diagrams-lib-1.4.1.2: Embedded domain-specific language for declarative graphics

Copyright(c) 2013 diagrams-lib team (see LICENSE)
LicenseBSD-style (see LICENSE)
Maintainerdiagrams-discuss@googlegroups.com
Safe HaskellNone
LanguageHaskell2010

Diagrams.Envelope

Contents

Description

"Envelopes", aka functional bounding regions. See Diagrams.Core.Envelope for internal implementation details.

Synopsis

Types

data Envelope v n :: (* -> *) -> * -> * #

Instances

Show (Envelope v n) 

Methods

showsPrec :: Int -> Envelope v n -> ShowS #

show :: Envelope v n -> String #

showList :: [Envelope v n] -> ShowS #

Ord n => Semigroup (Envelope v n) 

Methods

(<>) :: Envelope v n -> Envelope v n -> Envelope v n #

sconcat :: NonEmpty (Envelope v n) -> Envelope v n #

stimes :: Integral b => b -> Envelope v n -> Envelope v n #

Ord n => Monoid (Envelope v n) 

Methods

mempty :: Envelope v n #

mappend :: Envelope v n -> Envelope v n -> Envelope v n #

mconcat :: [Envelope v n] -> Envelope v n #

Wrapped (Envelope v n) 

Associated Types

type Unwrapped (Envelope v n) :: * #

Methods

_Wrapped' :: Iso' (Envelope v n) (Unwrapped (Envelope v n)) #

(Metric v, Floating n) => Transformable (Envelope v n) 

Methods

transform :: Transformation (V (Envelope v n)) (N (Envelope v n)) -> Envelope v n -> Envelope v n #

(Metric v, OrderedField n) => Juxtaposable (Envelope v n) 

Methods

juxtapose :: Vn (Envelope v n) -> Envelope v n -> Envelope v n -> Envelope v n

(Metric v, Fractional n) => HasOrigin (Envelope v n) 

Methods

moveOriginTo :: Point (V (Envelope v n)) (N (Envelope v n)) -> Envelope v n -> Envelope v n #

(Metric v, OrderedField n) => Enveloped (Envelope v n) 

Methods

getEnvelope :: Envelope v n -> Envelope (V (Envelope v n)) (N (Envelope v n))

(Metric v, OrderedField n) => Alignable (Envelope v n) Source # 

Methods

alignBy' :: (InSpace v n (Envelope v n), Fractional n, HasOrigin (Envelope v n)) => (v n -> Envelope v n -> Point v n) -> v n -> n -> Envelope v n -> Envelope v n Source #

defaultBoundary :: (((* -> *) ~ V (Envelope v n)) v, (* ~ N (Envelope v n)) n) => v n -> Envelope v n -> Point v n Source #

alignBy :: (InSpace v n (Envelope v n), Fractional n, HasOrigin (Envelope v n)) => v n -> n -> Envelope v n -> Envelope v n Source #

Rewrapped (Envelope v n) (Envelope v' n') 
type Unwrapped (Envelope v n) 
type Unwrapped (Envelope v n) = Option (v n -> Max n)
type V (Envelope v n) 
type V (Envelope v n) = v
type N (Envelope v n) 
type N (Envelope v n) = n

class (Metric (V a), OrderedField (N a)) => Enveloped a #

Minimal complete definition

getEnvelope

Instances

Enveloped b => Enveloped [b] 

Methods

getEnvelope :: [b] -> Envelope (V [b]) (N [b])

Enveloped b => Enveloped (Set b) 

Methods

getEnvelope :: Set b -> Envelope (V (Set b)) (N (Set b))

Enveloped t => Enveloped (TransInv t) 

Methods

getEnvelope :: TransInv t -> Envelope (V (TransInv t)) (N (TransInv t))

RealFloat n => Enveloped (CSG n) #

The Envelope for an Intersection or Difference is simply the Envelope of the Union. This is wrong but easy to implement.

Methods

getEnvelope :: CSG n -> Envelope (V (CSG n)) (N (CSG n))

(OrderedField n, RealFloat n) => Enveloped (Frustum n) # 

Methods

getEnvelope :: Frustum n -> Envelope (V (Frustum n)) (N (Frustum n))

OrderedField n => Enveloped (Box n) # 

Methods

getEnvelope :: Box n -> Envelope (V (Box n)) (N (Box n))

OrderedField n => Enveloped (Ellipsoid n) # 

Methods

getEnvelope :: Ellipsoid n -> Envelope (V (Ellipsoid n)) (N (Ellipsoid n))

Enveloped a => Enveloped (Located a) #

The envelope of a Located a is the envelope of the a, translated to the location.

Methods

getEnvelope :: Located a -> Envelope (V (Located a)) (N (Located a))

(Enveloped a, Enveloped b, (~) (* -> *) (V a) (V b), (~) * (N a) (N b)) => Enveloped (a, b) 

Methods

getEnvelope :: (a, b) -> Envelope (V (a, b)) (N (a, b))

Enveloped b => Enveloped (Map k b) 

Methods

getEnvelope :: Map k b -> Envelope (V (Map k b)) (N (Map k b))

(OrderedField n, Metric v) => Enveloped (Point v n) 

Methods

getEnvelope :: Point v n -> Envelope (V (Point v n)) (N (Point v n))

(Metric v, OrderedField n) => Enveloped (Envelope v n) 

Methods

getEnvelope :: Envelope v n -> Envelope (V (Envelope v n)) (N (Envelope v n))

(Metric v, OrderedField n) => Enveloped (FixedSegment v n) # 

Methods

getEnvelope :: FixedSegment v n -> Envelope (V (FixedSegment v n)) (N (FixedSegment v n))

(Metric v, OrderedField n) => Enveloped (Trail v n) # 

Methods

getEnvelope :: Trail v n -> Envelope (V (Trail v n)) (N (Trail v n))

(Metric v, OrderedField n) => Enveloped (Path v n) # 

Methods

getEnvelope :: Path v n -> Envelope (V (Path v n)) (N (Path v n))

(Metric v, Traversable v, OrderedField n) => Enveloped (BoundingBox v n) # 

Methods

getEnvelope :: BoundingBox v n -> Envelope (V (BoundingBox v n)) (N (BoundingBox v n))

(Metric v, OrderedField n) => Enveloped (Segment Closed v n) #

The envelope for a segment is based at the segment's start.

Methods

getEnvelope :: Segment Closed v n -> Envelope (V (Segment Closed v n)) (N (Segment Closed v n))

(Metric v, OrderedField n) => Enveloped (Trail' l v n) #

The envelope for a trail is based at the trail's start.

Methods

getEnvelope :: Trail' l v n -> Envelope (V (Trail' l v n)) (N (Trail' l v n))

(OrderedField n, Metric v, Monoid' m) => Enveloped (Subdiagram b v n m) 

Methods

getEnvelope :: Subdiagram b v n m -> Envelope (V (Subdiagram b v n m)) (N (Subdiagram b v n m))

(Metric v, OrderedField n, Monoid' m) => Enveloped (QDiagram b v n m) 

Methods

getEnvelope :: QDiagram b v n m -> Envelope (V (QDiagram b v n m)) (N (QDiagram b v n m))

Diagram envelopes

envelope :: (OrderedField n, Metric v, Monoid' m) => Lens' (QDiagram b v n m) (Envelope v n) #

setEnvelope :: (OrderedField n, Metric v, Monoid' m) => Envelope v n -> QDiagram b v n m -> QDiagram b v n m #

withEnvelope :: (InSpace v n a, Monoid' m, Enveloped a) => a -> QDiagram b v n m -> QDiagram b v n m Source #

Use the envelope from some object as the envelope for a diagram, in place of the diagram's default envelope.

sqNewEnv =
    circle 1 # fc green
    |||
    (    c # dashingG [0.1,0.1] 0 # lc white
      <> square 2 # withEnvelope (c :: D V2 Double) # fc blue
    )
c = circle 0.8
withEnvelopeEx = sqNewEnv # centerXY # pad 1.5

phantom :: (InSpace v n a, Monoid' m, Enveloped a, Traced a) => a -> QDiagram b v n m Source #

phantom x produces a "phantom" diagram, which has the same envelope and trace as x but produces no output.

pad :: (Metric v, OrderedField n, Monoid' m) => n -> QDiagram b v n m -> QDiagram b v n m Source #

pad s "pads" a diagram, expanding its envelope by a factor of s (factors between 0 and 1 can be used to shrink the envelope). Note that the envelope will expand with respect to the local origin, so if the origin is not centered the padding may appear "uneven". If this is not desired, the origin can be centered (using, e.g., centerXY for 2D diagrams) before applying pad.

extrudeEnvelope :: (Metric v, OrderedField n, Monoid' m) => v n -> QDiagram b v n m -> QDiagram b v n m Source #

extrudeEnvelope v d asymmetrically "extrudes" the envelope of a diagram in the given direction. All parts of the envelope within 90 degrees of this direction are modified, offset outwards by the magnitude of the vector.

This works by offsetting the envelope distance proportionally to the cosine of the difference in angle, and leaving it unchanged when this factor is negative.

intrudeEnvelope :: (Metric v, OrderedField n, Monoid' m) => v n -> QDiagram b v n m -> QDiagram b v n m Source #

intrudeEnvelope v d asymmetrically "intrudes" the envelope of a diagram away from the given direction. All parts of the envelope within 90 degrees of this direction are modified, offset inwards by the magnitude of the vector.

Note that this could create strange inverted envelopes, where diameter v d < 0 .

Querying envelopes

envelopeVMay :: Enveloped a => Vn a -> a -> Maybe (Vn a) #

envelopeV :: Enveloped a => Vn a -> a -> Vn a #

envelopePMay :: ((~) (* -> *) (V a) v, (~) * (N a) n, Enveloped a) => v n -> a -> Maybe (Point v n) #

envelopeP :: ((~) (* -> *) (V a) v, (~) * (N a) n, Enveloped a) => v n -> a -> Point v n #

diameter :: ((~) (* -> *) (V a) v, (~) * (N a) n, Enveloped a) => v n -> a -> n #

radius :: ((~) (* -> *) (V a) v, (~) * (N a) n, Enveloped a) => v n -> a -> n #