Libav
aacsbr.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * This file is part of Libav.
7  *
8  * Libav is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * Libav is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with Libav; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
29 #include "aac.h"
30 #include "sbr.h"
31 #include "aacsbr.h"
32 #include "aacsbrdata.h"
33 #include "fft.h"
34 #include "aacps.h"
35 #include "sbrdsp.h"
36 #include "libavutil/internal.h"
37 #include "libavutil/libm.h"
38 
39 #include <stdint.h>
40 #include <float.h>
41 
42 #define ENVELOPE_ADJUSTMENT_OFFSET 2
43 #define NOISE_FLOOR_OFFSET 6.0f
44 
48 enum {
59 };
60 
64 enum {
69 };
70 
71 enum {
73 };
74 
75 static VLC vlc_sbr[10];
76 static const int8_t vlc_sbr_lav[10] =
77  { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
78 
79 #define SBR_INIT_VLC_STATIC(num, size) \
80  INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
81  sbr_tmp[num].sbr_bits , 1, 1, \
82  sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
83  size)
84 
85 #define SBR_VLC_ROW(name) \
86  { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
87 
89 {
90  int n;
91  static const struct {
92  const void *sbr_codes, *sbr_bits;
93  const unsigned int table_size, elem_size;
94  } sbr_tmp[] = {
95  SBR_VLC_ROW(t_huffman_env_1_5dB),
96  SBR_VLC_ROW(f_huffman_env_1_5dB),
97  SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
98  SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
99  SBR_VLC_ROW(t_huffman_env_3_0dB),
100  SBR_VLC_ROW(f_huffman_env_3_0dB),
101  SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
102  SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
103  SBR_VLC_ROW(t_huffman_noise_3_0dB),
104  SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
105  };
106 
107  // SBR VLC table initialization
108  SBR_INIT_VLC_STATIC(0, 1098);
109  SBR_INIT_VLC_STATIC(1, 1092);
110  SBR_INIT_VLC_STATIC(2, 768);
111  SBR_INIT_VLC_STATIC(3, 1026);
112  SBR_INIT_VLC_STATIC(4, 1058);
113  SBR_INIT_VLC_STATIC(5, 1052);
114  SBR_INIT_VLC_STATIC(6, 544);
115  SBR_INIT_VLC_STATIC(7, 544);
116  SBR_INIT_VLC_STATIC(8, 592);
117  SBR_INIT_VLC_STATIC(9, 512);
118 
119  for (n = 1; n < 320; n++)
120  sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
123 
124  for (n = 0; n < 320; n++)
126 
127  ff_ps_init();
128 }
129 
132  sbr->start = 0;
133  // Init defults used in pure upsampling mode
134  sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
135  sbr->m[1] = 0;
136  // Reset values for first SBR header
137  sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
138  memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
139 }
140 
142 {
143  sbr->kx[0] = sbr->kx[1];
144  sbr_turnoff(sbr);
147  /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
148  * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
149  * and scale back down at synthesis. */
150  ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
151  ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
152  ff_ps_ctx_init(&sbr->ps);
153  ff_sbrdsp_init(&sbr->dsp);
154 }
155 
157 {
158  ff_mdct_end(&sbr->mdct);
159  ff_mdct_end(&sbr->mdct_ana);
160 }
161 
162 static int qsort_comparison_function_int16(const void *a, const void *b)
163 {
164  return *(const int16_t *)a - *(const int16_t *)b;
165 }
166 
167 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
168 {
169  int i;
170  for (i = 0; i <= last_el; i++)
171  if (table[i] == needle)
172  return 1;
173  return 0;
174 }
175 
178 {
179  int k;
180  if (sbr->bs_limiter_bands > 0) {
181  static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
182  1.18509277094158210129f, //2^(0.49/2)
183  1.11987160404675912501f }; //2^(0.49/3)
184  const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
185  int16_t patch_borders[7];
186  uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
187 
188  patch_borders[0] = sbr->kx[1];
189  for (k = 1; k <= sbr->num_patches; k++)
190  patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
191 
192  memcpy(sbr->f_tablelim, sbr->f_tablelow,
193  (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
194  if (sbr->num_patches > 1)
195  memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
196  (sbr->num_patches - 1) * sizeof(patch_borders[0]));
197 
198  qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
199  sizeof(sbr->f_tablelim[0]),
201 
202  sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
203  while (out < sbr->f_tablelim + sbr->n_lim) {
204  if (*in >= *out * lim_bands_per_octave_warped) {
205  *++out = *in++;
206  } else if (*in == *out ||
207  !in_table_int16(patch_borders, sbr->num_patches, *in)) {
208  in++;
209  sbr->n_lim--;
210  } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
211  *out = *in++;
212  sbr->n_lim--;
213  } else {
214  *++out = *in++;
215  }
216  }
217  } else {
218  sbr->f_tablelim[0] = sbr->f_tablelow[0];
219  sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
220  sbr->n_lim = 1;
221  }
222 }
223 
225 {
226  unsigned int cnt = get_bits_count(gb);
227  uint8_t bs_header_extra_1;
228  uint8_t bs_header_extra_2;
229  int old_bs_limiter_bands = sbr->bs_limiter_bands;
230  SpectrumParameters old_spectrum_params;
231 
232  sbr->start = 1;
233 
234  // Save last spectrum parameters variables to compare to new ones
235  memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
236 
237  sbr->bs_amp_res_header = get_bits1(gb);
238  sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
239  sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
240  sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
241  skip_bits(gb, 2); // bs_reserved
242 
243  bs_header_extra_1 = get_bits1(gb);
244  bs_header_extra_2 = get_bits1(gb);
245 
246  if (bs_header_extra_1) {
247  sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
250  } else {
254  }
255 
256  // Check if spectrum parameters changed
257  if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
258  sbr->reset = 1;
259 
260  if (bs_header_extra_2) {
261  sbr->bs_limiter_bands = get_bits(gb, 2);
262  sbr->bs_limiter_gains = get_bits(gb, 2);
263  sbr->bs_interpol_freq = get_bits1(gb);
264  sbr->bs_smoothing_mode = get_bits1(gb);
265  } else {
266  sbr->bs_limiter_bands = 2;
267  sbr->bs_limiter_gains = 2;
268  sbr->bs_interpol_freq = 1;
269  sbr->bs_smoothing_mode = 1;
270  }
271 
272  if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
273  sbr_make_f_tablelim(sbr);
274 
275  return get_bits_count(gb) - cnt;
276 }
277 
278 static int array_min_int16(const int16_t *array, int nel)
279 {
280  int i, min = array[0];
281  for (i = 1; i < nel; i++)
282  min = FFMIN(array[i], min);
283  return min;
284 }
285 
286 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
287 {
288  int k, previous, present;
289  float base, prod;
290 
291  base = powf((float)stop / start, 1.0f / num_bands);
292  prod = start;
293  previous = start;
294 
295  for (k = 0; k < num_bands-1; k++) {
296  prod *= base;
297  present = lrintf(prod);
298  bands[k] = present - previous;
299  previous = present;
300  }
301  bands[num_bands-1] = stop - previous;
302 }
303 
304 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
305 {
306  // Requirements (14496-3 sp04 p205)
307  if (n_master <= 0) {
308  av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
309  return -1;
310  }
311  if (bs_xover_band >= n_master) {
312  av_log(avctx, AV_LOG_ERROR,
313  "Invalid bitstream, crossover band index beyond array bounds: %d\n",
314  bs_xover_band);
315  return -1;
316  }
317  return 0;
318 }
319 
322  SpectrumParameters *spectrum)
323 {
324  unsigned int temp, max_qmf_subbands;
325  unsigned int start_min, stop_min;
326  int k;
327  const int8_t *sbr_offset_ptr;
328  int16_t stop_dk[13];
329 
330  if (sbr->sample_rate < 32000) {
331  temp = 3000;
332  } else if (sbr->sample_rate < 64000) {
333  temp = 4000;
334  } else
335  temp = 5000;
336 
337  start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
338  stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
339 
340  switch (sbr->sample_rate) {
341  case 16000:
342  sbr_offset_ptr = sbr_offset[0];
343  break;
344  case 22050:
345  sbr_offset_ptr = sbr_offset[1];
346  break;
347  case 24000:
348  sbr_offset_ptr = sbr_offset[2];
349  break;
350  case 32000:
351  sbr_offset_ptr = sbr_offset[3];
352  break;
353  case 44100: case 48000: case 64000:
354  sbr_offset_ptr = sbr_offset[4];
355  break;
356  case 88200: case 96000: case 128000: case 176400: case 192000:
357  sbr_offset_ptr = sbr_offset[5];
358  break;
359  default:
361  "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
362  return -1;
363  }
364 
365  sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
366 
367  if (spectrum->bs_stop_freq < 14) {
368  sbr->k[2] = stop_min;
369  make_bands(stop_dk, stop_min, 64, 13);
370  qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
371  for (k = 0; k < spectrum->bs_stop_freq; k++)
372  sbr->k[2] += stop_dk[k];
373  } else if (spectrum->bs_stop_freq == 14) {
374  sbr->k[2] = 2*sbr->k[0];
375  } else if (spectrum->bs_stop_freq == 15) {
376  sbr->k[2] = 3*sbr->k[0];
377  } else {
379  "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
380  return -1;
381  }
382  sbr->k[2] = FFMIN(64, sbr->k[2]);
383 
384  // Requirements (14496-3 sp04 p205)
385  if (sbr->sample_rate <= 32000) {
386  max_qmf_subbands = 48;
387  } else if (sbr->sample_rate == 44100) {
388  max_qmf_subbands = 35;
389  } else if (sbr->sample_rate >= 48000)
390  max_qmf_subbands = 32;
391 
392  if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
394  "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
395  return -1;
396  }
397 
398  if (!spectrum->bs_freq_scale) {
399  int dk, k2diff;
400 
401  dk = spectrum->bs_alter_scale + 1;
402  sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
404  return -1;
405 
406  for (k = 1; k <= sbr->n_master; k++)
407  sbr->f_master[k] = dk;
408 
409  k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
410  if (k2diff < 0) {
411  sbr->f_master[1]--;
412  sbr->f_master[2]-= (k2diff < -1);
413  } else if (k2diff) {
414  sbr->f_master[sbr->n_master]++;
415  }
416 
417  sbr->f_master[0] = sbr->k[0];
418  for (k = 1; k <= sbr->n_master; k++)
419  sbr->f_master[k] += sbr->f_master[k - 1];
420 
421  } else {
422  int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
423  int two_regions, num_bands_0;
424  int vdk0_max, vdk1_min;
425  int16_t vk0[49];
426 
427  if (49 * sbr->k[2] > 110 * sbr->k[0]) {
428  two_regions = 1;
429  sbr->k[1] = 2 * sbr->k[0];
430  } else {
431  two_regions = 0;
432  sbr->k[1] = sbr->k[2];
433  }
434 
435  num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
436 
437  if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
438  av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
439  return -1;
440  }
441 
442  vk0[0] = 0;
443 
444  make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
445 
446  qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
447  vdk0_max = vk0[num_bands_0];
448 
449  vk0[0] = sbr->k[0];
450  for (k = 1; k <= num_bands_0; k++) {
451  if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
452  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
453  return -1;
454  }
455  vk0[k] += vk0[k-1];
456  }
457 
458  if (two_regions) {
459  int16_t vk1[49];
460  float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
461  : 1.0f; // bs_alter_scale = {0,1}
462  int num_bands_1 = lrintf(half_bands * invwarp *
463  log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
464 
465  make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
466 
467  vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
468 
469  if (vdk1_min < vdk0_max) {
470  int change;
471  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
472  change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
473  vk1[1] += change;
474  vk1[num_bands_1] -= change;
475  }
476 
477  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
478 
479  vk1[0] = sbr->k[1];
480  for (k = 1; k <= num_bands_1; k++) {
481  if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
482  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
483  return -1;
484  }
485  vk1[k] += vk1[k-1];
486  }
487 
488  sbr->n_master = num_bands_0 + num_bands_1;
490  return -1;
491  memcpy(&sbr->f_master[0], vk0,
492  (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
493  memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
494  num_bands_1 * sizeof(sbr->f_master[0]));
495 
496  } else {
497  sbr->n_master = num_bands_0;
499  return -1;
500  memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
501  }
502  }
503 
504  return 0;
505 }
506 
509 {
510  int i, k, sb = 0;
511  int msb = sbr->k[0];
512  int usb = sbr->kx[1];
513  int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
514 
515  sbr->num_patches = 0;
516 
517  if (goal_sb < sbr->kx[1] + sbr->m[1]) {
518  for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
519  } else
520  k = sbr->n_master;
521 
522  do {
523  int odd = 0;
524  for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
525  sb = sbr->f_master[i];
526  odd = (sb + sbr->k[0]) & 1;
527  }
528 
529  // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
530  // After this check the final number of patches can still be six which is
531  // illegal however the Coding Technologies decoder check stream has a final
532  // count of 6 patches
533  if (sbr->num_patches > 5) {
534  av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
535  return -1;
536  }
537 
538  sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
539  sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
540 
541  if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
542  usb = sb;
543  msb = sb;
544  sbr->num_patches++;
545  } else
546  msb = sbr->kx[1];
547 
548  if (sbr->f_master[k] - sb < 3)
549  k = sbr->n_master;
550  } while (sb != sbr->kx[1] + sbr->m[1]);
551 
552  if (sbr->num_patches > 1 &&
553  sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
554  sbr->num_patches--;
555 
556  return 0;
557 }
558 
561 {
562  int k, temp;
563 
564  sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
565  sbr->n[0] = (sbr->n[1] + 1) >> 1;
566 
567  memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
568  (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
569  sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
570  sbr->kx[1] = sbr->f_tablehigh[0];
571 
572  // Requirements (14496-3 sp04 p205)
573  if (sbr->kx[1] + sbr->m[1] > 64) {
575  "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
576  return -1;
577  }
578  if (sbr->kx[1] > 32) {
579  av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
580  return -1;
581  }
582 
583  sbr->f_tablelow[0] = sbr->f_tablehigh[0];
584  temp = sbr->n[1] & 1;
585  for (k = 1; k <= sbr->n[0]; k++)
586  sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
587 
589  log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
590  if (sbr->n_q > 5) {
591  av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
592  return -1;
593  }
594 
595  sbr->f_tablenoise[0] = sbr->f_tablelow[0];
596  temp = 0;
597  for (k = 1; k <= sbr->n_q; k++) {
598  temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
599  sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
600  }
601 
602  if (sbr_hf_calc_npatches(ac, sbr) < 0)
603  return -1;
604 
605  sbr_make_f_tablelim(sbr);
606 
607  sbr->data[0].f_indexnoise = 0;
608  sbr->data[1].f_indexnoise = 0;
609 
610  return 0;
611 }
612 
614  int elements)
615 {
616  int i;
617  for (i = 0; i < elements; i++) {
618  vec[i] = get_bits1(gb);
619  }
620 }
621 
623 static const int8_t ceil_log2[] = {
624  0, 1, 2, 2, 3, 3,
625 };
626 
628  GetBitContext *gb, SBRData *ch_data)
629 {
630  int i;
631  unsigned bs_pointer = 0;
632  // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
633  int abs_bord_trail = 16;
634  int num_rel_lead, num_rel_trail;
635  unsigned bs_num_env_old = ch_data->bs_num_env;
636 
637  ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
638  ch_data->bs_amp_res = sbr->bs_amp_res_header;
639  ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
640 
641  switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
642  case FIXFIX:
643  ch_data->bs_num_env = 1 << get_bits(gb, 2);
644  num_rel_lead = ch_data->bs_num_env - 1;
645  if (ch_data->bs_num_env == 1)
646  ch_data->bs_amp_res = 0;
647 
648  if (ch_data->bs_num_env > 4) {
650  "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
651  ch_data->bs_num_env);
652  return -1;
653  }
654 
655  ch_data->t_env[0] = 0;
656  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
657 
658  abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
659  ch_data->bs_num_env;
660  for (i = 0; i < num_rel_lead; i++)
661  ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
662 
663  ch_data->bs_freq_res[1] = get_bits1(gb);
664  for (i = 1; i < ch_data->bs_num_env; i++)
665  ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
666  break;
667  case FIXVAR:
668  abs_bord_trail += get_bits(gb, 2);
669  num_rel_trail = get_bits(gb, 2);
670  ch_data->bs_num_env = num_rel_trail + 1;
671  ch_data->t_env[0] = 0;
672  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
673 
674  for (i = 0; i < num_rel_trail; i++)
675  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
676  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
677 
678  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
679 
680  for (i = 0; i < ch_data->bs_num_env; i++)
681  ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
682  break;
683  case VARFIX:
684  ch_data->t_env[0] = get_bits(gb, 2);
685  num_rel_lead = get_bits(gb, 2);
686  ch_data->bs_num_env = num_rel_lead + 1;
687  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
688 
689  for (i = 0; i < num_rel_lead; i++)
690  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
691 
692  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
693 
694  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
695  break;
696  case VARVAR:
697  ch_data->t_env[0] = get_bits(gb, 2);
698  abs_bord_trail += get_bits(gb, 2);
699  num_rel_lead = get_bits(gb, 2);
700  num_rel_trail = get_bits(gb, 2);
701  ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
702 
703  if (ch_data->bs_num_env > 5) {
705  "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
706  ch_data->bs_num_env);
707  return -1;
708  }
709 
710  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
711 
712  for (i = 0; i < num_rel_lead; i++)
713  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
714  for (i = 0; i < num_rel_trail; i++)
715  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
716  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
717 
718  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
719 
720  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
721  break;
722  }
723 
724  if (bs_pointer > ch_data->bs_num_env + 1) {
726  "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
727  bs_pointer);
728  return -1;
729  }
730 
731  for (i = 1; i <= ch_data->bs_num_env; i++) {
732  if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
733  av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
734  return -1;
735  }
736  }
737 
738  ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
739 
740  ch_data->t_q[0] = ch_data->t_env[0];
741  ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
742  if (ch_data->bs_num_noise > 1) {
743  unsigned int idx;
744  if (ch_data->bs_frame_class == FIXFIX) {
745  idx = ch_data->bs_num_env >> 1;
746  } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
747  idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
748  } else { // VARFIX
749  if (!bs_pointer)
750  idx = 1;
751  else if (bs_pointer == 1)
752  idx = ch_data->bs_num_env - 1;
753  else // bs_pointer > 1
754  idx = bs_pointer - 1;
755  }
756  ch_data->t_q[1] = ch_data->t_env[idx];
757  }
758 
759  ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
760  ch_data->e_a[1] = -1;
761  if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
762  ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
763  } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
764  ch_data->e_a[1] = bs_pointer - 1;
765 
766  return 0;
767 }
768 
769 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
770  //These variables are saved from the previous frame rather than copied
771  dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
772  dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
773  dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
774 
775  //These variables are read from the bitstream and therefore copied
776  memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
777  memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
778  memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
779  dst->bs_num_env = src->bs_num_env;
780  dst->bs_amp_res = src->bs_amp_res;
781  dst->bs_num_noise = src->bs_num_noise;
782  dst->bs_frame_class = src->bs_frame_class;
783  dst->e_a[1] = src->e_a[1];
784 }
785 
788  SBRData *ch_data)
789 {
790  get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
791  get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
792 }
793 
796  SBRData *ch_data)
797 {
798  int i;
799 
800  memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
801  for (i = 0; i < sbr->n_q; i++)
802  ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
803 }
804 
806  SBRData *ch_data, int ch)
807 {
808  int bits;
809  int i, j, k;
810  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
811  int t_lav, f_lav;
812  const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
813  const int odd = sbr->n[1] & 1;
814 
815  if (sbr->bs_coupling && ch) {
816  if (ch_data->bs_amp_res) {
817  bits = 5;
818  t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
820  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
822  } else {
823  bits = 6;
824  t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
826  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
828  }
829  } else {
830  if (ch_data->bs_amp_res) {
831  bits = 6;
832  t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
834  f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
836  } else {
837  bits = 7;
838  t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
840  f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
842  }
843  }
844 
845  for (i = 0; i < ch_data->bs_num_env; i++) {
846  if (ch_data->bs_df_env[i]) {
847  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
848  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
849  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
850  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
851  } else if (ch_data->bs_freq_res[i + 1]) {
852  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
853  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
854  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
855  }
856  } else {
857  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
858  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
859  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
860  }
861  }
862  } else {
863  ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
864  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
865  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
866  }
867  }
868 
869  //assign 0th elements of env_facs from last elements
870  memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
871  sizeof(ch_data->env_facs[0]));
872 }
873 
875  SBRData *ch_data, int ch)
876 {
877  int i, j;
878  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
879  int t_lav, f_lav;
880  int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
881 
882  if (sbr->bs_coupling && ch) {
883  t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
885  f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
887  } else {
888  t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
890  f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
892  }
893 
894  for (i = 0; i < ch_data->bs_num_noise; i++) {
895  if (ch_data->bs_df_noise[i]) {
896  for (j = 0; j < sbr->n_q; j++)
897  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
898  } else {
899  ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
900  for (j = 1; j < sbr->n_q; j++)
901  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
902  }
903  }
904 
905  //assign 0th elements of noise_facs from last elements
906  memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
907  sizeof(ch_data->noise_facs[0]));
908 }
909 
911  GetBitContext *gb,
912  int bs_extension_id, int *num_bits_left)
913 {
914  switch (bs_extension_id) {
915  case EXTENSION_ID_PS:
916  if (!ac->oc[1].m4ac.ps) {
917  av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
918  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
919  *num_bits_left = 0;
920  } else {
921 #if 1
922  *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
924 #else
925  avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
926  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
927  *num_bits_left = 0;
928 #endif
929  }
930  break;
931  default:
932  avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
933  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
934  *num_bits_left = 0;
935  break;
936  }
937 }
938 
941  GetBitContext *gb)
942 {
943  if (get_bits1(gb)) // bs_data_extra
944  skip_bits(gb, 4); // bs_reserved
945 
946  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
947  return -1;
948  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
949  read_sbr_invf(sbr, gb, &sbr->data[0]);
950  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
951  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
952 
953  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
954  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
955 
956  return 0;
957 }
958 
961  GetBitContext *gb)
962 {
963  if (get_bits1(gb)) // bs_data_extra
964  skip_bits(gb, 8); // bs_reserved
965 
966  if ((sbr->bs_coupling = get_bits1(gb))) {
967  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
968  return -1;
969  copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
970  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
971  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
972  read_sbr_invf(sbr, gb, &sbr->data[0]);
973  memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
974  memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
975  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
976  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
977  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
978  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
979  } else {
980  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
981  read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
982  return -1;
983  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
984  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
985  read_sbr_invf(sbr, gb, &sbr->data[0]);
986  read_sbr_invf(sbr, gb, &sbr->data[1]);
987  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
988  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
989  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
990  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
991  }
992 
993  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
994  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
995  if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
996  get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
997 
998  return 0;
999 }
1000 
1001 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1002  GetBitContext *gb, int id_aac)
1003 {
1004  unsigned int cnt = get_bits_count(gb);
1005 
1006  if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1007  if (read_sbr_single_channel_element(ac, sbr, gb)) {
1008  sbr_turnoff(sbr);
1009  return get_bits_count(gb) - cnt;
1010  }
1011  } else if (id_aac == TYPE_CPE) {
1012  if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1013  sbr_turnoff(sbr);
1014  return get_bits_count(gb) - cnt;
1015  }
1016  } else {
1017  av_log(ac->avctx, AV_LOG_ERROR,
1018  "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1019  sbr_turnoff(sbr);
1020  return get_bits_count(gb) - cnt;
1021  }
1022  if (get_bits1(gb)) { // bs_extended_data
1023  int num_bits_left = get_bits(gb, 4); // bs_extension_size
1024  if (num_bits_left == 15)
1025  num_bits_left += get_bits(gb, 8); // bs_esc_count
1026 
1027  num_bits_left <<= 3;
1028  while (num_bits_left > 7) {
1029  num_bits_left -= 2;
1030  read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1031  }
1032  if (num_bits_left < 0) {
1033  av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1034  }
1035  if (num_bits_left > 0)
1036  skip_bits(gb, num_bits_left);
1037  }
1038 
1039  return get_bits_count(gb) - cnt;
1040 }
1041 
1043 {
1044  int err;
1045  err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1046  if (err >= 0)
1047  err = sbr_make_f_derived(ac, sbr);
1048  if (err < 0) {
1049  av_log(ac->avctx, AV_LOG_ERROR,
1050  "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1051  sbr_turnoff(sbr);
1052  }
1053 }
1054 
1064  GetBitContext *gb_host, int crc, int cnt, int id_aac)
1065 {
1066  unsigned int num_sbr_bits = 0, num_align_bits;
1067  unsigned bytes_read;
1068  GetBitContext gbc = *gb_host, *gb = &gbc;
1069  skip_bits_long(gb_host, cnt*8 - 4);
1070 
1071  sbr->reset = 0;
1072 
1073  if (!sbr->sample_rate)
1074  sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1075  if (!ac->oc[1].m4ac.ext_sample_rate)
1076  ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1077 
1078  if (crc) {
1079  skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1080  num_sbr_bits += 10;
1081  }
1082 
1083  //Save some state from the previous frame.
1084  sbr->kx[0] = sbr->kx[1];
1085  sbr->m[0] = sbr->m[1];
1086  sbr->kx_and_m_pushed = 1;
1087 
1088  num_sbr_bits++;
1089  if (get_bits1(gb)) // bs_header_flag
1090  num_sbr_bits += read_sbr_header(sbr, gb);
1091 
1092  if (sbr->reset)
1093  sbr_reset(ac, sbr);
1094 
1095  if (sbr->start)
1096  num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1097 
1098  num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1099  bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1100 
1101  if (bytes_read > cnt) {
1102  av_log(ac->avctx, AV_LOG_ERROR,
1103  "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1104  }
1105  return cnt;
1106 }
1107 
1109 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1110 {
1111  int k, e;
1112  int ch;
1113 
1114  if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1115  float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1116  float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1117  for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1118  for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1119  float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1120  float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1121  float fac = temp1 / (1.0f + temp2);
1122  sbr->data[0].env_facs[e][k] = fac;
1123  sbr->data[1].env_facs[e][k] = fac * temp2;
1124  }
1125  }
1126  for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1127  for (k = 0; k < sbr->n_q; k++) {
1128  float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1129  float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1130  float fac = temp1 / (1.0f + temp2);
1131  sbr->data[0].noise_facs[e][k] = fac;
1132  sbr->data[1].noise_facs[e][k] = fac * temp2;
1133  }
1134  }
1135  } else { // SCE or one non-coupled CPE
1136  for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1137  float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1138  for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1139  for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
1140  sbr->data[ch].env_facs[e][k] =
1141  exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1142  for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1143  for (k = 0; k < sbr->n_q; k++)
1144  sbr->data[ch].noise_facs[e][k] =
1145  exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1146  }
1147  }
1148 }
1149 
1157  SBRDSPContext *sbrdsp, const float *in, float *x,
1158  float z[320], float W[2][32][32][2], int buf_idx)
1159 {
1160  int i;
1161  memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1162  memcpy(x+288, in, 1024*sizeof(x[0]));
1163  for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1164  // are not supported
1165  dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1166  sbrdsp->sum64x5(z);
1167  sbrdsp->qmf_pre_shuffle(z);
1168  mdct->imdct_half(mdct, z, z+64);
1169  sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1170  x += 32;
1171  }
1172 }
1173 
1178 static void sbr_qmf_synthesis(FFTContext *mdct,
1179  SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1180  float *out, float X[2][38][64],
1181  float mdct_buf[2][64],
1182  float *v0, int *v_off, const unsigned int div)
1183 {
1184  int i, n;
1185  const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1186  const int step = 128 >> div;
1187  float *v;
1188  for (i = 0; i < 32; i++) {
1189  if (*v_off < step) {
1190  int saved_samples = (1280 - 128) >> div;
1191  memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1192  *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1193  } else {
1194  *v_off -= step;
1195  }
1196  v = v0 + *v_off;
1197  if (div) {
1198  for (n = 0; n < 32; n++) {
1199  X[0][i][ n] = -X[0][i][n];
1200  X[0][i][32+n] = X[1][i][31-n];
1201  }
1202  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1203  sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1204  } else {
1205  sbrdsp->neg_odd_64(X[1][i]);
1206  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1207  mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1208  sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1209  }
1210  dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1211  dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1212  dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1213  dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1214  dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1215  dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1216  dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1217  dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1218  dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1219  dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1220  out += 64 >> div;
1221  }
1222 }
1223 
1229  float (*alpha0)[2], float (*alpha1)[2],
1230  const float X_low[32][40][2], int k0)
1231 {
1232  int k;
1233  for (k = 0; k < k0; k++) {
1234  LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
1235  float dk;
1236 
1237  dsp->autocorrelate(X_low[k], phi);
1238 
1239  dk = phi[2][1][0] * phi[1][0][0] -
1240  (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1241 
1242  if (!dk) {
1243  alpha1[k][0] = 0;
1244  alpha1[k][1] = 0;
1245  } else {
1246  float temp_real, temp_im;
1247  temp_real = phi[0][0][0] * phi[1][1][0] -
1248  phi[0][0][1] * phi[1][1][1] -
1249  phi[0][1][0] * phi[1][0][0];
1250  temp_im = phi[0][0][0] * phi[1][1][1] +
1251  phi[0][0][1] * phi[1][1][0] -
1252  phi[0][1][1] * phi[1][0][0];
1253 
1254  alpha1[k][0] = temp_real / dk;
1255  alpha1[k][1] = temp_im / dk;
1256  }
1257 
1258  if (!phi[1][0][0]) {
1259  alpha0[k][0] = 0;
1260  alpha0[k][1] = 0;
1261  } else {
1262  float temp_real, temp_im;
1263  temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1264  alpha1[k][1] * phi[1][1][1];
1265  temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1266  alpha1[k][0] * phi[1][1][1];
1267 
1268  alpha0[k][0] = -temp_real / phi[1][0][0];
1269  alpha0[k][1] = -temp_im / phi[1][0][0];
1270  }
1271 
1272  if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1273  alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1274  alpha1[k][0] = 0;
1275  alpha1[k][1] = 0;
1276  alpha0[k][0] = 0;
1277  alpha0[k][1] = 0;
1278  }
1279  }
1280 }
1281 
1283 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1284 {
1285  int i;
1286  float new_bw;
1287  static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1288 
1289  for (i = 0; i < sbr->n_q; i++) {
1290  if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1291  new_bw = 0.6f;
1292  } else
1293  new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1294 
1295  if (new_bw < ch_data->bw_array[i]) {
1296  new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1297  } else
1298  new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1299  ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1300  }
1301 }
1302 
1305  float X_low[32][40][2], const float W[2][32][32][2],
1306  int buf_idx)
1307 {
1308  int i, k;
1309  const int t_HFGen = 8;
1310  const int i_f = 32;
1311  memset(X_low, 0, 32*sizeof(*X_low));
1312  for (k = 0; k < sbr->kx[1]; k++) {
1313  for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1314  X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1315  X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1316  }
1317  }
1318  buf_idx = 1-buf_idx;
1319  for (k = 0; k < sbr->kx[0]; k++) {
1320  for (i = 0; i < t_HFGen; i++) {
1321  X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1322  X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1323  }
1324  }
1325  return 0;
1326 }
1327 
1330  float X_high[64][40][2], const float X_low[32][40][2],
1331  const float (*alpha0)[2], const float (*alpha1)[2],
1332  const float bw_array[5], const uint8_t *t_env,
1333  int bs_num_env)
1334 {
1335  int j, x;
1336  int g = 0;
1337  int k = sbr->kx[1];
1338  for (j = 0; j < sbr->num_patches; j++) {
1339  for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1340  const int p = sbr->patch_start_subband[j] + x;
1341  while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1342  g++;
1343  g--;
1344 
1345  if (g < 0) {
1346  av_log(ac->avctx, AV_LOG_ERROR,
1347  "ERROR : no subband found for frequency %d\n", k);
1348  return -1;
1349  }
1350 
1351  sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1352  X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1353  alpha0[p], alpha1[p], bw_array[g],
1354  2 * t_env[0], 2 * t_env[bs_num_env]);
1355  }
1356  }
1357  if (k < sbr->m[1] + sbr->kx[1])
1358  memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1359 
1360  return 0;
1361 }
1362 
1364 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
1365  const float Y0[38][64][2], const float Y1[38][64][2],
1366  const float X_low[32][40][2], int ch)
1367 {
1368  int k, i;
1369  const int i_f = 32;
1370  const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1371  memset(X, 0, 2*sizeof(*X));
1372  for (k = 0; k < sbr->kx[0]; k++) {
1373  for (i = 0; i < i_Temp; i++) {
1374  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1375  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1376  }
1377  }
1378  for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1379  for (i = 0; i < i_Temp; i++) {
1380  X[0][i][k] = Y0[i + i_f][k][0];
1381  X[1][i][k] = Y0[i + i_f][k][1];
1382  }
1383  }
1384 
1385  for (k = 0; k < sbr->kx[1]; k++) {
1386  for (i = i_Temp; i < 38; i++) {
1387  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1388  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1389  }
1390  }
1391  for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1392  for (i = i_Temp; i < i_f; i++) {
1393  X[0][i][k] = Y1[i][k][0];
1394  X[1][i][k] = Y1[i][k][1];
1395  }
1396  }
1397  return 0;
1398 }
1399 
1404  SBRData *ch_data, int e_a[2])
1405 {
1406  int e, i, m;
1407 
1408  memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1409  for (e = 0; e < ch_data->bs_num_env; e++) {
1410  const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1411  uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1412  int k;
1413 
1414  if (sbr->kx[1] != table[0]) {
1415  av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1416  "Derived frequency tables were not regenerated.\n");
1417  sbr_turnoff(sbr);
1418  return AVERROR_BUG;
1419  }
1420  for (i = 0; i < ilim; i++)
1421  for (m = table[i]; m < table[i + 1]; m++)
1422  sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1423 
1424  // ch_data->bs_num_noise > 1 => 2 noise floors
1425  k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1426  for (i = 0; i < sbr->n_q; i++)
1427  for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1428  sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1429 
1430  for (i = 0; i < sbr->n[1]; i++) {
1431  if (ch_data->bs_add_harmonic_flag) {
1432  const unsigned int m_midpoint =
1433  (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1434 
1435  ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1436  (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1437  }
1438  }
1439 
1440  for (i = 0; i < ilim; i++) {
1441  int additional_sinusoid_present = 0;
1442  for (m = table[i]; m < table[i + 1]; m++) {
1443  if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1444  additional_sinusoid_present = 1;
1445  break;
1446  }
1447  }
1448  memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1449  (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1450  }
1451  }
1452 
1453  memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1454  return 0;
1455 }
1456 
1458 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1459  SpectralBandReplication *sbr, SBRData *ch_data)
1460 {
1461  int e, m;
1462  int kx1 = sbr->kx[1];
1463 
1464  if (sbr->bs_interpol_freq) {
1465  for (e = 0; e < ch_data->bs_num_env; e++) {
1466  const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1467  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1468  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1469 
1470  for (m = 0; m < sbr->m[1]; m++) {
1471  float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1472  e_curr[e][m] = sum * recip_env_size;
1473  }
1474  }
1475  } else {
1476  int k, p;
1477 
1478  for (e = 0; e < ch_data->bs_num_env; e++) {
1479  const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1480  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1481  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1482  const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1483 
1484  for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1485  float sum = 0.0f;
1486  const int den = env_size * (table[p + 1] - table[p]);
1487 
1488  for (k = table[p]; k < table[p + 1]; k++) {
1489  sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1490  }
1491  sum /= den;
1492  for (k = table[p]; k < table[p + 1]; k++) {
1493  e_curr[e][k - kx1] = sum;
1494  }
1495  }
1496  }
1497  }
1498 }
1499 
1505  SBRData *ch_data, const int e_a[2])
1506 {
1507  int e, k, m;
1508  // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1509  static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1510 
1511  for (e = 0; e < ch_data->bs_num_env; e++) {
1512  int delta = !((e == e_a[1]) || (e == e_a[0]));
1513  for (k = 0; k < sbr->n_lim; k++) {
1514  float gain_boost, gain_max;
1515  float sum[2] = { 0.0f, 0.0f };
1516  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1517  const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1518  sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1519  sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1520  if (!sbr->s_mapped[e][m]) {
1521  sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1522  ((1.0f + sbr->e_curr[e][m]) *
1523  (1.0f + sbr->q_mapped[e][m] * delta)));
1524  } else {
1525  sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1526  ((1.0f + sbr->e_curr[e][m]) *
1527  (1.0f + sbr->q_mapped[e][m])));
1528  }
1529  }
1530  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1531  sum[0] += sbr->e_origmapped[e][m];
1532  sum[1] += sbr->e_curr[e][m];
1533  }
1534  gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1535  gain_max = FFMIN(100000.f, gain_max);
1536  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1537  float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1538  sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1539  sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1540  }
1541  sum[0] = sum[1] = 0.0f;
1542  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1543  sum[0] += sbr->e_origmapped[e][m];
1544  sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1545  + sbr->s_m[e][m] * sbr->s_m[e][m]
1546  + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1547  }
1548  gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1549  gain_boost = FFMIN(1.584893192f, gain_boost);
1550  for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1551  sbr->gain[e][m] *= gain_boost;
1552  sbr->q_m[e][m] *= gain_boost;
1553  sbr->s_m[e][m] *= gain_boost;
1554  }
1555  }
1556  }
1557 }
1558 
1560 static void sbr_hf_assemble(float Y1[38][64][2],
1561  const float X_high[64][40][2],
1562  SpectralBandReplication *sbr, SBRData *ch_data,
1563  const int e_a[2])
1564 {
1565  int e, i, j, m;
1566  const int h_SL = 4 * !sbr->bs_smoothing_mode;
1567  const int kx = sbr->kx[1];
1568  const int m_max = sbr->m[1];
1569  static const float h_smooth[5] = {
1570  0.33333333333333,
1571  0.30150283239582,
1572  0.21816949906249,
1573  0.11516383427084,
1574  0.03183050093751,
1575  };
1576  static const int8_t phi[2][4] = {
1577  { 1, 0, -1, 0}, // real
1578  { 0, 1, 0, -1}, // imaginary
1579  };
1580  float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1581  int indexnoise = ch_data->f_indexnoise;
1582  int indexsine = ch_data->f_indexsine;
1583 
1584  if (sbr->reset) {
1585  for (i = 0; i < h_SL; i++) {
1586  memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1587  memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1588  }
1589  } else if (h_SL) {
1590  memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1591  memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1592  }
1593 
1594  for (e = 0; e < ch_data->bs_num_env; e++) {
1595  for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1596  memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1597  memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1598  }
1599  }
1600 
1601  for (e = 0; e < ch_data->bs_num_env; e++) {
1602  for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1603  int phi_sign = (1 - 2*(kx & 1));
1604  LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
1605  LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
1606  float *g_filt, *q_filt;
1607 
1608  if (h_SL && e != e_a[0] && e != e_a[1]) {
1609  g_filt = g_filt_tab;
1610  q_filt = q_filt_tab;
1611  for (m = 0; m < m_max; m++) {
1612  const int idx1 = i + h_SL;
1613  g_filt[m] = 0.0f;
1614  q_filt[m] = 0.0f;
1615  for (j = 0; j <= h_SL; j++) {
1616  g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
1617  q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
1618  }
1619  }
1620  } else {
1621  g_filt = g_temp[i + h_SL];
1622  q_filt = q_temp[i];
1623  }
1624 
1625  sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
1627 
1628  if (e != e_a[0] && e != e_a[1]) {
1629  sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
1630  q_filt, indexnoise,
1631  kx, m_max);
1632  } else {
1633  for (m = 0; m < m_max; m++) {
1634  Y1[i][m + kx][0] +=
1635  sbr->s_m[e][m] * phi[0][indexsine];
1636  Y1[i][m + kx][1] +=
1637  sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1638  phi_sign = -phi_sign;
1639  }
1640  }
1641  indexnoise = (indexnoise + m_max) & 0x1ff;
1642  indexsine = (indexsine + 1) & 3;
1643  }
1644  }
1645  ch_data->f_indexnoise = indexnoise;
1646  ch_data->f_indexsine = indexsine;
1647 }
1648 
1650  float* L, float* R)
1651 {
1652  int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1653  int ch;
1654  int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1655  int err;
1656 
1657  if (!sbr->kx_and_m_pushed) {
1658  sbr->kx[0] = sbr->kx[1];
1659  sbr->m[0] = sbr->m[1];
1660  } else {
1661  sbr->kx_and_m_pushed = 0;
1662  }
1663 
1664  if (sbr->start) {
1665  sbr_dequant(sbr, id_aac);
1666  }
1667  for (ch = 0; ch < nch; ch++) {
1668  /* decode channel */
1669  sbr_qmf_analysis(&ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1670  (float*)sbr->qmf_filter_scratch,
1671  sbr->data[ch].W, sbr->data[ch].Ypos);
1672  sbr_lf_gen(ac, sbr, sbr->X_low,
1673  (const float (*)[32][32][2]) sbr->data[ch].W,
1674  sbr->data[ch].Ypos);
1675  sbr->data[ch].Ypos ^= 1;
1676  if (sbr->start) {
1677  sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1678  (const float (*)[40][2]) sbr->X_low, sbr->k[0]);
1679  sbr_chirp(sbr, &sbr->data[ch]);
1680  sbr_hf_gen(ac, sbr, sbr->X_high,
1681  (const float (*)[40][2]) sbr->X_low,
1682  (const float (*)[2]) sbr->alpha0,
1683  (const float (*)[2]) sbr->alpha1,
1684  sbr->data[ch].bw_array, sbr->data[ch].t_env,
1685  sbr->data[ch].bs_num_env);
1686 
1687  // hf_adj
1688  err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1689  if (!err) {
1690  sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1691  sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1692  sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1693  (const float (*)[40][2]) sbr->X_high,
1694  sbr, &sbr->data[ch],
1695  sbr->data[ch].e_a);
1696  }
1697  }
1698 
1699  /* synthesis */
1700  sbr_x_gen(sbr, sbr->X[ch],
1701  (const float (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1702  (const float (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1703  (const float (*)[40][2]) sbr->X_low, ch);
1704  }
1705 
1706  if (ac->oc[1].m4ac.ps == 1) {
1707  if (sbr->ps.start) {
1708  ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1709  } else {
1710  memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1711  }
1712  nch = 2;
1713  }
1714 
1715  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
1716  L, sbr->X[0], sbr->qmf_filter_scratch,
1719  downsampled);
1720  if (nch == 2)
1721  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
1722  R, sbr->X[1], sbr->qmf_filter_scratch,
1725  downsampled);
1726 }
uint8_t s_indexmapped[8][48]
Definition: sbr.h:95
unsigned bs_add_harmonic_flag
Definition: sbr.h:66
float alpha1[64][2]
First coefficient used to filter the subband signals.
Definition: sbr.h:169
float e_curr[7][48]
Estimated envelope.
Definition: sbr.h:177
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
Derived Frequency Band Tables (14496-3 sp04 p197)
Definition: aacsbr.c:560
int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
Definition: aacps.c:891
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
Definition: aacsbr.c:1560
unsigned bs_smoothing_mode
Definition: sbr.h:127
static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
Definition: aacsbr.c:874
AVCodecContext * avctx
Definition: aac.h:263
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:240
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:199
float Y[2][38][64][2]
Definition: sbr.h:92
static void copy_sbr_grid(SBRData *dst, const SBRData *src)
Definition: aacsbr.c:769
#define R
Definition: huffyuv.h:51
void(* sum64x5)(float *z)
Definition: sbrdsp.h:27
float X[2][2][38][64]
QMF values of the reconstructed signal.
Definition: sbr.h:165
float(* sum_square)(float(*x)[2], int n)
Definition: sbrdsp.h:28
Definition: aac.h:49
Definition: aac.h:50
void(* qmf_deint_neg)(float *v, const float *src)
Definition: sbrdsp.h:32
int e_a[2]
l_APrev and l_A
Definition: sbr.h:85
av_cold void ff_aac_sbr_init(void)
Initialize SBR.
Definition: aacsbr.c:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_dlog(ac->avr,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
unsigned kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
Definition: sbr.h:133
static void sbr_qmf_synthesis(FFTContext *mdct, SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp, float *out, float X[2][38][64], float mdct_buf[2][64], float *v0, int *v_off, const unsigned int div)
Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank (14496-3 sp04 p206) ...
Definition: aacsbr.c:1178
float q_m[7][48]
Amplitude adjusted noise scalefactors.
Definition: sbr.h:179
float q_mapped[7][48]
Dequantized noise scalefactors, remapped.
Definition: sbr.h:173
unsigned n_lim
Number of limiter bands.
Definition: sbr.h:146
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, float X_high[64][40][2], const float X_low[32][40][2], const float(*alpha0)[2], const float(*alpha1)[2], const float bw_array[5], const uint8_t *t_env, int bs_num_env)
High Frequency Generator (14496-3 sp04 p215)
Definition: aacsbr.c:1329
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Definition: aacsbr.c:627
#define VLC_TYPE
Definition: get_bits.h:62
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the product of two vectors of floats, and store the result in a vector of floats...
Definition: float_dsp.h:138
float e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
Definition: sbr.h:171
FFTContext mdct
Definition: sbr.h:185
#define FF_PROFILE_AAC_HE_V2
Definition: avcodec.h:2631
uint8_t bs_xover_band
Definition: sbr.h:43
int profile
profile
Definition: avcodec.h:2622
SpectrumParameters spectrum_params
Definition: sbr.h:118
Definition: aac.h:51
av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
Close one SBR context.
Definition: aacsbr.c:156
float bw_array[5]
Chirp factors.
Definition: sbr.h:87
float qmf_filter_scratch[5][64]
Definition: sbr.h:183
unsigned kx_and_m_pushed
Definition: sbr.h:136
unsigned n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
Definition: sbr.h:142
static const int8_t sbr_offset[6][16]
window coefficients for analysis/synthesis QMF banks
Definition: aacsbrdata.h:260
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
uint8_t bits
Definition: crc.c:251
uint8_t
#define av_cold
Definition: attributes.h:66
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
Definition: aacsbr.c:304
Definition: aacsbr.c:66
float delta
uint16_t f_tablehigh[49]
Frequency borders for high resolution SBR.
Definition: sbr.h:152
#define b
Definition: input.c:52
static float sbr_qmf_window_us[640]
Definition: aacsbrdata.h:271
static int qsort_comparison_function_int16(const void *a, const void *b)
Definition: aacsbr.c:162
int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb_host, int crc, int cnt, int id_aac)
Decode Spectral Band Replication extension data; reference: table 4.55.
Definition: aacsbr.c:1063
#define SBR_INIT_VLC_STATIC(num, size)
Definition: aacsbr.c:79
float env_facs[6][48]
Envelope scalefactors.
Definition: sbr.h:97
AAC Spectral Band Replication decoding data.
#define ENVELOPE_ADJUSTMENT_OFFSET
Definition: aacsbr.c:42
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:194
void(* qmf_deint_bfly)(float *v, const float *src0, const float *src1)
Definition: sbrdsp.h:33
SBRData data[2]
Definition: sbr.h:139
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
Definition: aacsbr.c:224
uint8_t bs_df_noise[2]
Definition: sbr.h:71
static void sbr_env_estimate(float(*e_curr)[48], float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data)
Estimation of current envelope (14496-3 sp04 p218)
Definition: aacsbr.c:1458
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, int e_a[2])
High Frequency Adjustment (14496-3 sp04 p217) and Mapping (14496-3 sp04 p217)
Definition: aacsbr.c:1403
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, int elements)
Definition: aacsbr.c:613
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, SpectrumParameters *spectrum)
Master Frequency Band Table (14496-3 sp04 p194)
Definition: aacsbr.c:321
uint8_t patch_num_subbands[6]
Definition: sbr.h:158
static int array_min_int16(const int16_t *array, int nel)
Definition: aacsbr.c:278
uint16_t f_tablenoise[6]
Frequency borders for noise floors.
Definition: sbr.h:154
Definition: aacsbr.c:65
float gain[7][48]
Definition: sbr.h:182
MPEG4AudioConfig m4ac
Definition: aac.h:116
uint8_t t_q[3]
Noise time borders.
Definition: sbr.h:105
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
uint16_t f_tablelow[25]
Frequency borders for low resolution SBR.
Definition: sbr.h:150
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
Definition: aacsbr.c:1228
Definition: aacsbr.c:68
Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the pr...
Definition: sbr.h:40
static int read_sbr_channel_pair_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
Definition: aacsbr.c:959
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the product of two vectors of floats and store the result in a vector of floats...
Definition: float_dsp.h:38
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
Definition: aacsbr.c:1109
unsigned num_patches
Definition: sbr.h:157
av_cold void ff_ps_ctx_init(PSContext *ps)
Definition: aacps.c:953
static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64], const float Y0[38][64][2], const float Y1[38][64][2], const float X_low[32][40][2], int ch)
Generate the subband filtered lowband.
Definition: aacsbr.c:1364
g
Definition: yuv2rgb.c:535
float alpha0[64][2]
Zeroth coefficient used to filter the subband signals.
Definition: sbr.h:167
#define NOISE_FLOOR_OFFSET
Definition: aacsbr.c:43
Spectral Band Replication definitions and structures.
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:169
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
Definition: aacsbr.c:508
void(* hf_apply_noise[4])(float(*Y)[2], const float *s_m, const float *q_filt, int noise, int kx, int m_max)
Definition: sbrdsp.h:40
void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, float *L, float *R)
Apply one SBR element to one AAC element.
Definition: aacsbr.c:1649
#define ff_mdct_init
Definition: fft.h:151
#define FFMAX(a, b)
Definition: common.h:55
unsigned n_master
The number of frequency bands in f_master.
Definition: sbr.h:138
float q_temp[42][48]
Definition: sbr.h:94
unsigned bs_interpol_freq
Definition: sbr.h:126
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read how the envelope and noise floor data is delta coded.
Definition: aacsbr.c:787
FFTContext mdct_ana
Definition: sbr.h:184
Definition: get_bits.h:64
#define powf(x, y)
Definition: libm.h:44
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct, SBRDSPContext *sbrdsp, const float *in, float *x, float z[320], float W[2][32][32][2], int buf_idx)
Analysis QMF Bank (14496-3 sp04 p206)
Definition: aacsbr.c:1156
float synthesis_filterbank_samples[SBR_SYNTHESIS_BUF_SIZE]
Definition: sbr.h:81
unsigned f_indexnoise
Definition: sbr.h:106
av_cold void ff_sbrdsp_init(SBRDSPContext *s)
Definition: sbrdsp.c:270
AVFloatDSPContext fdsp
Definition: aac.h:295
common internal API header
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int id_aac)
Definition: aacsbr.c:1001
static void sbr_turnoff(SpectralBandReplication *sbr)
Places SBR in pure upsampling mode.
Definition: aacsbr.c:131
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
Definition: sbr.h:103
AAC Spectral Band Replication function declarations.
Definition: fft.h:73
unsigned bs_amp_res
Definition: sbr.h:74
static float sbr_qmf_window_ds[320]
Definition: aacsbrdata.h:270
#define FFMIN(a, b)
Definition: common.h:57
uint8_t bs_freq_scale
Definition: sbr.h:49
static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
Definition: aacsbr.c:805
static int read_sbr_single_channel_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
Definition: aacsbr.c:939
unsigned bs_limiter_gains
Definition: sbr.h:125
static av_always_inline av_const long int lrintf(float x)
Definition: libm.h:144
float W[2][32][32][2]
QMF values of the original signal.
Definition: sbr.h:89
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.
Definition: sbr.h:175
#define SBR_VLC_ROW(name)
Definition: aacsbr.c:85
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:522
AAC definitions and structures.
float X_low[32][40][2]
QMF low frequency input to the HF generator.
Definition: sbr.h:161
void(* neg_odd_64)(float *x)
Definition: sbrdsp.h:29
uint8_t bs_freq_res[7]
Definition: sbr.h:68
#define L(x)
Definition: vp56_arith.h:36
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
Definition: aacsbr.c:1504
av_cold void ff_ps_init(void)
Definition: aacps.c:921
if(ac->has_optimized_func)
int start
Definition: aacps.h:42
#define SBR_SYNTHESIS_BUF_SIZE
Definition: sbr.h:55
float s_m[7][48]
Sinusoidal levels.
Definition: sbr.h:181
#define exp2f(x)
Definition: libm.h:71
float X_high[64][40][2]
QMF output of the HF generator.
Definition: sbr.h:163
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
Limiter Frequency Band Table (14496-3 sp04 p198)
Definition: aacsbr.c:177
main external API structure.
Definition: avcodec.h:1050
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:93
unsigned m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
Definition: sbr.h:135
void(* vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len)
Calculate the product of two vectors of floats, add a third vector of floats and store the result in ...
Definition: float_dsp.h:121
Replacements for frequently missing libm functions.
#define AVERROR_BUG
Bug detected, please report the issue.
Definition: error.h:60
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:271
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:263
#define W(a, i, v)
Definition: jpegls.h:121
int synthesis_filterbank_samples_offset
Definition: sbr.h:83
unsigned k[5]
k0, k1, k2
Definition: sbr.h:130
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, float X_low[32][40][2], const float W[2][32][32][2], int buf_idx)
Generate the subband filtered lowband.
Definition: aacsbr.c:1304
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
Definition: aacsbr.c:1283
uint8_t bs_noise_bands
Definition: sbr.h:51
av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
Initialize one SBR context.
Definition: aacsbr.c:141
static int step
Definition: avplay.c:247
main AAC context
Definition: aac.h:262
void(* qmf_post_shuffle)(float W[32][2], const float *z)
Definition: sbrdsp.h:31
uint8_t bs_stop_freq
Definition: sbr.h:42
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int bs_extension_id, int *num_bits_left)
Definition: aacsbr.c:910
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
uint16_t f_master[49]
The master QMF frequency grouping.
Definition: sbr.h:148
void(* autocorrelate)(const float x[40][2], float phi[3][2][2])
Definition: sbrdsp.h:34
uint8_t bs_invf_mode[2][5]
Definition: sbr.h:72
static int in_table_int16(const int16_t *table, int last_el, int16_t needle)
Definition: aacsbr.c:167
void(* qmf_pre_shuffle)(float *z)
Definition: sbrdsp.h:30
float noise_facs[3][5]
Noise scalefactors.
Definition: sbr.h:99
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_dlog(ac->avr,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> out
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
Definition: aacsbr.c:1042
OutputConfiguration oc[2]
Definition: aac.h:308
static const int8_t ceil_log2[]
ceil(log2(index+1))
Definition: aacsbr.c:623
float analysis_filterbank_samples[1312]
Definition: sbr.h:82
#define log2f(x)
Definition: libm.h:116
unsigned f_indexsine
Definition: sbr.h:107
#define ff_mdct_end
Definition: fft.h:152
uint8_t patch_start_subband[6]
Definition: sbr.h:159
uint8_t t_env[8]
Envelope time borders.
Definition: sbr.h:101
void(* hf_gen)(float(*X_high)[2], const float(*X_low)[2], const float alpha0[2], const float alpha1[2], float bw, int start, int end)
Definition: sbrdsp.h:35
Spectral Band Replication per channel data.
Definition: sbr.h:60
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
Definition: aacsbr.c:286
unsigned bs_limiter_bands
Definition: sbr.h:124
int Ypos
QMF output of the HF adjustor.
Definition: sbr.h:91
uint8_t bs_alter_scale
Definition: sbr.h:50
uint16_t f_tablelim[29]
Frequency borders for the limiter.
Definition: sbr.h:156
unsigned bs_frame_class
Definition: sbr.h:65
uint8_t bs_df_env[5]
Definition: sbr.h:70
VLC_TYPE(* table)[2]
code, bits
Definition: get_bits.h:66
unsigned bs_num_noise
Definition: sbr.h:69
static const int8_t vlc_sbr_lav[10]
Definition: aacsbr.c:76
unsigned n_q
Number of noise floor bands.
Definition: sbr.h:144
SBRDSPContext dsp
Definition: sbr.h:186
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:114
#define av_always_inline
Definition: attributes.h:40
float g_temp[42][48]
Definition: sbr.h:93
int ps
-1 implicit, 1 presence
Definition: mpeg4audio.h:40
static VLC vlc_sbr[10]
Definition: aacsbr.c:75
unsigned bs_coupling
Definition: sbr.h:129
Spectral Band Replication.
Definition: sbr.h:114
unsigned bs_num_env
Definition: sbr.h:67
float min
uint8_t bs_add_harmonic[48]
Definition: sbr.h:73
int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
Definition: aacps.c:151
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read inverse filtering data.
Definition: aacsbr.c:795
Definition: aacsbr.c:67
PSContext ps
Definition: sbr.h:140
uint8_t bs_start_freq
Definition: sbr.h:41
void(* hf_g_filt)(float(*Y)[2], const float(*X_high)[40][2], const float *g_filt, int m_max, intptr_t ixh)
Definition: sbrdsp.h:38