfromd Manual

read-timeout interval [Pmult Conf]
Configure Milter read timeout. Default is 10.

See [time interval specification], page 202, for information on interval format.

eom-timeout interval [Pmult Conf]
Configure Milter end of message timeout. Default is 300.

See [time interval specification], page 202, for information on interval format.

log-level arg [Pmult Conf]
Set Milter log verbosity level for this client. Argument is a list of items separated
by commas or whitespace. Each item is a log level optionally prefixed with ‘!’ to

indicate “any level except this”, ‘<’, meaning “all levels up to and including this”, or
with ‘>’ meaning “all levels starting from this”.

Log levels in order of increasing priority are: ‘proto’, ‘debug’, ‘info’, ‘warn’, ‘err’,

‘fatal’. The first two levels are needed for debugging libgacopyz and Milter pro-
tocol. See Appendix A [Gacopyz|, page 257, for the description of the libgacopyz
library. See also the following subsection.

13.1.4 Debugging Pmult

If needed, pmult can be instructed to provide additional debugging information. The
amount of this information is configured by three configuration statements. First of all,
the standard debug block statement controls debugging of the underlying GNU Mailu-
tils libraries (see Section “Debug Statement” in GNU Mailutils Manual). Secondly, the
debug statement controls debugging output of the pmult utility itself. The pmilter-debug
statement controls debugging output of the underlying MeTA1 libraries, and, finally, the
log-level statement, described in the previous subsection, defines debugging level for the
Milter library (1ibgacopyz).

debug spec [Pmult Conf]
Set debugging level for the pmult code. See Section “Debug Statement” in GNU
Mailutils Manual, for a description of spec syntax. Multiplexor-specific debugging is
enabled by the ‘pmult’ category. The following levels are used:

pmult.tracel
Prints the following information:
e opening and closing incoming connections;
e entering particular Pmilter stage handlers;

e received requests with unknown command code;

header modification requests that does not match any headers.

pmult.trace2
Information about milter to Pmilter request translation.

pmult.trace7
Detailed dump of message body chunks received during Pmilter ‘DATA’
stage.

pmult.error
Logs bad recipient addresses.



Chapter 13: Pmilter multiplexer program. 253

This information is printed using the output channel defined in the logging statement
(see Section “Logging Statement” in GNU Mailutils Manual).

pmilter-debug level [Pmult Conf]
Set debug verbosity level for the Pmilter library. Argument is a positive integer
between zero (no debugging, the default), and 100 (maximum debugging).

Pmilter debugging information is printed on the standard error. Use pies stderr
statement to capture this stream and redirect it to the syslog or file (see Section
“Output Redirectors” in Pies Manual).

13.2 Pmult Example

The following is an example of a working pmult configuration. The multiplexer listens on lo-
calhost, port ‘3333’. It prints its diagnostics using syslog facility local2. A single Mailfromd
client is declared, which listens on UNIX socket /usr/local/var/mailfromd/mailfrom.

The log verbosity level for this client is set to ‘info’ and higher, i.e.: ‘info’; ‘warn’, ‘err
and ‘fatal’.

listen inet://127.0.0.1:3333;

logging {
facility local2;
s

debug {
level "pmult.trace7";

¥

define-macros envmail (auth_type, auth_authen, auth_author, tls_vrfy);
define-macros envrcpt (auth_type, auth_authen, auth_author);

client {
type milter;
url /usr/local/var/mailfromd/mailfrom;
log-level ">info";
# Set write timeout.
write-timeout 30 seconds;
# Set read timeout.
read-timeout 5 minutes;
# Set timeout for EOM.
eom-timeout 5 minutes;

¥

13.3 Pmult Invocation

Normally, pmult is invoked without command line arguments. However, it does support
several command line options. First of all, the common GNU Mailutils options are under-
stood, which are useful for checking pmult configuration file for syntax errors. See Section
“Common Options” in GNU Mailutils Manual, for a detailed description of these.



254 Mailfromd Manual

The rest of command line options supported by pmult is useful mostly for debugging.
These options are summarized in the table below:

--log-tag=string
Set the identifier used in syslog messages to string. This option mostly is for
debugging purposes. We advise to use logging configuration statement for this
purpose (see Section “Logging Statement” in GNU Mailutils Manual).

--no-signal-handler
Disable signal handling in the main thread. This is for debugging purposes.

--syslog Log to the syslog. This is the default. See Section “Logging Statement” in
GNU Mailutils Manual, for information on how to configure syslog logging.

-s
--stderr Log to the standard error stream.

--url=url
Listen on the given url. This overrides the url configuration statement (see
Section 13.1.3 [pmult-client], page 251).

-X
--debug=1level
Set debug verbosity level. This overrides the debug configuration statement.
See Section 13.1.4 [pmult-debug], page 252, for more information.



255

14 How to Report a Bug

Documentation is like sex: when it is good, it is very, very good; and when it is
bad, it is better than nothing.
Dick Brandon

Although the author has tried to make this documentation as detailed as is possible and
practical, he is well aware that the result is rather “better than nothing”, than “very good”.
So, if you find that some piece of explanation is lousy or if you find anything that should
have been mentioned here, but is not, please report it to bug-mailfromd@gnu.org.ua.

Similarly, if the program itself fails to meet your expectations, or does not do what is
described in this document; if you have found a bug or happen to have any suggestion... or
have written a useful function you wish to share with the rest of mailfromd users, or wish
to express your thanks, email it to the same address, bug-mailfromd@gnu.org.ua.

If you think you’ve found a bug, please be sure to include maximum information needed
to reliably reproduce it, or at least to analyze it. The information needed is:

e Version of the package you are using.
e Compilation options used when configuring the package.
e Run-time configuration (mailfromd.mf file and the command line options used).

e Conditions under which the bug appears.


mailto:bug-mailfromd@gnu.org.ua
mailto:bug-mailfromd@gnu.org.ua




257

Appendix A Gacopyz

Gacopyz, panie, to mowig ze to mysa... Ze to tako mysa co Swiecke w kosciele
zjadta i wniebowstgpienia dostgpita. A to nie je mysa, ino gacopyz! To nad-
przyrodztune, to gtowqg na dot §pi!

Kazimierz Grzeskowiak

‘Gacopyz’ is the client library implementing Milter protocol. It differs considerably from
the Sendmail implementation and offers a new and more flexible API. The old API is
supported for compatibility with 1ibmilter.

The library name comes from the song ‘Rozprawa o robokach’ by Kazimierz
Grzeskowiak (http://grzeskowiak.art.pl). The phrase ‘A tonie je mysa, ino
gacopyz’ exactly describes what the library is: ‘That is no libmilter, but gacopyz’'.

Future versions of this documentation will include a detailed description of the library.


http://grzeskowiak.art.pl
http://grzeskowiak.art.pl




259

Appendix B Time and Date Formats

This appendix documents the time format specifications understood by the command line
option --time-format (see [-time-format|, page 236). Essentially, it is a reproduction of
the man page for GNU strftime function.

Ordinary characters placed in the format string are reproduced without conversion.
Conversion specifiers are introduced by a ‘%’ character, and are replaced as follows:

%a The abbreviated weekday name according to the current lo-
cale.

%A The full weekday name according to the current locale.

%b The abbreviated month name according to the current locale.

%B The full month name according to the current locale.

%oc The preferred date and time representation for the current
locale.

%C The century number (year/100) as a 2-digit integer.

%d The day of the month as a decimal number (range 01 to 31).

%D Equivalent to ‘%m/%d/%y’.

%oe Like ‘%d’, the day of the month as a decimal number, but a

leading zero is replaced by a space.

NE Modifier: use alternative format, see below (see [conversion
specs|, page 261).

%F Equivalent to ‘%Y-%m-%d’ (the ISO 8601 date format).

%G The ISO 8601 year with century as a decimal number. The
4-digit year corresponding to the ISO week number (see ‘%V’).
This has the same format and value as ‘%y’, except that if the
ISO week number belongs to the previous or next year, that
year is used instead.

%og Like ‘%G’, but without century, i.e., with a 2-digit year (00-99).

%h Equivalent to ‘%b’.



260 Mailfromd Manual

%H The hour as a decimal number using a 24-hour clock (range
00 to 23).

%l The hour as a decimal number using a 12-hour clock (range
01 to 12).

% The day of the year as a decimal number (range 001 to 366).

%k The hour (24-hour clock) as a decimal number (range 0 to

23); single digits are preceded by a blank. (See also ‘%H’.)

%l The hour (12-hour clock) as a decimal number (range 1 to
12); single digits are preceded by a blank. (See also ‘%I’.)

Jom The month as a decimal number (range 01 to 12).

%M The minute as a decimal number (range 00 to 59).

Jon A newline character.

%0 Modifier: use alternative format, see below (see [conversion

specs|, page 261).

%p FEither ‘AM’ or ‘PM’ according to the given time value, or the
corresponding strings for the current locale. Noon is treated
as ‘pm’ and midnight as ‘am’.

%P Like ‘%4p’ but in lowercase: ‘am’ or ‘pm’ or a corresponding
string for the current locale.

Yor The time in ‘a.m.’ or ‘p.m.’ notation. In the POSIX locale
this is equivalent to ‘%I:%M:%S %p’.

%R The time in 24-hour notation (‘4H:%M’). For a version includ-
ing the seconds, see ‘%T’ below.

Y%os The number of seconds since the Epoch, i.e., since 1970-01-01
00:00:00 UTC.

%S The second as a decimal number (range 00 to 61).

%t A tab character.

%T The time in 24-hour notation (‘%H:%M:%S’).



Appendix B: Time and Date Formats 261

%ou The day of the week as a decimal, range 1 to 7, Monday being
1. See also ‘%’

%U The week number of the current year as a decimal number,
range 00 to 53, starting with the first Sunday as the first day
of week 01. See also ‘%V’ and ‘%W’.

%V The ISO 8601:1988 week number of the current year as a
decimal number, range 01 to 53, where week 1 is the first
week that has at least 4 days in the current year, and with
Monday as the first day of the week. See also ‘%U’ and ‘%W’.

Y%ow The day of the week as a decimal, range 0 to 6, Sunday being
0. See also ‘%u’.

%W The week number of the current year as a decimal number,
range 00 to 53, starting with the first Monday as the first day
of week 01.

Yox The preferred date representation for the current locale with-

out the time.

%X The preferred time representation for the current locale with-
out the date.

Yoy The year as a decimal number without a century (range 00 to
99).

%Y The year as a decimal number including the century.

%oz The time-zone as hour offset from GMT. Required to emit
RFC822-conformant dates (using ‘%a, %d %b %Y %H:%M: %S
hz’)

VY/ The time zone or name or abbreviation.

Jo+ The date and time in date(1) format.

%% A literal ‘%’ character.

Some conversion specifiers can be modified by preceding them by the ‘E’ or ‘0’ modifier
to indicate that an alternative format should be used. If the alternative format or spec-
ification does not exist for the current locale, the behaviour will be as if the unmodified
conversion specification were used. The Single Unix Specification mentions ‘%Ec’, ‘%EC’,
REX’) CREX, ‘URy’, ‘UEY’, ‘%04’, ‘%0e’, ‘%0OH’, ‘%0I’, ‘%0m’, ‘%0M’, ‘%0S’, ‘%0u’, ‘%0U’, ‘%0V’,
“%0w’, 60w, ‘%0y’, where the effect of the ‘0’ modifier is to use alternative numeric symbols



262 Mailfromd Manual

(say, roman numerals), and that of the ‘E’ modifier is to use a locale-dependent alternative
representation.



263

Appendix C Upgrading

The following sections describe procedures for upgrading between the consecutive Mailfromd
releases. The absence of a section for a pair of versions x-y numbers means that no specific
actions are required for upgrading from x to y.

C.1 Upgrading from 8.13 to 8.14

No special actions are required. There are several important changes in version 8.14, most
notable ones being improved dkim_sign function, DNS resolver tolerance for CNAME
chains, and buffered I/0.

dkim_sign

This change is important for those who use dkim_sign with Sendmail. See [dkim_sign and
sendmail], page 188, for a detailed discussion.

CNAME chains

Mailfromd dropped support for CNAME chains in version 8.3 (see Section C.4 [820-830],
page 264). This change was forced by the behavior of the adns resolver library, which
had apparently been grounded on somewhat rigorous reading of RFCs 1034! and 21812
Reportedly, many existing DNS servers still employ CNAME chains leading to TXT records
(in particular, to DKIM TXT records), so this change made certain DKIM signatures
unverifiable for mailfromd.

To fix this, starting from version 8.14 mailfromd implements a work-around that allows
it to follow CNAME chains of limited length. The default length is 2 (which means CNAME
pointing to a CNAME, pointing to a valid RR). It can be changed using the dns .max-cname-
chain configuration statement (see Section 7.3 [conf-resolver|, page 203).

I/0O buffering

Buffered I/O can tremendously improve performance of getdelim and getline.

The global variables io_buffering and io_buffer_size (see [io_buffering], page 121)
define buffering mode and associated buffer size for file descriptors returned by the sub-
sequent calls to open or spawn. Buffering mode of an already open file descriptor can be
changed using the setbuf function.

The io_buffering variable defines the buffering mode. By default it is 0 (BUFFER_NONE),
which disables buffering for backward compatibility with the previous versions. Another
possible values are: 1 (BUFFER_FULL) and 2 (BUFFER_LINE).

When set to BUFFER_FULL, all I/O operations become fully buffered. The buffer size is
defined by the io_buffer_size global variable.

BUFFER_LINE is similar to BUFFER_FILE when used for input. When used for the output,
the data are accumulated in buffer and actually sent to the underlying transport stream
when the newline character is seen. The io_buffer_size global variable sets the initial
value for the buffer size in this mode. The actual size can grow as needed during the I/0O.

1 https://www.rfc-editor.org/rfc/rfc1034#section-3.6.2
2 https://www.rfc-editor. org/rfc/rfc2181#section-10.1


https://www.rfc-editor.org/rfc/rfc1034#section-3.6.2
https://www.rfc-editor.org/rfc/rfc2181#section-10.1

264 Mailfromd Manual

The default value for io_buffer_size is the size of the system page.

The symbolic constants BUFFER_NONE, BUFFER_FULL and BUFFER_LINE are defined in the
status.mf module. E.g.:

require status

begin
do

io_buffering = BUFFER_FULL
done

will set up all the subsequent buffer-aware Section 5.6 [I/O functions], page 120, for
buffered reads and writes using the maximum buffer capacity.

The setbuf function (see [setbuf], page 126) changes the buffering mode and/or buffer
size for an already opened stream, e.g.:

setbuf (fd, BUFFER_FULL, 4096)

For detailed discussion of various buffering modes and their effect on the I/O, see
Section 5.6 [I/O functions], page 120.

C.2 Upgrading from 8.7 to 8.8

DKIM support (see Section 5.36 [DKIM], page 183) introduced in this version requires the
Nettle cryptographic library®. It you need DKIM, make sure Nettle is installed prior to
compiling mailfromd. Otherwise, no special actions are required.

C.3 Upgrading from 8.5 to 8.6

New configure option --with-dbm allows you to select any DBM flavor supported by GNU
mailutils as the default DBM implementation for mailfromd.

C.4 Upgrading from 8.2 to 8.3 (or 8.4)

Versions 8.3 and 8.4 differ only in required minimal version of mailutils (3.3 and 3.4, corre-
spondingly). Apart from that, the following instructions apply to both versions.

In version 8.3 I abandoned the legacy DNS resolver and switched to GNU adns. GNU
ands is a standalone resolver library, which provides a number of advanced features. It
is included in most distributions. The source code of the recent release is available from
http://www.chiark.greenend.org.uk/ ian/adns/adns.tar.gz.

This change brought a number of user-visible changes. In particular, arbitrary limits on
the sizes of the RRs are removed. Consequently, the following configurations statements
are withdrawn:

3 http://www. gnu.org/software/nettle


http://www.chiark.greenend.org.uk/~ian/adns/adns.tar.gz
http://www.gnu.org/software/nettle

Appendix C: Upgrading 265

runtime.max-dns-reply-a
runtime.max-dns-reply-ptr
runtime.max-dns-reply-mx
max-match-mx
max-callout-mx

Secondly, the new resolver is less tolerant to deviations from the standard. This means

that remote DNS misconfigurations that would have slipped unnoticed in previous versions,
will be noticed by mailfromd 8.3. For example, a CNAME record pointing to another
CNAME is treated as an error.

A new command line option was added to mailfromd and calloutd: —-resolv-conf-

file. This option instructs the programs to read resolver settings from the supplied file,
instead of the default /etc/resolv.conf.

Another user-visible change is in handling of SPF checks. Previously, results if SPF

checks were cached in a database. This proved to cause more problems than solutions and
was removed in this version. As a result, the following MFL global variables have been
withdrawn:

spf_ttl

spf_cached
spf_database
spf_negative_ttl

C.5 Upgrading from 7.0 to 8.0

Version 8.0 is a major rewrite, that introduces a lot of new concepts and features. Never-
theless, it is still able to run the MFL scripts from version 7.0 without modifications.

Note the following important points:

The listen configuration statement withdrawn

Use the server milter statement instead. See Section 7.4 [conf-server], page 204.
The --remove option withdrawn

This option was a noop since version 7.0.91.

The use of ‘%’ before variable names is no longer supported

The ‘%’ characters is used as modulo operator. See Section 4.14.4 [Arithmetic opera-
tions], page 79.

The debug_spec built-in function changed signature.
See [debug_spec], page 194.
listens and portprobe

The listens function was moved to the portprobe module. It is actually an alias
to the portprobe function. If your filter uses listens, make sure to require the
portprobe module.

See Section 5.32 [Special test functions], page 174.
_pollhost, _pollmx, stdpoll, strictpoll

These functions have been moved to the poll module, which must be required prior
to using any of them.



266 Mailfromd Manual

e The message_header_count function.

This function takes an optional string argument, supplying the header name. See
[message_header_count|, page 140.

C.6 Upgrading from 6.0 to 7.0

The release 7.0 removes the features which were declared as obsolete in 6.0 and introduces
important new features, both syntactical, at the MFL level, and operational.

Unless your filter used any deprecated features, it should work correctly after upgrade
to this version. It will, however, issue warning messages regarding the deprecated features
(e.g. the use of ‘%’ in front of identifiers, as described below). To fix these, follow the
upgrade procedure described in [upgrade procedure], page 268.

The removed features are:

Old-style functional notation

The use of functional operators

Implicit concatenations

e Fpragma option

#pragma database

The MFL syntax has changed: it is no longer necessary to use ‘%’ in front of a variable
to get its value. To reference a variable, simply use its name, e.g.:

set x var + z
The old syntax is still supported, so the following statement will also work:
set x %var + Yz
It will, however, generate a warning message.
Of course, the use of ‘%’ to reference variables within a string literal remains mandatory.

Another important changes to MFL are user-defined exceptions (see Section 4.19.2 [User-
defined Exceptions|, page 94) and the try—catch construct (see Section 4.19.3 [Catch and
Throw], page 94).

Several existing MFL functions have been improved. In particular, it is worth noticing
that the open function, when opening a pipe to or from a command, provides a way to
control where the command’s standard error would go (see [open], page 121).

The accept function (or action) issues a warning if its use would cancel any modifications
to the message applied by, e.g., header_add and similar functions. See Section 5.12 [Message
modification queue], page 134, for a detailed discussion of this feature.

The most important change in mailfromd operation is that the version 7.0 is able to run
several servers (see Section 7.4 [conf-server], page 204). Dedicated callout servers make it
possible to run sender verifications in background, using a set of long timeouts, as prescribed
by RFC 2822 (see Section 3.7 [SMTP Timeouts|, page 19). This diminishes the number
of false positives, allows for coping with servers showing large delays and also reduces the
number of callouts performed for such servers.

This release no longer includes the smap utility. It was moved into a self-standing project,
which by now provides much more functionality and is way more flexible than this utility
was. If you are interested in using smap, visit http://www.gnu.org.ua/software/smap,
for a detailed information, including pointers to file downloads.


http://www.gnu.org.ua/software/smap

Appendix C: Upgrading 267

C.7 Upgrading from 5.x to 6.0

The 6.0 release is aimed to fix several logical inconsistencies that affected the previous ver-
sions. The most important one is that until version 5.2, the filter script file contained both
the actual filter script, and the run-time configuration for mailfromd (in form of ‘#pragma
option’ and ‘#pragma database’ statements). The new version separates run-time configu-
ration from the filter script by introducing a special configuration file mailfromd.conf (see
Chapter 7 [Mailfromd Configuration], page 201).

Consequently, the ‘#pragma option’ and ‘#pragma database’ statements become dep-
recated. Furthermore, the following deprecated pragmas are removed: ‘#pragma option
ehlo’, ‘#pragma option mailfrom’. These pragmas became deprecated in version 4.0 (see
Section C.14 [31x-400], page 271).

The second problem was that the default filter script file had . rc’ suffix, which usually
marks a configuration file, not the source. In version 6.0 the script file is renamed to
mailfromd.mf. In the absence of this file, the legacy file mailfromd.rc is recognized and
parsed. This ensures backward compatibility.

This release also fixes various inconsistencies and dubious features in the MFL language.

The support for unquoted literals is discontinued. This feature was marked as deprecated
in version 3.0.

The following features are deprecated: ‘#pragma option’ (pragma-option (http://
mailfromd.man.gnu.org.ua/historic/6/html_node/pragma_002doption.html)
and ‘#pragma database’ (pragma-database (http://mailfromd.man.gnu.org.ua/
historic/6/html_node/pragma_002ddatabase.html)) directives, the legacy style of
function declarations (old-style function declarations (http://mailfromd.man.gnu.
org.ua/historic/6/html_node/o0ld_002dstyle-function-declarations.html)),
calls to functions of one argument without parentheses (operational notation (http://
mailfromd.man.gnu.org.ua/historic/6/html_node/implicit-concatenation.html)),
the ‘#require’ statement (See Section 4.21.3 [import], page 102, for the new syntax)
and implicit concatenation (implicit concatenation (http://mailfromd.man.gnu.org.
ua/historic/6/html_node/implicit-concatenation.html)). See Deprecated Features
(http://mailfromd.man.gnu.org.ua/historic/6/html_node/Deprecated-Features.
html), for more information about these.

This release also introduces important new features, which are summarized in the table
below:

Feature Reference

Configuration See Chapter 7 [Mailfromd Configuration],
page 201.

Module system See Section 4.21 [Modules], page 101.

Explicit type casts See [explicit type casts|, page 82.

Concatenation operator See  Section 4.14.3  [Concatenation],
page T8.

Scope of visibility See Section 4.21.2 [scope of visibility],
page 102.

Precious variables See Section 3.10 [rset], page 23.


http://mailfromd.man.gnu.org.ua/historic/6/html_node/pragma_002doption.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/pragma_002doption.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/pragma_002ddatabase.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/pragma_002ddatabase.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/old_002dstyle-function-declarations.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/old_002dstyle-function-declarations.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/implicit-concatenation.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/implicit-concatenation.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/implicit-concatenation.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/implicit-concatenation.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/Deprecated-Features.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/Deprecated-Features.html
http://mailfromd.man.gnu.org.ua/historic/6/html_node/Deprecated-Features.html

268 Mailfromd Manual

Mailfromd version ‘6.0" will work with unchanged scripts from ‘5.x’. When started, it
will verbosely warn you about any deprecated constructs that are used in your filter sources
and will create a script for upgrading them.

To upgrade your filter scripts, follow the steps below:

1. Run ‘mailfromd --1int’. You will see a list of warnings similar to this:
mailfromd: Warning: using legacy script file
/usr/local/etc/mailfromd.rc
mailfromd: Warning: rename it to /usr/local/etc/mailfromd.mf
or use script-file statement in /usr/local/etc/mailfromd.conf
to disable this warning
mailfromd: /usr/local/etc/mailfromd.rc:19: warning: this pragma is
deprecated: use relayed-domain-file configuration statement instead
mailfromd: /usr/local/etc/mailfromd.rc:23: warning: this pragma is
deprecated: use io-timeout configuration statement instead
mailfromd: Info: run script /tmp/mailfromd-newconf.sh
to fix the above warnings

2. At the end of the run mailfromd will create a shell script /tmp/mailfromd-newconf .sh
for fixing these warnings. Run it:

$ sh /tmp/mailfromd-newconf.sh

3. When the script finishes, run mailfromd --1lint again. If it shows no more deprecation
warnings, the conversion went correctly. Now you can remove the upgrade script:

$ rm /tmp/mailfromd-newconf.sh

Notice, that the conversion script attempts to fix only deprecation warnings. It will not
try to correct any other type of warnings or errors. For example, you may get warning
messages similar to:

mailfromd: /etc/mailfromd.mf:7: warning: including a module file is unreliable and may
mailfromd: /etc/mailfromd.mf:7: warning: use ‘require dns’ instead

This means that you use ‘#include’ where you should have used ‘require’. You will
have to fix such warnings manually, as suggested in the warning message.

If, for some reason, you cannot upgrade your scripts right now, you may suppress depre-
cation warnings by setting the environment variable MAILFROMD_DEPRECATION to ‘no’ before
starting mailfromd. Nonetheless, I recommend to upgrade as soon as possible, because the
deprecated features will be removed in version ‘6.1°.

C.8 Upgrading from 5.0 to 5.1

Upgrading from 5.0 to 5.1 does not require any changes in your filter scripts. Notice,
however, the following important points:

e Starting from this release mailfromd supports Milter protocol version 6, which is com-
patible with Sendmail 8.14.0 and newer. While being backward compatible with earlier
Sendmail releases, it allows you to use the new ‘prog data’ handler (see Section 4.11
[Handlers|, page 66). It also supports macro negotiation, a feature that enables Mail-
fromd to ask MTA to export the macros it needs for each particular handler. This



Appendix C: Upgrading 269

means that if you are using Sendmail 8.14.0 or higher (or Postfix 2.5 or higher), you
no longer need to worry about exporting macro names in sendmail.cf file.

The same feature is also implemented on the server side, in mtasim and pmult. Con-
sequently, using define-macros in pmult configuration file is not strictly necessary.
However, keep in mind that due to the specifics of MeTA1, the number of symbols that
may be exported for each stage is limited (see Section 13.1.2 [pmult-macros], page 248).

e The semantics of __preproc__ and __statedir__ built-in constant is slightly different
from what it used to be in 5.0. These constants now refer to the current values of
the preprocessor command line and program state directory, correspondingly. This
should not affect your script, unless you redefine the default values on run time. If
your script needs to access default values, use __defpreproc__ and __defstatedir__,
correspondingly (see Section 4.8.1 [Built-in constants|, page 60). The following example
explains the difference between these:

$ cat pval.mf
prog envfrom

do
echo "Default value: " __defstatedir__
echo "Current value: " __statedir__
done

$ mailfromd --state-directory=/var/mfd --test pval.mf
Default value: /usr/local/var/mailfromd
Current value: /var/mfd

e If your filter uses the rate function, you might consider using the new function rateok
or tbf_rate instead. For a detailed discussion of these functions, see Section 3.12
[Sending Rate], page 25.

e If your script extensively uses database access functions, you might be interested in the
new #pragma dbprop (see Section 4.2.4 [dbprop|, page 55).

C.9 Upgrading from 4.4 to 5.0

This version of Mailfromd requires GNU mailutils (http://www.gnu.org/software/
mailutils) version 2.0 or later.

Upgrading from version 4.4 to 5.0 requires no additional changes. The major differences
between these two versions are summarized below:

1. Support for ‘MeTA1’.
2. New ‘Mailutils’ configuration file.
3. New MFL functions.
a. Message functions. See Section 5.18 [Message functions], page 139.
b. Mailbox functions. See Section 5.17 [Mailbox functions], page 138.
c. Mail body functions. See Section 5.14 [Mail body functions], page 137.

d. Header modification functions. See Section 5.10 [Header modification functions],
page 132.

e. Envelope modification functions. See Section 5.9 [Envelope modification func-
tions], page 131.


http://www.gnu.org/software/mailutils
http://www.gnu.org/software/mailutils

270 Mailfromd Manual

Quarantine functions. See Section 5.19 [Quarantine functions], page 145.

getopt and varptr. See Section 3.17.2 [getopt], page 37.

PR

Macro access functions. See Section 5.1 [Macro access], page 111.
Character type functions. See Section 5.5 [Character Type], page 119.

—e

j. New string functions (see Section 5.3 [String manipulation], page 113): verp_
extract_user, sa_format_report_header, sa_format_score.

k. Sequential access to DBM files. See [dbm-seq], page 159.
4. Changes in MFL
1. See [variadic functions]|, page 74.
2. See [function alias|, page 75.
5. New operation mode: See Section 3.17 [Run Mode|, page 35.
6. Improved stack growth technique.
The stack can be grown either by fixed size blocks, or exponentially. Upper limit can
be specified. See Section 4.2.2 [stacksize], page 52.
7. Milter ports can be specified using URL notation.
8. Removed deprecated features.
Support for some deprecated features has been withdrawn. These are:

a. Command line options --ehlo, —-postmaster-email, and --mailfrom. These
became deprecated in version 4.0. See Section C.14 [31x-400], page 271.

C.10 Upgrading from 4.3.x to 4.4

The deprecated -——domain command line option has been withdrawn. The short option -D
now defines a preprocessor symbol (see Section 8.1.3 [Preprocessor Options], page 215).

This version correctly handles name clashes between constants and variables, which
remained unnoticed in previous releases. See [variable-constant shadowing], page 84, for a
detailed description of it.

To minimize chances of name clashes, all symbolic exception codes has been renamed
by prefixing them with the ‘e_’, thus, e.g. divzero became e_divzero, etc. The ioerr
exception code is renamed to e_io. See [status.mf], page 92, for a full list of the new
exception codes.

For consistency, the following most often used codes are available without the ‘e_’ prefix:
success, not_found, failure, temp_failure. This makes most existing user scripts suitable for
use with version 4.4 without any modification. If your script refers to any exception codes
other than these four, you can still use it by defining a preprocessor symbol OLD_EXCEPTION_
CODES, for example:

$ mailfromd -DOLD_EXCEPTION_CODES

C.11 Upgrading from 4.2 to 4.3.x

Upgrading from 4.2 to 4.3 or 4.3.1 does not require any changes to your configuration and
scripts. The only notable change in these versions is the following;:

The asynchronous syslog implementation was reported to malfunction on some systems
(notably on Solaris), so this release does not enable it by default. The previous meaning



Appendix C: Upgrading 271

of the -—enable-syslog-async configuration option is also restored. Use this option in
order to enable asynchronous syslog feature. To set default syslog implementation, use
DEFAULT_SYSLOG_ASYNC configuration variable (see [syslog-async|, page 11).

The following deprecated features are removed:

1. #pragma option ehlo statement.

It became deprecated in version 4.0. See [pragma-option-ehlo], page 272.
2. #pragma option mailfrom statement.

It became deprecated in version 4.0. See [pragma-option-ehlo], page 272.
3. The --config-file command line option.

It became deprecated in version 3.1. See Section C.15 [30x-31x], page 272.
4. Built-in exception codes in catch statements.

They are deprecated since version 4.0. See Section C.14 [31x-400], page 271.

C.12 Upgrading from 4.1 to 4.2

Upgrading to this version does not require any special efforts. You can use your configura-
tion files and filter scripts without any changes. The only difference worth noticing is that
starting from this version mailfromd is always compiled with asynchronous syslog imple-
mentation. The --enable-syslog-async configuration file option is still available, but its
meaning has changed: it sets the default syslog implementation to use (see [syslog-async],
page 11). Thus, it can be used the same way it was in previous versions. You can also select
the syslog implementation at run time, see Section 3.18 [Logging and Debugging], page 40,
for more detailed information.

C.13 Upgrading from 4.0 to 4.1

Upgrading to this version does not require any special efforts. You can use your configuration
files and filter scripts without any changes. Notice only the following major differences
between 4.1 and 4.0:

e Input files are preprocessed before compilation. See Section 4.22 [Preprocessor],
page 103, for more information.

e There is a way to discern between a not-supplied optional parameter, and a supplied
one, having null value (see [defined], page 104).

e The version 4.1 implements sprintf function (see Section 5.4 [String formatting],
page 117) and printf macro (see Section 4.22 [Preprocessor|, page 103).

e Support for some obsolete features is withdrawn. These include:
1. Using ‘&code’ to specify exception codes

2. Pragma options: retry, io-retry, and connect-retry.

C.14 Upgrading from 3.1.x to 4.0

Before building this version, please re-read the chapter See Chapter 2 [Building], page 9,
especially the section [syslog-async], page 11.



272 Mailfromd Manual

Starting from the version 4.0, MFL no longer uses the predefined symbolic names for
exception codes (previous versions used the ‘&’ prefix to dereference them). Instead, it
relies on constants defined in the include file status.mfh (see [status.mf], page 92).

However, the script files from 3.1 series will still work, but the following warning messages
will be displayed:

Warning: obsolete constant form used: &failure
Warning: remove leading ’&’ and include <status.mfh>

Warning: Using built-in exception codes is deprecated
Warning: Please include <status.mfh>

Another important difference is that pragmatic options ‘ehlo’ and ‘mailfromd’ are now
deprecated, as well as their command line equivalents -——ehlo and --domain. These options
became superfluous after the introduction of mailfrom_address and ehlo_domain built-
in variables. For compatibility with the previous versions, they are still supported by
mailfromd 4.0, but a warning message is issued if they are used:

warning: ‘#pragma option ehlo’ is deprecated,
consider using ‘set ehlo_domain "domain.name"’ instead

To update your startup scripts for the new version follow these steps:

1. Change #pragma option mailfrom value to set mailfrom_address value. Refer to
[mailfrom_address|, page 65, for a detailed discussion of this variable.

2. Change #pragma option ehlo value to set ehlo_domain value. Refer to
[ehlo_domain]|, page 64, for a detailed discussion of this variable.

3. Include status.mfh. Add the following line to the top of your startup file:
#include_once <status.mfh>

4. Remove all instances of ‘&’ in front of the constants. You can use the following sed
expression: ‘s/&\([a-z]\)/\1/g’.

5. If your code uses any of the following functions: hostname, resolve, hasmx or ismx,
add the following line to the top of your script:

#require dns
See Section 4.21 [Modules|, page 101, for a detailed description of the module system.
6. Replace all occurrences of next with pass.
7. If your code uses function match_cidr, add the following line to the top of your script:
#require match_cidr

See Section 4.21 [Modules], page 101, for a description of MFL module system.

C.15 Upgrading from 3.0.x to 3.1

1. The mailfromd binary no longer supports --config-file (-c) option. To use an
alternative script file, give it as an argument, i.e. instead of:

$ mailfromd --config-file file.rc
write:

$ mailfromd file.rc



Appendix C: Upgrading 273

For backward compatibility, the old style invocation still works but produces a warning
message. However, if mailfromd encounters the -c option it will print a diagnostic
message and exit immediately. This is because the semantics of this option will change
in the future releases.

2. If a variable is declared implicitly within a function, it is created as automatic. This
differs from the previous versions, where all variables were global. It is a common
practice to use global variables to pass additional information between handlers (See
Section 3.9 [HELO Domain], page 22, for an example of this approach). If your filter
uses it, make sure the variable is declared as global. For example, this code:

prog helo

do
# Save the host name for further use
set helohost $s

done

Figure C.1: Implicit declaration, old style

has to be rewritten as follows:

set helohost ""

prog helo

do
# Save the host name for further use
set helohost $s

done

Figure C.2: Implicit declaration, new style

3. Starting from version 3.1 the function dbmap takes an optional third argument indi-
cating whether or not to count the terminating null character in key (see [dbmap],
page 158). If your startup script contained any calls to dbmap, change them as follows:

in 3.0.x in 3.1
dbmap(db, key) dbmap(db, key, 1)

C.16 Upgrading from 2.x to 3.0.x

Update your startup scripts and/or crontab entries. The mailfromd binary is now installed
in ${prefix}/sbin.

We also encourage you to update the startup script (run cp etc/rc.mailfromd
/wherever-your-startup-lives), since the new version contains lots of enhancements.

C.17 Upgrading from 1.x to 2.x
If you are upgrading from version 1.x to 2.0, you will have to do the following:

1. Edit your script file and enclose the entire code section into:



274 Mailfromd Manual

prog envirom
do

done
See Section 4.11 [Handlers], page 66, for more information about the prog statement.

2. If your code contained any rate statements, convert them to function calls (see
Section 5.30 [Rate limiting functions|, page 173), using the following scheme:

01d statement: if rate key limit / expr
New statement: if rate(key, interval("expr")) > limit

For example,
rate $f 180 / 1 hour 25 minutes
should become
rate($f, interval("1l hour 25 minutes")) > 180
3. Rebuild your databases using the following command:
mailfromd --compact --all

This is necessary since the format of mailfromd databases has changed in version
2.0: the key field now includes the trailing ‘NUL’ character, which is also reflected in
its length. This allows for empty (zero-length) keys. See Section 3.15.3 [Database
Maintenance], page 33, for more information about the database compaction.



275

Appendix D GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released



276

Mailfromd Manual

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and



Appendix D: GNU Free Documentation License 277

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.



278

o

N.

0.

Mailfromd Manual

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.



Appendix D: GNU Free Documentation License 279

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called



280

10.

Mailfromd Manual

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.


http://www.gnu.org/copyleft/

Appendix D: GNU Free Documentation License 281

D.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNUJ
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.






Concept Index

283

This is a general index of all issues discussed in this manual

!

! (exclamation point), != operator ............. 79

#

‘#1 ... I# initial comment ............ .. ... 36
‘#1” shell magic sequence....................... 36
#include ....... .. ... 51
#include statement ............ ... ... ... 51
#line...... ... 52
HPTAGMA . oo 52
#pragma dbprop ..o 157
#pragma statement............ ... ... ool 52

$

$4, special construct........................... 74
BI) e 74
3 74
(string ..ot 186
—--prefix, configure option ................... 10
--sysconfdir, configure option............... 11
--with-dbm, configure option.................. 9
/etc/postfix/main.cf .......... ... ... ..... 224
/etc/resolv.conf. ..., 203
<

< (left angle bracket), < operator ............... 79
< (left angle bracket), <= operator.............. 79
= (equals sign), = operator ..................... 79
>

right angle bracket), > operator.............. 79
right angle bracket), >= operator ............ 79

> (
> (

PP 104
__defpreproc__ ... 61
__defstatedir__ ......... ... . 62
__file . 60
__function__....... .. 61
T = 2 61
_odine 61
L MAJOT i 61
B (5 « o & o/ AN 61
_omodule .. 61
__Package__ ... 61
__patch__ ... 61
S o5 of ] o o oY PN 61
__sStatedir__....... .. .. 62
L VeTSIOM it 61
_expand_dataseg...........oiiiiiiiiiiiiii 195
_POllhosSt ... 146
POLIMX ... 146
=Y~ P 195
_register...... ... i i 195
L P 195
@
@var, special construct......................... 74
D 242
\E 242
AL o 243
NS 243
NU 243
T MACS i 197
7
Tbdt . 127
8
Bbait . 127



284

A

a, —a, mtasim option, summary............... 244
ACCEPE . 85
accept action, defined .............. ... ... ... 85
accept action, introduced................. . ... 13
accept in ‘begin’........ ... ... .ol 72
acceptin ‘end’ ......... ...l 72
ACCESS v ittt e e 160
accessing variables from catch................. 97
account probing............ ... o oo 6
ACL L 205, 229
ACIONS. . v 85
actions, header manipulation................... 86
actions, introduced................ ... ... 15
actions, using in connect handler .............. 67
A . e 86
add action, defined............................. 86
add in ‘begin’.......... ... i 72
addin ‘end’. ... ... 72
AdNS . oo 9
Alan Dobkin. ... 3
AlAaS . 75
AllASES . ot 75
aliases, looking up ......... ... il 30
all, --all mfdbtool option, introduced........ 33
all, --all mfdbtool option, summary ........ 235
And . .o 80

append, —-append, mtasim option, described .. 242
append, —-append, mtasim option, summary .. 244

argument number in the list of arguments...... 74
arguments, catch................ ... ...l 96
arguments, optional . ........ ... ... o L 73
B e 100
assignment to variable ............... ... ... .. 22
assignment, defined ............................ 87
associativity, operators..................... ... 81
asynchronous syslog............. ... ..., 40
auth-macros.......... ..o, 250
automatic variables ............. ... oL 76

B

back reference interpretation................... 57
back references, in program text................ 65
backlog ........ooooiiiiiiiiii 204, 229
backslash interpretation................ .. ... 56
baseB4 ... ... 127
begin....... ... 71
‘begin’ and accept ...t 72
‘beginand add............ ... 72
‘begin’ and continue................ ... .. ... 72
‘begin’ and delete .............. ... ... ...... 72
‘begin’ and discard............... ... ... 72
‘begin’ and reject ...l 72
‘begin’ and replace ................oiiiiii... 72
‘begin’ and return ............. ...l 72
‘begin’ and tempfail .......................... 72

, handler restrictions.................... 72

Mailfromd Manual

begin, special handler ...................... 13, 71
Ben McKeegan................ooooiiiiiL 3
Berkeley DB ... .o 9
binary ....... ... ... 127
bindtextdomain .......... ... ... i, 192
body.......oo 69
body, handler.......... ... ... ... .. 13
body-chunk, --body-chunk, mtasim

option, summary .............oeiiiiiin... 244
body_has_ nulls...............cooiiiiinn... 137
body_string........... ... ... o i 137
break........ ..o 90
break statement.............. ...l 90
Brent Spencer........... ... 3
bs, -bd, mtasim option, summary............ 244
bs, -bs, mtasim option, summary............ 245
building mailfromd ........... ..., 9
built-in and library functions, introduced....... 17
built-in constants ............... .. ool 60
burst_eb_min_length ........................ 144
B 127
BURST_DECODE ......c.ciiuiiiiiiiiiiniaennn. 144
BURST_ERR_BODY ...t 144
BURST_ERR_FAIL ....... ...t 144
BURST_ERR_IGNORE.............. ...t 144
DY et 101

cache database........... ... il 31
cache, disabling........... ... ... ... oL 160
cache, getting status................. ...l 160
cache_used variable, usage example............ 64
cache_used, global variable, introduced......... 147
caching DNS requests ..., 7
callout ... 146, 205
callout server ......... ... 19
callout, described ............. ... ... ... ... ..., 6
callout-socket, —-callout-socket

mailfromd option, summary................. 213
callout-url.........cuuiiiniiiiiiinnaenn.. 205
callout_cloSe ...t 145
callout_do........oiiiiiii i 145
callout_open ..........ccooiiiiiiiiiniiinnn.. 145
callout_transcript.......................... 194
calloutd........ooovviiiiiiiiiiiiiii.. 227
cancel_program_trace ....................... 195
A . ittt 88
case, switch statement .................. ... ... 88
CatCh. ..o 94
catch arguments............ ... ... ... oL 96
catch SCOpe...........ooiiiiiiiiii i 95
catch statement ............ ... ... . . 94
catch, accessing variables from................. 97
catch, returning from........... ... ... . L 96
catch, standalone ...................... L 95
charset .....oviii 127
check_host......... ... i 182



Concept Index

check_host function, introduced .............. 179
checking SPF host records..................... 179
clamav ...t 172
clamav_virusS_Name..............oeururenenan.. 64
clamav_virus_name, global variable............ 172
ClamAV ... 172
cleanup handler................ . ... o . 71
client ... 251
client_addr, Sendmail macro.................. 221
ClOSE . ittt 123
CNAME chains. ..ot 203
command line arguments, parsing in MFL...... 37
command line, mailfromd invocation syntax... 213
COMIMENES. .ottt 51
compact, --compact mfdbtool

option, introduced ............... .. ... 33
compact, —--compact mfdbtool

option, summary ................ ..., 235
compaction, database .......... ... ... o ool 33
Con Tassios. . «vvvieii i 3
Con Tassios greylisting type.................... 29
concatenation........... ... . o ool 78
conditional statements ............. ... .. ... ... 88
config ... 203
config-file, -—config-file calloutd

option, summary ................iiii.... 231
config-help, —--config-help calloutd

option, SUMMATLY . ...vvveteteeiieeeennnn 232
config-lint, --config-lint calloutd

option, summary ........... ... ... 231
config-verbose, --config-verbose

calloutd option, summary................... 231
confMAPDEF, Sendmail macro................. 9
confMILTER_-MACROS_ENVFROM,

mc file directive ........... . ..o 221
COMMECT .« ottt ittt e 66
connect, handler ............ ... ... ... .. ... 13
connect-timeout............ ... ... o oL 251
o1 4% s T=Yog v o « KA 207
CONSt ..o 59
constants, built-in........................ 0. 60
constants, defining ................. ... ... . ..., 59
constants, using in literals...................... 60
constants, using in program text ............... 59
continue ........... ... i 85
continue action, defined ........................ 85
continue action, introduced..................... 13
continue in ‘begin’............ ... ... oL 72
continue in ‘end’.......... .. ... .., 72
controlling argument, getopt ................... 39
GO v vttt e 124
copy-octal............... i 129
COPYmPaSS « v vttt 129
create_dSh........ouiriiiii i 177
o3 o I 128
crlfdot ... ..o 128
cross-reference ............. .o i 34

285
current_header ............ ... .. ... 138
current_header_count ............... ... ... 137
current_header_nth _name.................... 137
current_header_nth_value................... 138
CUrTent_MeSSage .......oovvviviiriennnennn... 137
customization, Emacs................ ... ... 198
customization, MFL mode..................... 198
D
D, -D option, described .......... ... ... o 105
D, -D option, summary ....................... 215
D, -D, mtasim option, summary............... 244
D, \D, amtasim command .................... 239
daemon, --daemon mailfromd
option, summary ..............oiiiiiaa.. 213

daemon, --daemon, mtasim option, described.. 242
daemon, --daemon, mtasim option, summary .. 244

data. .ot e 69
data, handler ............... ... ... o L. 13
database............o i 209
database compaction............... ... .o .. 33
database formats........... ... ... i 31
database maintenance.................. ... ... 33
database, listing . ........... ... oo 32
database-mode ................. .. ool 210
database-type ............. .. il 210
databases used by mailfromd................... 31
db_expire_interval.......................... 160
db_get_active ............ ... .l 160
AD_Name ... oot 160
db_set_active ...l 160
dbdel. ... ... 158
dbfirst ... 159
dbget. ... ... .. 158
dbinsert ....... ... 158
dbkey. ... ..o 159
dbmap............ii 158
DBM . . 9
dbnext ... 159
ADPTOP. 55
dbprop, ... 157
dbprop, pragma. ... 157
ADPUL . ¢ e e 158
dbvalue ..........cooiiiiiiiii 160
ACLEX . ettt 94
debug ........cooiiiiiiii.. 193, 206, 230, 252
debug, --debug calloutd option, summary..... 231

debug, --debug mailfromd option, introduced .. 42
debug, --debug mailfromd option, summary .. 215
debug, --debug mfdbtool option, summary.... 235
debug-level, --debug-level calloutd

option, SUMMAry ...........cooviiuueaannn. 231
debug_level...........coiiiiiiiiiiiiiii 193
debug_spec................i, 194
debugging ........ ... . i 87
debugging level ......... ... ...t 42
debugging the filter script...................... 34



286
debugging, pmult ....... ... ... .o 248
declaring milter state handler .................. 15
decode MIME. ........................... 141, 142
default ....... ... 205
default communication port.................... 11
default communication socket .................. 11
default exception handling ..................... 94
default expiration interval...................... 11
default syslog facility............... ... ... ... 41
default user privileges............ ... ... ... 10
default_callout_server_url................ 146
DEFAULT_EXPIRE_INTERVAL,

configure variable ............. ... ... L 11
DEFAULT_EXPIRE_RATES_INTERVAL,

configure variable ........... ... ... . oL 11
DEFAULT_SOCKET, configure variable...... 11

DEFAULT_STATE_DIR, configure variable... 11
DEFAULT_SYSLOG_ASYNC,

configure variable............ ... ... .. 11, 270
DEFAULT_USER, configure variable ............. 10
define, --define mailfromd

option, described .......... ... ool 105
define, ——define mailfromd

option, summary ............... ..., 215
define, --define, mtasim option, summary .. 244
define-macros ................ . i 249
defined ..........oiiiii i 104
delete. ..ottt 87
delete action, defined........................... 87
delete in ‘begin’......... ... ... il 72
deletein ‘end’ ... 72
delete, ——delete mfdbtool

option, introduced .......... ... ... .o oL 33
delete, --delete mfdbtool

option, summary ............... ..., 235
dequote ... ... 114
dgettext .......... ... . 192
diagnostics channel ...................... .. ... 40
digest, message ........... . i 143
disabling cache ......... ... ... .. oL 160
discard .......coiiiii e 85
discard action, defined ......................... 85
discard action, introduced................ ... ... 13
discard in ‘begin’......... ... ... ... il 72
discardin ‘end’ .......... .. it 72
dkim, module............ ... i 186
dkim_explanation.............ccoviiiiieinnn. 184
dkim_explanation_code...................... 184
dkim_sendmail_commaize..................... 189
dkim_sign............ ... o ool 186
dkim_signing_algorithm..................... 184
dkim_verified_signature.................... 185
dkim_verified_signature_tag............... 186
dkim_verify............ ... ...l 183
DKIM .. 8
DKIM, defined ...t 183
DKIM, setting up......covcvvviieennineea .. 189

DKIM_EXPL_BAD_ALGORITHM.................... 184

Mailfromd Manual

DKIM_EXPL_BAD _BASE64 ....................... 185
DKIM_EXPL_BAD_BODY.............ccoiiiiiin.. 185
DKIM_EXPL_BAD _KEY_TYPE..................... 185
DKIM_EXPL_BAD_QUERY ............... ... . ... 184
DKIM_EXPL_BAD_SIG..........cciiiiniiinniinn... 185
DKIM_EXPL_BAD_VERSION...................... 184
DKIM_EXPL_DNS_NOTFOUND..................... 185
DKIM_EXPL_DNS_UNAVAIL ...................... 185
DKIM_EXPL_DOMAIN_MISMATCH.................. 184
DKIM_EXPL_EXPIRED............ ..o, 185
DKIM_EXPL_FROM............ ...t 185
DKIM_EXPL_INTERNAL_ERROR................... 184
DKIM_EXPL_KEY REVOKED...................... 185
DKIM_EXPL_KEY_SYNTAX ............. ... 185
DKIM_EXPL_NO_SIG............ciiiiiiiiinnn.. 184
DKIM_EXPL_OK ...... ... 184
DKIM_EXPL_SIG_MISS...........coviiiiinnn. 184
DKIM_EXPL_SIG_SYNTAX ......... ... 184
DKIM_VERIFY OK...... ...t 183
DKIM_VERIFY_PERMFAIL ....................... 183
DKIM_VERIFY_TEMPFAIL ....................... 183
dngettext............. ...l 192
dns.mf...... ... i 149, 150
dns_getaddr................iiiiiiiiiii 150
dns_getname............ ...l 150
dns_qQUery.........ooiiiiiiiiii 149
dns_reply_count .............cciiiiiiiiiiiian. 150
dns_reply_ip ..o 150
dns_reply_release..........c.couuuuiiuinnnnnnn 150
dns_reply_string............................ 150
6 Lo T To Yo} o JP0 P 91
DomainKeys Identified Mail................... 183
domainpart............ .. ... 114
Aot .o 128
QTP . 234
DSF_NOISE.......ciiiiniiiiiiiiiiiin 168, 170
DSF_SIGNATURE............ ... ...ooiien. 168, 170
DSF_WHITELIST................oiiii.t. 168, 170
DSM_CLASSIFY...... ..., 168, 170
DSM_PROCESS ........ccoiiiiiiiiiiiinn, 168, 170
dspam. ... 168
dspam.mf ... 168
dspam_confidence....................... 168, 172
dspam_config...............iiiiia 168, 171
ASPaAmM_gLOUP . .« veiiiiiiiiiiii i 172
dspam_prec...............oiiiiiiiiii... 168, 172
dspam_probability...................... 168, 172
dspam_profile................. ... ... 168, 172
dspam_signature ........................ 168, 172
ASPamM_USET . ..ottt 172
DSPAM ... 168
DSR_ISINNOCENT ..........ccoiiiiinnnn... 168, 171
DSR_ISSPAM...... ..ottt 168, 171
DSR_NONE ..... ..ot 171
DSS_CORPUS ...... ..ot 169, 171
DSS_ERROR ........coiiiiiiiiiiiii.. 169, 171
DSS_INOCULATION ...... ...ttt 171
DSS_NONE..... ..ot 171



Concept Index

DST_TEFT ..ot e 171
DST_TOE . ...t e 171
DST_TUM ... e 171
DSZ_CHAIN. ... i 171
DSZ_0SB ...\t 171
DSZ_SBPH......o.iiiiiiii i 171
DSZ_WORD ......coiiiiii i 171
dump-code, --dump-code mailfromd

option, summary ................o ..., 215
dump-grammar-trace, --dump-grammar-trace

mailfromd option, summary................. 216
dump-lex-trace, —-dump-lex-trace

mailfromd option, summary................. 216
dump-macros, --dump-macros mailfromd

option, described ......... ... ...l 221
dump-macros, --dump-macros mailfromd

option, SUMMATY «....vvvtrtnneiiinneenn. 216
dump-tree, --dump-tree mailfromd

option, summary ................. ... 216
dump-xref, --dump-xref mailfromd

option, SUMMATLY . ....vvviiteteeiineennn. 216

e_badmmqg............... 92
e_dbfailure......... ... 92
€ _diVZerO ..ottt e 92
€ O . 92
€ _eXIStS it 92
e_failure....... ... . 92
e_format ....... ... .. 92
e_ilseq ... 93
e_inveidr ... ... 93
e_invip ... ..o il 93
e_invtime ....... .. e 93
[0 o TSP 93
e_macroundef......... ... ... 93
€ _NOTESOLVE . .t ittt ittt 93
e_not_found............ .. ... ... 94
@_TANEE ...ttt 93
LT o= <ol 1 o 93
€ _StOM_COMV ...ttt ittt et 93
€ SUCCES S vttt ettt et 94
e_temp_failure............... ... .l 94
1 o 94
E, -E option, described................. ... ... 105
E, -E option, summary................... 215, 216
E, \E, amtasim command..................... 241
ECRO . o 87
ehlo-domain...............oouiiniiininannann.. 208
ehlo_domain.......... ..o, 64
elif .. 88
ElS . i e 88
Emacs, MFL mode.............ccoviuiiaana.. 197
email.mf ...... ... .. .. 131
email map.......couuiiiiiiiiii i 130
email_valid........... ..., 131

EMAIL_COMMENTS ...... ..ot 130

287
EMAIL _DOMAIN ... ittt i ie i 131
EMAIL_LOCAL. ... 131
EMAIL_MULTIPLE ........ ... ., 130
EMAIL_PERSONAL . ... 131
EMAIL _ROUTE. . ... .00ttt 131
eNADLE .. 209

enable-syslog-async,
--enable-syslog-async, configure option.. 11

enable-vrfy............... 208
Enabling MFL mode ..............oooiiina .. 197
encapsulation boundaries, RFC 934 ........... 144
125 T 71
‘end’ and accept...........oiiiiiiiii 72
‘end’and add ........ ... 72
‘end’ and continue ............... i 72
‘end’ and delete.........oviiiiiiiiiiieininn 72
‘end’ and discard.............oiiiiiiiiai 72
‘end’ and reject............ ... 72
‘end’ and replace...............oiiiiiiiiia.. 72
‘end’ and Teturn.........ooeiiiiiiiiii 72
‘end’ and tempfail ............ ..o, 72
‘end’, handler restrictions ...................... 72
end, special handler ........................ 13, 71
enumeration ............. oo ool 59
envEirom ... ... ... 68
envfrom, handler................. ... ... .. ..., 13
EIVICPE .« 69
envrept, handler ... oo i 13
[T c) 2 69
eoh, handler .......... . ... il 13
1= PP 70
eom, handler.............. ... ... .l 13
eom-timeout....... ... 252
equals sign (=), = operator ..................... 79
©5CAPE « ottt 113
estimated time of sending, prediction of ........ 32
exception handler scope................ ... ... 95
exception handler, returning from .............. 96
exception handlers.......... ... ... ... . L 94
exception types...... ... i i 92
exception-handling routines .................... 94
exceptions, default handling.................... 94
exceptions, defined ............... ... ... ... 92
exceptions, raising from code................... 97
exceptions, symbolic names .................... 92
exclamation point (!), != operator ............. 79
expect mode, mtasim............... ... ... 241
expire, ——expire mfdbtool

option, introduced ................ ... ... 33
expire, --expire mfdbtool

option, summary .............ooiiiiiin... 235
expire-interval............. ... ... ...l 209
expire-interval, --expire-interval

mfdbtool option, summary.................. 235
explicit type casts.......... ... oo 82
EXPTESSIONS - . vt 78



288

F

f, Sendmail macro...............c.ovviiea..... 221
FoOK . o 160
Fail, SPF result code.......................... 179
failure ... 92
FAMILY_INET ... 67
FAMILY_INET6......coooiiiiiiii i 67
FAMILY_STDIO. ... 67
FAMILY _UNIX ... .o 67
fatal runtime errors............. ... ..o oL 45
fd_delimiter ............ ... ... . L 125
fd_set_delimiter................ ... ... ... .. 125
FDL, GNU Free Documentation License ...... 275
o e 88
0 =P 209
file, --file mfdbtool option, summary...... 235
filter pipe.....coooiii 127
filter script, debugging ............. ... ... ... 34
filter script, described........... ... ... ... ... 13
filter script, running in test mode .............. 34
filter_fd........ . 127
filter_string............ ... ...l 126
Finding function definition.................... 197
fomatches ... 79
forloop. ..o 90
foreground, --foreground calloutd

option, summary ..., 230
foreground, --foreground mailfromd

option, SUMMATLY . ...ovviiteeeenineeennnn 213
format, ——-format mfdbtool

option, introduced ............... .. ...l 32
format, --format mfdbtool

option, SUMMATLY . ....vvvitteeee e 236
format, --format mfdbtool option,

using with --1ist .............. ... ... .. ... 32
from ... ... 100, 102, 128
from ... import.......... ...l 102
fromrd ... ... 128
func statement, function definition............. 73
function arguments, counting................... 74
function arguments, getting the number of ..... 74
function calls ........ ... ..o i 17
function definition, syntax of ................ ... 73
function returning void.............. ... ... . 75
function, defined ........... ... ... L. 17

G

g, —g, mtasim option, summary............... 244
g, transformflag . .......... .. ... L. 112
gacopyz-log, —--gacopyz-log mailfromd

option, SUMMATLY . ....vveiteeeeiineeennn 216
gacopyz-log, —-gacopyz-log, mtasim

option, summary ............. ..., 244
GDBM ... 9
geoip_country_code_by_addr ................ 156
geoip_country_code_by_name ................ 157

geoip2_dbname ......................oLL 154

Mailfromd Manual

geoip2_get ... .. 156
geoip2_get_json............. ...l 156
gEOip2_Open. ... ... 154
GeolP .. 156
GeolP2. ... 154
geolocation ........... ... i 154
get .. 233
getbufsize(number........................... 126
getbuftype(number........................... 126
getdelim...........ooiiiiiiii i 124
getdomainname ............................LL 161
getenv ... 160
gethostname.................................. 161
getline ....... ... 125
getmMACTO ..ottt ittt ettt 111
BeLMX. .. 150
BeLNS. .. 153
Betopt. oo 37
getpwhnam. ... 162
getpwuid.............. 162
gettext ... ... 193
getting cache status................. ... ...... 160
globbing patterns.............. ... .o o 79
GNU Emacs, MFLmode ............coovuunn.. 197
GNU Readline..............oooiiiiiiii.. 237
greylist ......... ... ...l 55, 174
greylist database.......... ... ... .o oL 32
greylist_seconds_left....................... 64
greylist_seconds_left, global variable........... 174
greylist_seconds_left, global

variable, introduced.............. ... ... 28
greylisting types ... i 28
greylisting, Con Tassios type................... 29
greylisting, traditional .................... . ... 28
BTOUD .« vttt ettt 209
group, —-—group calloutd option, summary..... 230

group, --group mailfromd option, summary .. 213
group, —-group, mtasim option, described .... 239
group, ——group, mtasim option, summary .... 244
BIOUPS . & et e e 218
growth policy, stack............. ... 53

H

handler arguments................... ... ... ..., 71
handler declaration ............................ 15
handler, cleanup .............. .. ...l 71
handler, defined................ ... ... .. ... 66
handler, described ............. ... ... o L 13
handler, initialization .......................... 71
handler, startup ............. ... ool 71
hard STMP timeout ........................... 19
RaASMX . .t 151
hasmx, definition of the function................ 96
hasSnS. ..o 153
header............ .. ... il 69, 129
header manipulation actions.................... 86
header modification................... ... ... 132



Concept Index

header, handler............ ... ... ... o oL 13
header_add............. ... i, 132
header_delete ........ ..., 132
header_insert ..............ccoiiiiiiiinnn., 132
header_prefix_all........................... 133
header_prefix_pattern...................... 133
header_rename ........... ... ... i, 133
header_rename.mf ............ ... ... ... ... 133
header_replace ...................ooiiL 132
‘Heap overrun; increase #pragma

stacksize’, runtime error.................... 45
helo.....ooooii 68, 207
helo, handler............. ... o i 13
heloarg_test ............ ... ... ... ... 174
heloarg_test.mf............................. 174
help, --help calloutd option, summary....... 232
HELP, mtasim statement....................... 237
here document ........... ... ... i 58
hostname ........oviiiiiii i e 152
htonl. ..o 147
BEOmS . .ot te 147

i, Sendmail MAaCro ........ovvvviviinnnnnnnn... 221
i, Sendmail macro in MeTAl ................... 248
i, Sendmail macro in Postfix................. 225
i, transformflag............. ... .. ... ... 112
II8M e 191
1COMV. 129
T 204, 229
T P 88
ignore-failed-reads, ——ignore-failed-reads

mfdbtool option, summary.................. 236
implicit type casts ..........o it 82
IMPOTt .o 102
importing from modules ............. ... .. ... 102
include search path, introduced ................ 51
include, --include mailfromd

option, summary .................iiii.... 214
include-path .......... ... ... ...l 203
include_once ..........ooiiiiiiiiiii 52
including files.......... ... ..o oL 51
indentation, MFL, default ..................... 197
INAE . .ottt e 114
inet_atonm. ... 148
inet_ntoa. ... .o 148
infinite loop. .. .vvvvn 90
initial-response...........coiiiiiiiiinia... 207
inline-comment ............... ... ... ... 129
INPUT_MAIL_FILTER, mc file directive...... 221
internationalization ........................... 191
interval ........... il 114
‘Invalid back-reference

number’, runtime €rror....................... 46
‘Invalid exception number’, runtime error..... 46
INVOCAtION ... 213

io-timeout........ ... .. 208

289
io_buffer_size............ ... ... il 121
io_buffering ............. ... ol 121
is_greylisted............... ... il 174
< T < N 117
is_dp.mf ... 117
isalnum........ooiiiiiiiiii 119
isalpha......................oooooolLL 120
18AaSCIT it 120
isblank..........oo il 120
iscntrl . ... 120
isdigit ... 120
isgraph.............. ...l 120
islower ...t 120
IR =) 1 PP 152
isprint ... 120
ispunct ... 120
iSspace ... 120
ISUPPET ..ottt 120
isxdigit......oo ool 120
J
Jan Rafaj.... .. ... o i 3
Jeff Ballard ........ ... i 3
John McEleney ........ ..o, 3
K
keywords . ... 108
L
10D e 191
L, \L, amtasim command..................... 239
last_poll_host, global variable, introduced ..... 147
last_poll_recv, global variable, introduced ..... 147
last_poll_sent, global variable, introduced...... 147
left angle bracket (<), < operator............... 79
left angle bracket (<), <= operator.............. 79
len_to_netmask ...........c.coiiuiiininnnnann. 148
length ..ottt 114
libdspam.................oo i 168
1ibGeoIP ... o 156
libmaxminddb ...t 154
library and built-in functions, introduced....... 17
line, #1line statement .......................... 52
TiNeCOM .o vviiii i 130
linelen ..ot e 130
lint mode ... 33
lint, --lint mailfromd option, introduced .... 33
lint, --lint mailfromd option, summary..... 216
list, --list mfdbtool option, described....... 32
list, --list mfdbtool option, summary-...... 235
= = PP 204, 229, 248
1istens ..ot e 174
listing a database contents ..................... 32
literal concatenation ........................... 78
literals. ... 56



290
local state directory..................oooi.. 11
local variables............... . ..ol 76
localdomain. .......ooouiiiiiiiiiinnnn 161
localdomain.mf ......... ... ... ... o il 161
localization ........... ... i il 191
localpart ....ooviiiiiii i 114
location-column, —-location-column

mailfromd option, described ................. 34
location-column, —-location-column

mailfromd option, summary................. 215
lock-retry-count.......................... 210
lock-retry-timeout....................aal 210
log-facility, --log-facility calloutd

option, summary ................iii.... 231
log-facility, --log-facility mailfromd

option, introduced ............... ... 41
log-facility, --log-facility

mailfromd option, summary................. 217
log-level...... .. i 252
log-tag, --log-tag calloutd

option, SUMMATLY . ...vvveiteee e 231
log-tag, --log-tag mailfromd

option, introduced ........... ... ... o oL 41
log-tag, —-log-tag mailfromd

option, summary ............... ... ... 217
logger. ...t 206, 229

logger, —-logger calloutd option, summary .. 231
logger, --logger mailfromd

option, introduced ............... .. ... 40
logger, --logger mailfromd

option, summary ...............o ..., 217
00D ettt 89
loopbody........oooii i 90
loop statement . ... 89
loop, do-style ... 91
loop, for-style...... ... i 90
loop, infinite........ ... i 90
loop, while-style ....... ... ... .. i 90
TETAm. oot 115

M4 e 103
MACro €XPaNSION .. ..ovvvtt i 57
macro_defined ............ ... ... .. ... 111
macros, MeTAL............. ..., 248
macros, referencing ........ ... ... oo 59
mail. ..ot 207
mail filtering language ......................... 51
mail sending rate, explained..................... 8
Mail Transfer Agent (MTA) .................... 13
mail-from-address.............. ... ... ... 208
mailbox functions............. ... ... .o 138
mailbox_append_message..................... 139
mailbox_close ... 139
mailbox_get_message ................. .. ..... 139
mailbox_messages_count..................... 139
mailbox_open .......... ... ... ool 138

Mailfromd Manual

mailer URL . ... 175
mailer, —-mailer mailfromd

option, summary ..............oiiiiiiina.. 214
mailfrom_address............cciiiiiiiiiin.. 65
mailfromd, building............... ... ... ... .. 9
mailutils . ....... ... 9
mailutils_set_debug_level.................. 193
main, MFL function ........................... 35
maintenance, database ......................... 33
k=N o] o) =1 163
mappwuid......... ... ... 163
match_cidr...... ... ... .. .. . 148
match_cidr.mf .......... .. ... . ... .. .. ... ..., 148
match_dnsbl........ ... ... i 178
match_dnsbl, definition ........................ 77
match_dnsbl.mf ......... ... ... ... L. 178
match_rhsbl........ ... ... ... .. . . 178
match_rhsbl.mf .............................. 178
MmatChes .. ..ot 79
max-cname-chain.................coiviunian.. 203
max-instances.............. .. ... o 204, 229
max-open-mailboxes.............. ... ..ol 210
MAX~O0PEN-MESSAZES . .. oo v vereeeeeineeeennns 210
max-pmilter—fd............... .. ... ol 248
MAX—STreamMS. ..o vttt 210
max-threads-hard............................ 248
max-threads-soft............................ 248

MaxRecipientsPerMessage, sendmail option ... 24
‘memory chunk too big to fit into

heap’, runtime error ............ ... ... ..... 45
message digest....... ... .. i 143
message functions............. ... i 139
message modification queue................... 134
Message-1D, exporting .................ooaan. 41
Message-1D, exporting in mec file............... 221
Message-1ID, using in mailfromd logs ........... 41
message_body_decode ............ ... ... 143
message_body_is_empty...................... 139
message_body_lines............ ..., 141
message_body_rewind ............. ... .. ... 141
message_body_size............. ... ..ol 141
message_body_to_stream..................... 141
message_burst .......... .. il 144
message_Close ...t 140
message_content_type ....................... 142
message_count_parts ........................ 142
message_find_header ........................ 140
message_from_stream........................ 140
message_get_part............ ... .l 142
message_has_header.......................... 141
message_header_count ....................... 140
message_header_decode ...................... 136
message_header_encode ...................... 136
message_header_lines ....................... 140
message_header_size ................. ... .. 140
message_is_multipart ................ ... ... 142
message_lines ........... ... ... il 140

message_nth_header_name.................... 141



Concept Index

message_nth_header_value................... 141
message_part_decode(number ................ 143
message_read_body_line..................... 141
message_read_line........................... 140
message_rewind ............. ... i, 140
message_size ........... ... .o ool 139
message_to_stream........................... 140
metal ... 222
metal MaCroS. ....ovvviiiiieee et 248
MF_SIEVE_DEBUG_INSTR ............coouvenn.n. 163
MF_SIEVE_DEBUG_TRACE ....................... 163
MF_SIEVE_FILE ........ ..ottt 163
MF_SIEVE_LOG . .....itii it 163
MF_SIEVE_TEXT ... ..ot 163
mfdbtool ... 32, 235
mfl-basic-offset............ ... ... oLl 198
mfl-case-line-offset ....................... 198
mfl-comment-offset........... ... ... ... ... 199
mfl-include-path............................ 198
mfl-loop-continuation-offset.............. 199
mfl-loop-statement-offset.................. 199
mfl-mailfromd-command...................... 198
mfl-mode.el..... ... oot 197
mfl-returns-offset................... ... .... 199
MFEL .o 51
MFL mode,.......covviiiiiiiiii . 197
MFL mode, enabling .......................... 197
MFL mode, GNU Emacs...................... 197
milter abort ...... ... ... o 23
milter stage handler arguments................. 71
milter stage handler, defined ................... 66
milter state handler, declaring.................. 15
milter state handler, described ................. 13
milter-actions, —-milter-actions,

mtasim option, summary.................... 245
milter-proto, --milter-proto, mtasim

option, SUMMATLY . ....vviitteeeeiieeeennnn 244
milter-socket, -—-milter-socket

mailfromd option, summary................. 214
milter-timeout ............cooiiiiiiiiiin... 205
milter-timeout, —-milter-timeout

mailfromd option, summary................. 215
milter-timeout, ——-milter-timeout,

mtasim option, summary.................... 244
milter-version, —-milter-version,

mtasim option, summary.................... 244
miltermacros. ........ooiuiuuniiiiiiiiiiiiia 55
mime.mf ... ... 143
MIME, decoding ............ccovvuuue .. 141, 142
mimedecode ............ ... ...l 130, 141, 142
MMQ_PUTEE . ot vvvvtttttttttteeeeeeeens 135
module ........ ... 101
module declaration .............. ... o oL 101
module, defined ............... ... oL 17, 101
MEASIM .« .ottt e 237
mtasim administrative commands ............. 239
mtasim auto mode ......... ... i 238

mtasim daemon mode......................... 242

291

mtasim expect mode ........... ... ..l 241
mtasim, —-mtasim mailfromd

option, summary .............oeiiiiiina.. 214
mtasim, declare sender socket ................. 240
mtasim, defining Sendmail macros............. 239
mtasim, introduced........... ..ol 35
mtasim, listing Sendmail macros............... 239
mtasim, undefining Sendmail macros .......... 240
mtasim, using in shell scripts.................. 242
MTA . e e 13
multiline strings .......... ... il 58
multiple sender addresses ...................... 65
multiple sender addresses, using with

polling commands........................... 147
mx fnmatches........ ... ... oL 80
mx matches....... ... . . i 80
N
N 105
Nacho Gonzdlez Lépez .......... ... 3
name clashes............ . ... il 82
National Language Support................... 191
Navigating through function definitions ....... 197
negative expiration period, defined ............. 31
negative-expire-interval................... 209
netmask_to_len...............iiiiiiiiia.. 148
Neutral, SPF result code...................... 179
next. ... ... 90
next statement......... ... ... il 90
ngettext .......... ... 193
nls.mf ... ... 191
NS e e 191
‘No previous regular

expression’, runtime error .................. 46
no-interactive, ——-no-interactive,

mtasim option, summary.................... 245
NO-preprocessor, ——Nno-preprocessor

mailfromd option, summary................. 215
NO-preprocessor, ——NO-preprocessor

mailfromd option, usage .................... 106
no-site-config, ——no-site-config

calloutd option, summary................... 232
non-blocking syslog ............ ...l 40
non_smtpd_milters, postfix configuration...... 224
4T3+ =P 129
None, SPF result code ........................ 179
DO .ottt 80
‘Not enough memory’, runtime error............. 45
not_found........... ... i 94
ntohl. .. ... 147
NEORS. . 147
NUMDET . . .ot 63
number of actual arguments.................... 74



292

@)

OLD_EXCEPTION_CODES, preprocessor symbol ... 270

onstatement............. ... ... ool 99
OPCIL. 4wttt 121
operator associativity ........... ... ... oo 81
operator precedence, defined ................... 81
OPtaAT . 39
OPteTT . 39
optimize, --optimize mailfromd

option, summary ................o ... 214
optind. ... ..o 39
option ... ... ... 205
optional arguments to a function............... 73
optional arguments, checking if supplied........ 74
OPtOPE . . 39
OF e 80
‘Out of stack space; increase #pragma

stacksize’, runtime error.................... 45
overriding initial variable values................ 34

P

parsing command line arguments............... 37
PaSS c ettt 87
Pass, SPF result code......................... 179
‘pc out of range’, runtime error................ 46
Peter Markeloff ........... ...l 3
Phil Miller. ... 3
pidfile......... ... .. ... ... 203, 219, 228, 248
pidfile, --pidfile calloutd

option, SUMMATY «....ovvtutnneeiinneen. 230
pidfile, --pidfile mailfromd

option, summary ................iii.... 214
Pies...... ... 247
PP oot 127
pmilter-debug.................... ...l 253
PIUlt. .. 247
pmult debugging.......... ... ... oL 248
pmult, described .......... ... o ool 247
poll command, standard verification.......... 100
poll command, strict verification ............. 100
poll keyword.......... ... i 100
poll statement, defined....................... 100
poll.mf ... ... ... 146
port, --port mailfromd option, summary..... 214
port, —-port, mtasim option, described....... 238
port, —-port, mtasim option, summary....... 245
portprobe.............. i 174
portprobe.mf ...... ... ... ..l 174
positive expiration period, defined.............. 31
positive-expire-interval................... 209
Postfix ..o 224
postfix-macros.sed.......................... 225
pp-setup................iii 103
pragmatic comments................aa 52
precedence, operators............... ... ... ... 81
PTrecious............ooiiiiiiiiiiiiii 23, 63
precious variables.......... ... ..o oo 23

Mailfromd Manual

predefined variables.................... ... .... 63
predict, --predict mfdbtool

option, introduced ............. ... ... .. 32
predict, --predict mfdbtool

option, summary ..........ccooiiiiiiii.. 236
PTEPTOCESSOT . . v vttt ittt et 103
Preprocessor, ——preprocessor

mailfromd option, summary................. 215
preprocessor, ——preprocessor

mailfromd option, usage .................... 106
primitive_hasmx................. ... ... ... 151
primitive_hasns................... .. ... 153
primitive_hostname.................... .. ... 151
Primitive _ismX ............iiiiiiiiiiiiiiia.. 152
primitive_resolve............ ..., 152
printf ... 104
Probe MeSSAZE « .t vttt 6
ProCcedures . .. ..oovuuii e 75
o2 e - 66
program_trace ................iiiiiiiiii... 195
PTOZTESS vttt ettt i 137
prompt, —-prompt, mtasim option, summary .. 245
ptr_validate ........... ... ... il 153
public.........oiiiiiii 63, 73
Q
e o 113
qualifier, function declaration .................. 73
qualifiers, variable declaration.................. 63
quarantine............. ... ... ool 145
QuUit ... 207, 234
quoted-printable............... ... ... ... 130
Qe 130

RO it 160
raising exceptions.............. .. ... oo 97
TAtE . 173
rate database ....... ... ... ool 31
TateOK ..t 173
rateok.mf ... .. ... ... 173
rc.mailfromd ............. ... . ool 219
B3 o 2 PP 207
rept_add ... 131
rept_count..........nn o 65
rcpt_delete......... ... il 131
TOAA . ¢ ottt 124
read-timeout ...l 252
readline............ ... ... ... ... ... . 237
B =Y = P 54
regular expression matching.............. ... ... 79
reject. ... ... 85
reject action, defined................... ... ..., 85
reject action, introduced ....................... 13
reject in ‘begin’......... ... oo 72

rejectin‘end’ .......... ... ool 72



Concept Index

reject messages, marking cached rejects......... 64
relayed ............... i 160
relayed-domain-file ........................ 203
relayed-domain-file, --relayed-domain-file

mailfromd option, summary................. 214
replace ... 86
replace action, defined ......................... 86
replace in ‘begin’............ ... .. o 72
replace in ‘end’ ........ ... .. ... ... 72
replbody ... 134
replbody_fd......................ooooL 134
TEPLSTT .ot 114
require........ ... 17, 102
requiring modules............ ... ... oo 102
reserved words. ...l 108
resolv-conf-file, ——resolv-conf-file

calloutd option, summary................... 230
resolv-conf-file, --resolv-conf-file

mailfromd option, summary................. 214
TESOLVE ..ottt 153
TESOLVET .ttt ettt 203
return in ‘begin’......... ... .. ..ol 72
returnin ‘end’ ....... ... 72
return statement, defined ...................... 75
returning from acatch............. ... ... ... 96
returning from an exception handler............ 96
returns statement, function definition ......... 73
reuseaddr ............... . ool 205, 229
TeVID....o 117
revip, definition of ........ ... ..ol 76
TEVSEY ..ot 114
rewind .......... ... il 124
rfc822 ... 128
right angle bracket (>), > operator.............. 79
right angle bracket (>), >= operator ............ 79
rindex ........ .. il 115
TSET .ttt 207
RSET .. 23
TErAm. ..o 116
a1 4 PP 234
TUN TNOAE . . ettt e e e e e e e e e 35
run, --run mailfromd option, described........ 35
run, --run mailfromd option, summary-....... 213
runtime ... 210
TUNtime eITOr .. ..o vvvt it 45
runtime errors, fatal ............ ... ... o L 45
runtime errors, tracing ............... ... 47

S

s, Sendmail Macro ..............oooeennn.. 22, 222
S=EXPIeSSION. ..ottt 112
S, \S, amtasim command ..................... 240
= - Y 168
Sa.mf ... 116
SA_COA .ttt e 65
sa_format_report_header.................... 116
sa_format_score.............iiiiiiiiiiinin. 116

293
sa_keywords.............. . ...l 65
sa_keywords, global variable................... 166
sa_score, global variable.................... ... 166
sa_threshold............. ... ... 65
sa_threshold, global variable .................. 166
SA_FORGET ..o e 166
SA_LEARN_HAM ... ... i 166
SA_LEARN_SPAM ... ... i 166
SA_REPORT . ...t e 166
SA_SYMBOLS . ..ot e 166
safedb.mf..... ... ... 158
safedb_verbose................. .. ... ..., 65, 159
safedbdel ......... ... .. i 159
safedbget ........... ...l 159
safedbmap........cooiiiiiiii 159
safedbput ........ ... 159
scopeofacatch.......cooviiiiiiiiiiiin, 95
scope of exception handlers .................... 95
scope of visibility ......... ... .. ool 102
scope of visibility, functions.................... 73
scope of visibility, variables..................... 62
script file checking ......... ... . ool 33
script-file.......... ... ... ... ..ol 202
scripting, parsing command line arguments. . ... 37
SeA . . 112
selecting syslog facility ............... ... ... .. 41
send_dsSn..........iiiiiiii 177
send_mail . ... ... 176
Send_MEeSSAZE ..t v vttt 177
send_text ... ... e 176
sender address verification, described ............ 6
sender address verification, limitations........... 7
Sender Policy Framework ....................... 8
Sender Policy Framework, defined............. 179
sender verification, writing tests................ 97
sender-socket, -—-sender-socket,

mtasim option, summary.................... 245
sending rate, explained.................... ... ... 8
Sendmail macros, exporting................... 221
Sendmail macros, referencing................... 59
sendmail macros, setting from the

command line .......... ... . o il 34
Sergey Afonin......... ... oo i 3
SEIVEL . .ottt 204, 228
server, callout........... .. .. i 19
SEE L 63, 87
set, —--set calloutd option, summary......... 232
set_from............ .. il 131
setbuf (number ............ ... ... 126
SEEVAT .ottt 203
shadowing, constant—constant .................. 85
shadowing, defined............. ... ... ... ... 82
shadowing, variable........... ... ... ... .. ... 83
shadowing, variable—constant................... 84
show-config-options, --show-config-options

calloutd option, summary................... 232

show-defaults, ——show-defaults
mailfromd option, introduced ................ 31



294

show-defaults, ——show-defaults

mailfromd option, summary................. 213
SHUT _RD ..ot 123
SHUT_RDWR . ... 123
SHUT_WR ... 123
shutdown ........... ... ... il 123
SId. .. 233
SievVe. . ... 163
SIEVE ot 163
sieve.mf ... ... .. 163
SIGHUP. ... 219
SIGINT ..o e 219
signals. ... i 219
SIGQUIT . .. 219
SIGTERM........cooi i 219
Simon Christian.......... ... ..o 3
Simon Kelley ........ ... . 11
single-process ......................... 204, 229
single-process, —-—-single-process

calloutd option, summary................... 230
single-process, —--single-process

mailfromd option, summary................. 216
site-start.el ........ ... i, 197
81O . 162
smtp-timeout .......... .. ... . il 207
smtpd_milters, postfix configuration........... 224
SOCKEt MaP « ..t 190
sockmap.mf........ ... ...l 190
sockmap_looKup ............oiiiiiiiiii..., 191
sockmap_single_lookup...................... 191
soft SMTP timeout .............. ... ... 19
SoftFail, SPF result code...................... 180
source-info, --source-info calloutd

option, summary ... 231
source-info, —--source-info mailfromd

option, summary ................. ... 217
SOUrCe—ip ......ooiiiiii i 203, 228
source-ip, --source-ip calloutd

option, summary....................... 230, 231
source-ip, —-source-ip mailfromd

option, SUMMATY . ....ovvitteneeiineennnn 214
SpamASSassin. . ....o.oviiii 166
SPAIMC . « .+ttt 166
SPaAMd ..o ot 166
SPAWIL. .+« ettt 123
spf.mf ... 181
spf_check_host ................ ... ...l 181
spf_explanation............................. 182
spf_explanation_prefix..................... 183
spf_mechanism..............ooiiiiiiiiinnn. 183
spf_status_string........................... 182
spf_test_record............................. 182
S 8
SPF, checking host record ..................... 179
SPF,defined..............oooiiiiiiiii 179
sprintf . ... 117
stack growth policy ............ ... 53

stack traces, reading .............. ... .o L. 48

Mailfromd Manual

‘Stack underflow’, runtime error............... 45
stack-trace........... ... il 206
stack-trace, —-stack-trace mailfromd

option, explained ............ ... ... ool 48
stack-trace, —-stack-trace mailfromd

option, sUMMAry ........ccouuiieieinnn... 216
stack_trace............ ... o il 195
stack_trace function, introduced .............. 48
StacksSizZe . ..ot 53
stage handler arguments ....................... 71
stage handler, defined....................... ... 66
standalone catch........... ... ... ... oL 95
standard address verification .................... 6
standard error, using for diagnostics output .... 40
standard verification with poll................ 100
startup ... 218
startup handler........... ... ... oo 71
state handler, declaring ........................ 15
state-directory ............... ... ... 203, 228
state-directory, ——-state-directory

calloutd option, summary................... 230
state-directory, --state-directory

mailfromd option, summary................. 214
state-directory, ——state-directory

mfdbtool option, summary.................. 236
statedir, —-statedir, mtasim

option, described ............. ... ... ....... 238
statedir, --statedir, mtasim

option, summary ............coiiiiiiiin... 245
statements........ ... . o ool 85
statements, conditional................ ... . ..., 88
static......oooi il 63, 73
status.mf, module ... 92

stderr, --stderr calloutd option, summary .. 231
stderr, --stderr mailfromd

option, summary .............coeiiiiia... 218
stdio, --stdio, mtasim option, summary .... 245
SEAPOLL .. 146
strftime...... .. .. il 161
strict address verification................ ... . ... 7
strict verification with poll................... 100
strictpoll........ ... ... 147
string......... i 64, 65
string_list_iterate ........................ 104
strip_domain_part.................... . ... 116
strip_domain_part, definition of ................ 7
strip_domain_part.mf ....................... 116
substr ... 115
substring...................aL 115
SUCCESS © v ettt ttie ettt et 94
supplementary groups.............. ... ..o 218
switch.. ... oo 88
switch statement................ ... ... oL 88
syntax check....... ... ... . o 33
syntax-check, --syntax-check mailfromd

option, introduced .............. ... ... ... 33
syntax-check, --syntax-check

mailfromd option, summary................. 217



Concept Index

SYSLOg 193
syslog facility, default .......................... 41
syslog facility, selecting......................... 41
syslog tag. ... 41

syslog, --syslog calloutd option, summary .. 231
syslog, --syslog mailfromd

option, SUMMATY «....ovveurnnetinneen. 218
syslog, asynchronous........................... 40
syslog, default implementation ................. 40
syslog, non-blocking ............ ... ... ... 11, 40
syslog, using for diagnostics output............. 40
syslog.mf.......... ... ...l 193
SYSTEM ..t 162
system-wide startup script.......... ... ... .. 219

T

thf database ......... ... ... i 32
tbf_rate...... ..o 173
temp_failure............cooiiiiiiiiiiiii.. 94
tempfail ........... ... oo 85
tempfail action, defined ........................ 85
tempfail action, introduced..................... 13
tempfail in ‘begin’......... ... . ... ...l 72
tempfailin ‘end’............ ... ...l 72
tempfile...... ... 123

test, --test mailfromd option, introduced .... 34
test, —-test mailfromd option,

specifying handler name ..................... 35
test, --test mailfromd option, summary..... 213
Texinfo . ..o 5
textdomain........... ... oo ool 192
Thomas Lynch................oo it 3
throw. ... ... oo 97
BAme . e 161
time formats, for -~-time-format option....... 259
Time Interval Specification.................... 202
time-format, —--time-format mfdbtool

option, SUMMATY «...ovttttnn e, 236
timeout ... ... 233
timeout escalation ........... ... ool 19
BOLOWET & ottt et 115
BOUPPeT ..t 115
trace file, mtasim ............ .. ... oL 242

trace, -—trace mailfromd option, introduced .. 41
trace, -—trace mailfromd option, summary .. 217

trace-actions ........... ... oo 206
trace-file, —-trace-file, mtasim

option, described ........ ... ...l 242
trace-file, -—-trace-file, mtasim

option, summary ................ ... 245
trace-program..............o.c.eiiiiiiiiaa.a. 206
trace-program, --trace-program

mailfromd option, summary................. 217
transcript............. ...l 206, 230

transcript, —-transcript calloutd
option, summary ................ ..., 231

295

transcript, --transcript mailfromd

option, introduced ............. .. ... . 45
transcript, --transcript mailfromd

option, output example ................ ... ... 45
transcript, --transcript mailfromd

option, sumMmMary ..........ccoovieiiinn... 218
try statement ......... . ..ol 94
try—catch construct .......... ... ... oL 94
trying several sender addresses................ 147
Y P et 251
type casts, explicit .......... ...l 82
type casts, implicit.......... ... .. oL 82
U
u, -u, mtasim option, summary............... 244
U, -U option, described ....................... 105
U, -U option, summary ....................... 215
U, \U, a mtasim command..................... 240
UMASK. .. 162
UNAME . ¢« vttt et tttee e ettt e e et 161
undefine, --undefine mailfromd

option, described .......... ... o il 105
undefine, --undefine mailfromd

option, summary .............oeiiiiiinn... 215
UNESCAPE « ot vttt e eiieee e i e e 113, 114
unfold ... 136
unlink . ... 162
upgrading from 1.x t0 2.X ... 273
upgrading from 2.x to 3.0.x........ ... ... ... 273
upgrading from 3.0.x to 3.1 ................... 272
upgrading from 3.1.xto4.0................... 271
Upgrading from 4.0 to4.1..................... 271
Upgrading from 4.1to4.2..................... 271
Upgrading from 4.2 to 4.3.x................... 270
Upgrading from 4.3.x to4.4................... 270
Upgrading from 4.4 to 5.0..................... 269
Upgrading from 5.0 to 5.1..................... 268
Upgrading from 5.x t0 6.0..................... 267
Upgrading from 6.0 to 7.0..................... 266
Upgrading from 7.0 to 8.0..................... 265
Upgrading from 8.13 to 8.14 .................. 263
Upgrading from 8.2t083..................... 264
Upgrading from 8.2to 84..................... 264
Upgrading from 8.5t08.6..................... 264
Upgrading from 8.7 to 8.8..................... 264
UTL . e 251
URL, mailer .......... ... it 175
usage, —-usage calloutd option, summary.. ... 232
L F= = P 209
user privileges .......... i 218
user, —-user calloutd option, summary....... 230
user, —-user mailfromd option, summary..... 214
user, --user, mtasim option, described....... 239
user, —--user, mtasim option, summary....... 244



296

A%

v, -V, mtasim option, summary............... 245
valid_domain ..............iiiiiiii., 174
valid_domain, definition........................ 77
valid_domain.mf ............................. 174
validuser.............oooiiiiiiiiiiiii 174
VAP oo 39
variable assignment..................... 22, 63, 87
variable declaration.............. ... ... oL 22
variable declarations ............... ... .. ... 62
variable interpretation ................ ... .. ... 57
variable lexical scope............ ... ... oL 62
variable number of arguments.................. 74
variable shadowing............ ... ... oo 83
variable values, setting from the

command line ............. ... ..o 34
variable, --variable mailfromd

option, introduced ................ ... ... ..... 34
variable, —--variable mailfromd

option, SUMMATLY . ...ovveitiee e 215
variable, assigning a value...................... 63
variable, precious ............. i 23
variables, accessing from catch................. 97
variables, automatic............... ... oL 76
variables, declaring............. ... ... ... . 62
variables, defined ................ ... oL 62
variables, introduced ........................ . 22
variables, local ........... ... . i 76
variables, precious ........... ... oo 63
variables, predefined ................ ... ... ..., 63
variables, referencing.............. ... ... ... 63
variadic function........ ... ... ..o 74
verbose, —-verbose, mtasim

option, summary ..., 245
verbosity level ...... ... ... i 42

Mailfromd Manual

VETCIMD .« otttttttee ettt 116
Verifying script syntax............. ... ... 198
verp_extract_user...................oiaann 117
version, —-version calloutd

option, summary ..............oeiiiiia.. 232
void functions.......... ... oo i 75
VLY. 232
VRFY, SMTP statement ..................... 208
%%
WK et 160
when keyword ........... ... ... ool 99
while.... ... i 89
while loop ... 90
whitelisting . .......... ... 29
WITH_DSPAM. ... ot 168
WITH_GEOIP..........oiiiiiiiiiinn.. 156, 157
WITH_GEOIP2........ ...ttt 154, 156
WEite. . oo 124
write-timeout .......... ... ... . ool 251
Wwrite_body..... ..o 124
X
x, transformflag............ ... ... 112
X, -X, mtasim option, summary............... 245
KO et 160
ML e 130
xref, ——xref mailfromd option, summary..... 218
Z
Zeus Panchenko.............. ... il 3



	Preface
	Short history of mailfromd.
	Acknowledgments

	1 Introduction to mailfromd
	Typographical conventions
	Overview of Mailfromd
	Sender Address Verification.
	Limitations of Sender Address Verification

	Controlling Mail Sending Rate.
	SPF, DKIM, and others

	2 Building the Package
	3 Tutorial
	Start Up
	Simplest Configurations
	Conditional Execution
	Functions and Modules
	Domain Name System
	Checking Sender Address
	SMTP Timeouts
	Avoiding Verification Loops
	HELO Domain
	SMTP RSET and Milter Abort Handling
	Controlling Number of Recipients
	Sending Rate
	Greylisting
	Local Account Verification
	Databases
	Database Formats
	Basic Database Operations
	Database Maintenance

	Testing Filter Scripts
	Run Mode
	The Top of a Script File
	Parsing Command Line Arguments

	Logging and Debugging
	Runtime Errors
	Notes and Cautions

	4 Mail Filtering Language
	Comments
	Pragmatic comments
	Pragma prereq
	Pragma stacksize
	Pragma regex
	Pragma dbprop
	Pragma greylist
	Pragma miltermacros
	Pragma provide-callout

	Data Types
	Numbers
	Literals
	Here Documents
	Sendmail Macros
	Constants
	Built-in constants

	Variables
	Predefined Variables

	Back references
	Handlers
	The begin and end special handlers
	Functions
	Some Useful Functions

	Expressions
	Constant Expressions
	Function Calls
	Concatenation
	Arithmetic Operations
	Bitwise shifts
	Relational Expressions
	Special Comparisons
	Boolean Expressions
	Operator Precedence
	Type Casting

	Variable and Constant Shadowing
	Statements
	Action Statements
	Variable Assignments
	The pass statement
	The echo statement

	Conditional Statements
	Loop Statements
	Exceptional Conditions
	Built-in Exceptions
	User-defined Exceptions
	Exception Handling

	Sender Verification Tests
	Modules
	Declaring Modules
	Scope of Visibility
	Require and Import

	MFL Preprocessor
	Example of a Filter Script File
	Reserved Words

	5 The MFL Library Functions
	Sendmail Macro Access Functions
	The sed function
	String Manipulation Functions
	String formatting
	Character Type
	I/O functions
	Filtering functions
	Filters and Filter Pipes

	Email processing functions.
	Envelope Modification Functions
	Header Modification Functions
	Body Modification Functions
	Message Modification Queue
	Mail Header Functions
	Mail Body Functions
	EOM Functions
	Current Message Functions
	Mailbox Functions
	Message Functions
	Header functions
	Message body functions
	MIME functions
	Message digest functions

	Quarantine Functions
	SMTP Callout Functions
	Compatibility Callout Functions
	Internet address manipulation functions
	DNS Functions
	dns_query
	Simplified DNS functions

	Geolocation functions
	Legacy geoip support

	Database Functions
	System functions
	System User Database
	Sieve Interface
	Interfaces to Third-Party Programs
	SpamAssassin
	DSPAM
	DSPAM Operation Modes and Flags.
	DSPAM Class and Source Bits
	DSPAM Global Variables

	ClamAV

	Rate limiting functions
	Greylisting functions
	Special Test Functions
	Mail Sending Functions
	Blacklisting Functions
	SPF Functions
	DKIM
	Setting up a DKIM record

	Sockmap Functions
	National Language Support Functions
	Syslog Interface
	Debugging Functions

	6 Using the GNU Emacs MFL Mode
	7 Configuring mailfromd
	Special Configuration Data Types
	Base Mailfromd Configuration
	DNS Resolver Configuration
	Server Configuration
	Milter Connection Configuration
	Logging and Debugging configuration
	Timeout Configuration
	Call-out Configuration
	Privilege Configuration
	Database Configuration
	Runtime Constants Configuration
	Standard Mailutils Statements

	8 Mailfromd Command Line Syntax
	Command Line Options.
	Operation Modifiers
	General Settings
	Preprocessor Options
	Timeout Control
	Logging and Debugging Options
	Informational Options

	Starting and Stopping

	9 Using mailfromd with Various MTAs
	Using mailfromd with Sendmail.
	Using mailfromd with MeTA1.
	Using mailfromd with Postfix

	10 calloutd
	Calloutd Configuration
	calloutd General Setup
	The server statement
	calloutd logging

	Calloutd Command-Line Options
	The Callout Protocol

	11 mfdbtool
	Invoking mfdbtool
	Configuring mfdbtool

	12 mtasim --- a testing tool
	mtasim interactive mode mode
	mtasim expect commands
	Trace Files
	Daemon Mode
	Summary of the mtasim Administrative Commands
	mtasim command line options

	13 Pmilter multiplexer program.
	Pmult Configuration
	Multiplexer Configuration.
	Translating MeTA1 macros.
	Pmult Client Configuration.
	Debugging Pmult

	Pmult Example
	Pmult Invocation

	14 How to Report a Bug
	A Gacopyz
	B Time and Date Formats
	C Upgrading
	Upgrading from 8.13 to 8.14
	Upgrading from 8.7 to 8.8
	Upgrading from 8.5 to 8.6
	Upgrading from 8.2 to 8.3 (or 8.4)
	Upgrading from 7.0 to 8.0
	Upgrading from 6.0 to 7.0
	Upgrading from 5.x to 6.0
	Upgrading from 5.0 to 5.1
	Upgrading from 4.4 to 5.0
	Upgrading from 4.3.x to 4.4
	Upgrading from 4.2 to 4.3.x
	Upgrading from 4.1 to 4.2
	Upgrading from 4.0 to 4.1
	Upgrading from 3.1.x to 4.0
	Upgrading from 3.0.x to 3.1
	Upgrading from 2.x to 3.0.x
	Upgrading from 1.x to 2.x

	D GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Concept Index

