next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000100658 seconds elapsed
 -- 0.00128041 seconds elapsed
 -- 0.000276909 seconds elapsed
 -- 0.00010181 seconds elapsed
 -- 0.00111965 seconds elapsed
 -- 0.000258594 seconds elapsed
 -- 0.000088876 seconds elapsed
 -- 0.000087904 seconds elapsed
 -- 0.000313818 seconds elapsed
 -- 0.000096841 seconds elapsed
 -- 0.00100764 seconds elapsed
 -- 0.000243265 seconds elapsed
 -- 0.000097363 seconds elapsed
 -- 0.00097259 seconds elapsed
 -- 0.000238587 seconds elapsed
 -- 0.000098443 seconds elapsed
 -- 0.000931372 seconds elapsed
 -- 0.000249076 seconds elapsed
 -- 0.000097712 seconds elapsed
 -- 0.00104772 seconds elapsed
 -- 0.000253775 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000098545 seconds elapsed
 -- 0.00117701 seconds elapsed
 -- 0.000250358 seconds elapsed
 -- 0.00009656 seconds elapsed
 -- 0.00106201 seconds elapsed
 -- 0.000244338 seconds elapsed
 -- 0.000159698 seconds elapsed
 -- 0.00108808 seconds elapsed
 -- 0.000293058 seconds elapsed
 -- 0.000099986 seconds elapsed
 -- 0.000953124 seconds elapsed
 -- 0.0002406 seconds elapsed
 -- 0.000098273 seconds elapsed
 -- 0.000919591 seconds elapsed
 -- 0.000235841 seconds elapsed
 -- 0.000095288 seconds elapsed
 -- 0.00100045 seconds elapsed
 -- 0.000244787 seconds elapsed
 -- 0.000099696 seconds elapsed
 -- 0.00117991 seconds elapsed
 -- 0.00024084 seconds elapsed
 -- 0.000100749 seconds elapsed
 -- 0.0011 seconds elapsed
 -- 0.000250198 seconds elapsed
 -- 0.000096469 seconds elapsed
 -- 0.00109786 seconds elapsed
 -- 0.000240329 seconds elapsed
 -- 0.000103093 seconds elapsed
 -- 0.0009247 seconds elapsed
 -- 0.000237866 seconds elapsed
 -- 0.000123821 seconds elapsed
 -- 0.000906196 seconds elapsed
 -- 0.000238357 seconds elapsed
 -- 0.00009603 seconds elapsed
 -- 0.00100124 seconds elapsed
 -- 0.000236884 seconds elapsed
 -- 0.000095619 seconds elapsed
 -- 0.00146879 seconds elapsed
 -- 0.00040574 seconds elapsed
 -- 0.000094377 seconds elapsed
 -- 0.00145517 seconds elapsed
 -- 0.000414526 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.