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18.1 Theory

18.1.1 Background

The BEAST software package is an ambitious attempt to provide a general frame-
work for parameter estimation and hypothesis testing of evolutionary models
from molecular sequence data. BEAST is a Bayesian statistical framework and
thus provides a role for prior knowledge in combination with the information
provided by the data. Bayesian Markov chain Monte Carlo (MCMC)
has already been enthusiastically embraced as the state-of-the-art method for
phylogenetic reconstruction, largely driven by the rapid and widespread adop-
tion of MrBayes [1]. This enthusiasm can be attributed to a number of factors.
Firstly, Bayesian methods allow the relatively straightforward implementation
of extremely complex evolutionary models. Secondly, there is an often erro-
neous perception that Bayesian estimation is “faster” than heuristic optimiza-
tion based on the maximum likelihood criterion.
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BEAST can be compared to a number of other software packages with simi-
lar goals, such as MrBayes [1], which currently focuses on phylogenetic inference
and LAMARC [8] (discussed in the next chapter) and BATWING [3], which focus pre-
dominantly on coalescent-based population genetics. Like these software pack-
ages, the core algorithm implemented in BEAST is Metropolis-Hastings MCMC
[12, 11]. MCMC is a stochastic algorithm that produces sample-based estimates
of a target distribution of choice. For our purposes the target distribution is the
posterior distribution of a set of evolutionary parameters given an alignment
of molecular sequences.

Possibly the most distinguishing feature of BEAST is its firm focus on cali-
brated phylogenies and genealogies, that is, rooted trees incorporating a time-
scale. This is achieved by explicitly modeling the rate of molecular evolution
on each branch in the tree. On the simplest level this can be a uniform rate over
the entire tree (i.e. the molecular clock model [13]) with this rate known in
advance or estimated from calibration information. However, one of the most
promising recent advances in molecular phylogenetics has been the introduction
of relaxed molecular clock models that do not assume a constant rate across
lineages[18, 19, 15, 16, 17, 14]. BEAST was the first software package that allows
phylogenetic inference under such models [32].

In the context of genealogy -based population genetics (see previous chap-
ter), the target distribution of interest is the posterior probability of the the
population genetic parameters (φ) given a multiple sequence alignment (D):

p(φ|D) =
1

Z

∫
g,ω

Pr{D|g, ω}p(g|φ)p(φ)p(ω)dgdω (18.1)

In order to estimate the posterior probability distribution of φ it is necessary
to average over all possible genealogies (g) and substitution model parameters
(ω) proportional to their probabilities. This integration is achieved by MCMC.
In the above equation Pr{D|g, ω} is the likelihood of genealogy g given the
sequence data and the substitution model [5] and p(g|φ) is the coalescent prior
of the genealogy given the population parameters φ. In the original formulation
of the Kingman coalescent [29] (see also previous chapter), there is a single
population size, φ = {θ} and the coalescent prior takes the form:

p(g|φ) =
1

θn−1

n∏
i=2

exp
−i(i− 1)ui

2θ
(18.2)

where ui is the length of time over which the genealogy g has exactly i lin-
eages. This formulation assumes that the units of time are mutations per site
and that all sequences are sampled from the same time. Both of these assump-
tions can be relaxed [2]. It is also possible to devise more complex coalescent
models so that the population size is a function of time. BEAST supports a
number of demographic models including constant size, exponential growth, lo-
gistic growth, expansion and the highly parameteric Bayesian skyline plot [30].
Currently BEAST does not include coalescent models of migration or recombi-
nation but these processes will be included in a future version. For the case of
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contemporaneously sampled sequences these processes can be investigated using
LAMARC (see next chapter).

The purpose behind the development of BEAST is to bring a large number
of complementary evolutionary models (e.g. substitution models, demographic
tree priors, relaxed clock models, node calibration models) into a single co-
herent framework for evolutionary inference. This building-block principle of
constructing a complex evolutionary model out of a number of simpler model
components provides powerful new possibilities for molecular sequence analysis.
The motivation for doing this is (1) to avoid the unnecessary simplifying as-
sumptions that currently exist in many evolutionary analysis packages and (2)
to provide new model combinations and a flexible system for model specification
so that researchers can tailor their evolutionary analyses to their specific set of
questions.

18.1.2 Bayesian MCMC for genealogy-based population
genetics

The integration in equation 18.1 is achieved by constructing a chain of parame-
ter/genealogy combinations in such a way that they form a (correlated) sample
of states from the full posterior distribution:

p(g, ω, φ|D) =
1

Z
Pr{D|g, ω}p(g|φ)p(φ)p(ω) (18.3)

We summarize the marginal density p(φ|D) by using samples (g, ω, φ) ∼
p(g, ω, φ|D). The sampled genealogies and substitution model parameters can
be thought of as uninteresting nuisance parameters.

To construct the Markov chain we begin with an initial state x0 = (g(0), ω(0), φ(0)).
At each step i in the chain we begin by proposing a new state y. An operator
(m) proposes this state by copying the previous state xi−1 and making a small
alteration (to the genealogy, or the parameter values, or both). The probability
of the previous state and the newly proposed state are then compared in an ac-
cept/reject step. The proposed state is accepted as the new state in the Markov
chain with probability:

α = min

(
1,

p(y|D)

p(xi−1|D)

)
(18.4)

If the proposed state y is accepted, then state xi = y otherwise the previous
state is kept (xi = xi−1). Notice that if the posterior probability of y is greater
than xi−1 then y will definitely be accepted. Whereas when y has lower proba-
bility than xi−1 it will only be accepted with a probability proportional to the
ratio of their posterior probabilities. The above acceptance probability assumes
that the operator is symmetric, so that the probability of proposing state y from
state x, q(y|x), is the same as proposing state x from state y, q(x|y). BEAST uses
a mixture of symmetric and asymmetric operators. At each step in the chain
an operator (m) is chosen at random (with weights). When operator m is not
symmetric then qm(y|x) 6= qm(x|y) and the acceptance probability becomes
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α = min

(
1,

p(y|D)

p(xi−1|D)

q(xi−1|y)

q(y|xi−1)

)
(18.5)

The additional ratio of proposal probabilities is called the Hastings ratio
[11].

Implementation

The overall architecture of the BEAST software package is a file-mediated pipeline.
The core program takes, as input, an XML file describing the data to be an-
alyzed, the models to be used and technical details of the MCMC algorithm
such as the proposal distribution (defined by the operators), the length of the
Markov chain (chain length) and the output options. The output of a BEAST

analysis is a set of tab-delimited plain text files that summarize the estimated
posterior distribution of parameter values and trees.

A number of additional software programs assist in generating the input and
analyzing the output:

• BEAUti is a software package written in Java and distributed with BEAST

that provides a graphical user interface for generating BEAST XML input
files for a number of simple model combinations.

• Tracer is a software package written in Java and distributed separately
from BEAST that provides a graphical tool for MCMC output analysis. It
can be used for the analysis of the output of BEAST as well as the output
of other common MCMC packages such as MrBayes [1] and Bali-Phy [20].

Because of the combinatorial nature of the BEAST XML input format, not all
models can be specified through the graphical interface of BEAUti. Indeed, the
sheer number of possible combinations of models mean that, inevitably, some
combinations will be untested. It is also possible to create models that are
inappropriate or meaningless for the data being analysed. BEAUti is therefore
intended as a way of generating commonly used and well-understood analyses.
For the more adventurous researcher, and with the above warnings in mind, the
XML file can be directly edited. A number of online tutorials are available to
guide users on how to do this.

Input Format

One of the primary motivations for providing a highly structured XML input
format is to facilitate reproducibility of complex evolutionary analyses. While
an interactive graphical user interface provides a pleasant user experience, it
can be time-consuming and error-prone for a user to record and reproduce the
full sequence of choices that are made, especially with the large array of op-
tions typically available for MCMC analysis. By separating the graphical user
interface (BEAUti) from the analysis (BEAST) we accommodate an XML layer
that captures the exact details of the MCMC analysis being performed. We
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strongly encourage the routine publication of XML input files as supplementary
information with publication of the results of a BEAST analysis. Because of the
non-trivial nature of MCMC analyses and the need to promote reproducibility,
it is our view that the publication of the exact details of any Bayesian MCMC
analysis should be made a pre-requisite for publication of all MCMC analysis
results.

Output and results

The output from BEAST is a simple tab-delimited plain text file format with one
a row for each sample. When accumulated into frequency distributions, this file
provides an estimate of the marginal posterior probability distribution of each
parameter. This can be done using any standard statistics package or using the
specially written package, Tracer [21]. Tracer provides a number of graphical
and statistical ways of analyzing the output of BEAST to check performance and
accuracy. It also provides specialized functions for summarizing the posterior
distribution of population size through time when a coalescent model is used.

The phylogenetic tree of each sample state is written to a separate file as
either NEWICK or NEXUS format. This can be used to investigate the poste-
rior probability of various phylogenetic questions such as the monophyly of a
particular group of organisms or to obtain a consensus phylogeny.

Computational Performance

Although there is always a trade-off between a program’s flexibility and its
computational performance, BEAST performs well on large analyses (e.g. [22]).
A Bayesian MCMC algorithm needs to evaluate the likelihood of each state in
the chain and thus performance is dictated by the speed at which these likelihood
evaluations can be made. BEAST attempts to minimize the time taken to evaluate
a state by only recalculating the likelihood for parts of the model that have
changed from the previous state. Furthermore, the core computational functions
have been implemented in the C programming language. This can be compiled
into a highly optimized library for a given platform providing an improvement
in speed. If this library is not found, BEAST will use its Java version of these
functions, thereby retaining its platform-independence.

18.1.3 Results and Discussion

BEAST provides considerable flexibility in the specification of an evolutionary
model. For example, consider the analysis of a multiple sequence alignment
of protein-coding DNA. In a BEAST analysis, it is possible to allow each codon
position to have a different rate, a different amount of rate heterogeneity among
sites, and a different amount of rate heterogeneity among branches, while, at the
same time, sharing the same intrinsic ratio of transitions to transversions
with the other codon positions. In fact, all parameters can be shared or made
independent among partitions of the sequence data.
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An unavoidable feature of Bayesian statistical analysis is the specification
of a prior distribution over parameter values. This requirement is both an
advantage and a burden. It is an advantage because relevant knowledge such
as palaeontological calibration of phylogenies is readily incorporated into an
analysis. However, when no obvious prior distribution for a parameter exists,
a burden is placed on the researcher to ensure that the prior selected is not
inadvertently influencing the posterior distribution of parameters of interest.

In BEAST, all parameters (whether they be substitutional, demographic or
genealogical) can be given informative priors (e.g. exponential, normal, lognor-
mal or uniform with bounds, or combinations of these). For example, the age
of the root of the tree can be given an exponential prior with a pre-specified
mean.

The five components of an evolutionary model for a set of aligned nucleotides
in BEAST are:

• Substitution model - The substitution model is a homogeneous Markov
process that defines the relative rates at which different substitutions
occur along a branch in the tree.

• Rate model among sites - The rate model among sites defines the distri-
bution of relative rates of evolutionary change among sites.

• Rate model among branches - The rate model among branches defines the
distribution of rates among branches and is used to convert the tree, which
is in units of time, to units of substitutions. These models are important
for divergence time estimation procedures and producing time scales on
demographic reconstructions.

• Tree - a model of the phylogenetic or genealogical relationships of the
sequences.

• Tree prior - The tree prior provides a parameterized prior distribution for
the node heights (in units of time) and tree topology.

Substitution models and rate models among sites

For nucleotide data, all of the models that are nested in the general time-
reversible (GTR) model [23] - including the well known HKY85 model [24] -
can be specified. For the analysis of amino acid sequence alignments all of the
following replacement models can be used: Blosum62, CPREV, Dayhoff, JTT,
MTREV and WAG. When nucleotide data represents a coding sequence (i.e.
an in-frame protein-coding sequence) the Goldman and Yang model [25] can be
used to model codon evolution.

In addition, both Γ-distributed rates among sites [26] and a proportion of
invariant sites can be used to describe rate heterogeneity among sites.
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Rate models among branches, divergence time estimation and time-
stamped data

Without calibration information, mutation rate (µ) and time (t) are con-
founded and thus branches must be estimated in units of mutations per site, µt.
However when a strong prior is available for (1) the time of one or more nodes,
or (2) the overall mutation rate, then the genealogy can be estimated in units
of time.

The basic model for rates among branches supported by BEAST is the strict
molecular clock model [13], calibrated by specifying either a substitution rate
or the date of a node or set of nodes. In this context, dates of divergence
for particular clades can be estimated. The clades can be defined either by
a monophyletic grouping of taxa or as the most recent common ancestor of a
set of taxa of interest. The second alternative does not require monophyly of
the selected taxa with respect to the rest of the tree. Furthermore, when the
differences in the dates associated with the tips of the tree comprise a significant
proportion of the age of the entire tree, these dates can be incorporated into the
model providing a source of information about the overall rate of evolutionary
change [2, 27].

In BEAST, divergence time estimation has also been extended to include re-
laxed phylogenetics models, in which the rate of evolution is allowed to vary
among the branches of the tree. In particular we support a class of uncorre-
lated relaxed clock branch rate models, in which the rate at each branch is
drawn from an underlying distribution such as exponential or lognormal [32].

If the sequence data are all from one time point, then the overall evolutionary
rate must be specified with a strong prior. The units implied by the prior on
the evolutionary rate will determine the units of the node heights in the tree
(including the age of the most recent common ancestor) as well as the units
of the demographic parameters such as the population size parameter and the
growth rate. For example, if the evolutionary rate is set to 1.0, then the node
heights (and root height) will be in units of mutations per site (i.e. the units
of branch lengths produced by common software packages such as MrBayes

3.0). Similarly, for a haploid population, the coalescent parameter will be an
estimate of Neµ. However, if, for example, the evolutionary rate is expressed
in mutations per site per year, then the branches in the tree will be in units
of years. Furthermore the population size parameter of the demographic model
will then be equal to Neτ , where Ne is the effective population size and τ
is the generation length in years. Finally, if the evolutionary rate is expressed
in units of mutations per site per generation then the resulting tree will be in
units of generations and the population parameter of the demographic model
will be in natural units (i.e. will be equal to the effective number of reproducing
individuals, Ne).
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Tree Priors

When sequence data has been collected from a homogenous population, various
coalescent [29, 28] models of demographic history can be used in BEAST to model
population size changes through time. At present the simple parametric models
available include constant size N(t) = Ne (1 parameter), exponential growth
N(t) = Nee

−gt (2 parameters), expansion or logistic growth (3 parameters).
In addition, the highly parametric Bayesian skyline plot [30] is also available,

but this model can only be used when the data are strongly informative about
population history. All of these demographic models are parametric priors on
the ages of nodes in the tree, in which the hyperparameters (e.g., population size,
Ne, and growth rate, g) can be sampled and estimated. As well as performing
single locus coalescent-based inference, two or more unlinked gene trees can
be simultaneously analyzed under the same demographic model. Sophisticated
multi-locus coalescent inference can be achieved by allocating a separate overall
rate and substitution process for each locus, thereby accommodating loci with
heterogeneous evolutionary processes.

At present there are only a limited number of options for non-coalescent
priors on tree shape and branching rate. Currently a simple Yule prior on
birth rate of new lineages (1 parameter) can be employed. However, generalized
birth-death tree priors are currently under development.

In addition to general models of branching times such as the coalescent
and Yule priors, the tree prior may also include specific distributions and/or
constraints on certain node heights and topological features. These additional
priors may represent other sources of knowledge such as expert interpretation of
the fossil record. For example, as briefly noted above, each node in the tree can
have a prior distribution representing knowledge of its date. A recent paper on
“relaxed phylogenetics” contains more information on calibration priors [32].

Multiple data partitions and linking and unlinking parameters

BEAST provides the ability to analyze multiple data partitions simultaneously.
This is useful when combining multiple genes in a single multi-locus coalescent
analysis (e.g. [34]) or to allocate different evolutionary processes to different
regions of a sequence alignment, such as the codon positions; e.g. [7]). The
parameters of the substitution model, the rate model among sites, the rate model
among branches, the tree, and the tree prior can all be ’linked’ or ’unlinked’ in
an analysis involving multiple partitions. For example in an analysis of HIV-
1 group O by Lemey et al [34], three loci (gag, int, env) were assumed to
share the same substitution model parameters (GTR), as well as sharing the
same demographic history of exponential growth. However they were assumed
to have different shape parameters for Γ-distributed rate heterogeneity among
sites, different rate parameters for the strict molecular clock and the three tree
topologies and sets of divergence times were also assumed to be independent
and unlinked.

9



Definitions and units of the standard parameters and variables

Crucial to the interpretation of all BEAST parameters is an understanding of the
units that the tree is measured in. The simplest situation occurs when no cali-
bration information is available, either from knowledge of the rate of evolution
of the gene region, or from knowledge of the age of any of the nodes in the
tree. If this is the case the rate of evolution is set to 1.0 (via the clock.rate or
ucld.mean parameters) and the branch lengths in the tree are then in substitu-
tions per site. However if the rate of evolution is known in substitutions per site
per unit time, then the genealogy will be expressed in the relevant time units.
Likewise, if the age of one or more nodes (internal or external) are known then
this will also provide the units for the rest of the branch lengths and the rate of
evolution. With this in mind, the following table lists the parameters that are
used in the models that can be generated by BEAUti, with their interpretation
and units.
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• clock.rate - The rate of the strict molecular clock. This parameter only appears when you
have selected the strict molecular clock in the model panel. The units of this parameter
are in substitutions per site per unit time. If this parameter is fixed to 1.0 then the branch
lengths in the tree will be in units of substitutions per site. However, if, for example, the
tree is being calibrated by using fossil calibrations on internal nodes and those fossil dates
are expressed in millions of years ago (Mya), then the clock.rate parameter will be an
estimate of the evolutionary rate in units of substitutions per site per million years (Myr).

• constant.popSize - This is the coalescent parameter under the assumption of a constant
population size. This parameter only appears if you select a constant size coalescent tree
prior. This parameter represents the product of effective population size (Ne) and the
generation length in units of time (τ). If time is measured in generations this parameter a
direct estimate of Ne. Otherwise it is a composite parameter and an estimate of Ne can be
computed from this parameter by dividing it by the generation length in the units of time
that your calibrations (or clock.rate) are defined in. Finally, if clock.rate is set to 1.0 then
constant.popSize is an estimate of Neµ for haploid data such as mitochondrial sequences
and 2Neµ for diploid data, where µ is the substitution rate per site per generation.

• covariance - If this value is significantly positive, it means that within your phylogeny,
branches with fast rates are followed by branches with fast rates. This statistic measures
the covariance between parent and child branch rates in your tree in a relaxed molecular
clock analysis. If this value spans zero, then branches with fast rates and slow rates are
next to each other. It also means that there is no strong evidence of autocorrelation of
rates in the phylogeny.

• exponential.growthRate - This is the coalescent parameter representing the rate of growth
of the population assuming exponential growth. The population size at time t is determined
by N(t) = Ne exp(−gt) where t is in the same units as the branch lengths and g is the
exponential.growthRate parameter. This parameter only appears if you have selected a
exponential growth coalescent tree prior.

• exponential.popSize - This is the parameter representing the modern day population size
assuming exponential growth. Like constant.popSize, it is a composite parameter unless
the time scale of the genealogy is in generations. This parameter only appears if you have
selected a exponential growth coalescent tree prior.

• gtr.{ac,ag,at,cg,gt} - These five parameters are the relative rates of substitutions for
A↔C, A↔G, A↔T , C↔G and G↔T in the general time-reversible model of nucleotide
substitution [23]. In the default set up these parameters are relative to rC↔T = 1.0. These
parameters only appear if you have selected the GTR substitution model.

• hky.kappa - This parameter is the transition/transversion ratio (κ) parameter of the HKY85
model of nucleotide substitution [24]. This parameter only appears if you have selected
the HKY substitution model.

• siteModel.alpha - This parameter is the shape (α) parameter of the Γ distribution of
rate heterogeneity among sites [26]. This parameter only appears when you have selected
Gamma or Gamma+Invariant Sites in the site heterogeneity model.

• siteModel.pInv - This parameter is the proportion of invariant sites (pinv) and has a range
between 0 and 1. This parameter only appears when you have selected “Invariant sites”
or “Gamma+Invariant Sites” in the site heterogeneity model. The starting value must be
less than 1.0.

• treeModel.rootHeight - This parameter represents the total height of the tree (often known
as the tMRCA). The units of this parameter are the same as the units for the branch lengths
in the tree.

• ucld.mean - This is the mean molecular clock rate under the uncorrelated lognormal relaxed
molecular clock. This parameter can be in “real” space or in log space depending on the
BEAST XML. However,under default BEAUti options for the uncorrelated log-normal relaxed
clock this parameter has the same units as clock.rate.

• ucld.stdev -This is the standard deviation (σ) of the uncorrelated lognormal relaxed clock
(in log-space). If this parameter is 0 there is no variation in rates among branches. If this
parameter is greater than 1 then the standard deviation in branch rates is greater than the
mean rate. This is also the case for the coefficient of variation. When viewed in Tracer,
if the coefficient of variation frequency histogram is abutting against zero, then your data
can’t reject a strict molecular clock. If the frequency histogram is not abutting against
zero then there is among branch rate heterogeneity within your data, and we recommend
the use of a relaxed molecular clock.

• yule.birthRate - This parameter is the rate of lineage birth in the Yule model of speciation.
If clock.rate is 1.0 then this parameter estimates the number of lineages born from a parent
lineage per substitution per site. If the tree is instead measured in, for example, years,
then this parameter would be the number of new lineages born from a single parent lineage
per year.

• tmrca(taxon group) - This is the parameter for the tMRCA of the specified taxa subset.
The units of this variable are the same as the units for the branch lengths in the tree
and will depend on the calibration information for the rate and/or dates of calibrated
nodes. Setting priors on these parameters and/or treeModel.rootHeight parameter will act
as calibration information.
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Model comparison

Considering the large number of models available in a Bayesian inference pack-
age like BEAST, a common question is “Which model should I use?”. This is
especially the case for the parts of the evolutionary model that are not of direct
interest to the researcher (and responsible for the so-called nuisance parame-
ters). If the research question is a question of demographic inference then the
researcher may not be interested in the substitution model parameters, but nev-
ertheless some substitution model must be chosen. It is in these situations that
it often makes sense to chose the substitution model which best fits the data.

In a Bayesian setting, the most theoretically sound method of determining
which of two models is better is to calculate the Bayes Factor (BF), which is
the ratio of their marginal likelihoods. Generally speaking calculating the BF
involves a Bayesian MCMC that averages over both models (using a technique
called reversible jump MCMC ), and this is not something that can cur-
rently be done in BEAST. However there are a couple of ways of approximately
calculating the marginal likelihood of each model (and therefore the Bayes fac-
tor between them) that can be achieved by processing the output of two BEAST

analyses. For exampled, a simple method first described by Newton and Raftery
(1994) computes the Bayes factor via importance sampling (with the posterior
as the importance distribution). With this importance distribution it turns
out that the harmonic mean of the sampled likelihoods is an estimator of the
marginal likelihood. So by calculating the harmonic mean of the likelihood from
the posterior output of each of the models and then taking the difference (in log
space) you get the log BF and you can look up this number in a table to decide
if the BF is large enough to strongly favour the better model. This method of
calculating the BF is only approximate and in certain situations it is not very
stable, so model comparison is an area of Bayesian evolutionary analysis that
could certainly be improved.

18.1.4 Conclusions

BEAST is a flexible analysis package for evolutionary parameter estimation and
hypothesis testing. The component-based nature of model specification in BEAST

means that the number of different evolutionary models possible is very large
and therefore difficult to summarize. However a number of published uses of
the BEAST software already serve to highlight the breadth of application the
software enjoys [7, 34, 22, 30, 10].

BEAST is an actively developed package and enhancements for the next ver-
sion include (1) birth-death priors for tree shape (2) faster and more flexible
codon-based substitution models (3) the structured coalescent to model subdi-
vided populations with migration (4) models of continuous character evolution
and (5) new relaxed clock models based on random local molecular clocks.
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18.2 Practice

18.2.1 The BEAST software package

This chapter provides a step-by-step tutorial for analysing a set of virus se-
quences which have been isolated at different points in time (heterochronous
data). The data are 35 sequences from the G (attachment protein) gene of hu-
man respiratory syncytial virus subgroup A (RSVA) from various parts of the
world with isolation dates ranging from 1956-2002 [35]. The input file required
for this exercise is available for download at http://www.thephylogenetichandbook.org.
The aim is to obtain an estimate of the rate of molecular evolution, an estimate
of the date of the most recent common ancestor and to infer the phylogenetic
relationships with appropriate measures of statistical support.

The first step will be to convert a NEXUS file with a DATA or CHAR-
ACTERS block into a BEAST XML input file. This is done using the program
BEAUti (this stands for Bayesian Evolutionary Analysis Utility). This is a user-
friendly program for setting the evolutionary model and options for the MCMC
analysis. The second step is to actually run BEAST using the input file that
contains the data, model and settings. The final step is to explore the output
of BEAST in order to diagnose problems and to summarize the results.

To undertake this tutorial, you will need to download three software packages
in a format that is compatible with your computer system (all three are available
for Mac OS X, Windows and Linux/UNIX operating systems):

• BEAST - this package contains the BEAST program, BEAUti and a couple of
utility programs. At the time of writing, the current version is v1.4.4. It
is available for download from http://beast.bio.ed.ac.uk/.

• Tracer - this program is used to explore the output of BEAST (and other
Bayesian MCMC programs). It graphically and quantitively summarizes
the distributions of continuous parameters and provides diagnostic infor-
mation. At the time of writing, the current version is v1.4. It is available
for download from http://beast.bio.ed.ac.uk/.

• FigTree - this is an application for displaying and printing molecular
phylogenies, in particular those obtained using BEAST. At the time of
writing, the current version is v1.0. It is available for download from
http://tree.bio.ed.ac.uk/.

18.2.2 Running BEAUti

The exact instructions for running BEAUti differs depending on which computer
you are using. Please see the README text file that was distributed with the
version you downloaded. Once running, BEAUti will look similar irrespective
of which computer system it is running on. For this tutorial, the Mac OS X
version will be used in the Figures but the Linux and Windows versions will
have exactly the same layout and functionality.
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18.2.3 Loading the NEXUS file

To load a NEXUS format alignment, simply select the Import NEXUS... op-
tion from the File menu. The example file, called RSVA.nex, is available from
http://www.thephylogenetichandbook.org/. This file contains an alignment of
35 sequences from the G gene of RSVA virus, 629 nucleotides in length. Once
loaded, the list of taxa and the actual alignment will be displayed in the main
window (Figure 18.1).

Figure 18.1: The data panel in BEAUti

18.2.4 Setting the dates of the taxa

If the NEXUS file contains a calibrations block then the dates will automatically
be loaded. Otherwise, by default all the taxa are assumed to have a date of zero
(i.e. the sequences are assumed to be sampled at the same time). In this case,
the RSVA sequences have been sampled at various dates going back to the 1950s.
The actual year of sampling is given in the name of each taxon and we could
simply edit the value in the Date column of the table to reflect these. However,
if the taxa names contain the calibration information, then a convenient way to
specify the dates of the sequences in BEAUti is to use the “Guess Dates” button
at the top of the Data panel. Clicking this will make a dialog box appear
(Figure 18.2).
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Figure 18.2: The Guess Dates dialog

This operation attempts to guess what the dates are from information con-
tained within the taxon names. It works by trying to find a numerical field
within each name. If the taxon names contain more than one numerical field
(such as the RSVA sequences, above) then you can specify how to find the one
that corresponds to the date of sampling. You can either specify the order that
the date field comes (e.g., first, last or various positions in between) or specify
a prefix (some characters that come immediately before the date field in each
name). For the RSVA sequences you can select ’last’ from the drop-down menu
for the order or use the prefix option and specify ’@’ as the prefix (’@’ is the
prefix used for dates by PAML, see Chapter 11).

In this dialog box, you can also get BEAUti to add a fixed value to each
guessed date. In this case the value “1900” has been added to turn the dates
from 2 digit years to 4 digit. Any dates in the taxon names given as “00”
would thus become “1900”. Some of the sequences in the example file actually
have dates after the year 2000 so selecting the will option would convert them
correctly, adding 2000 to any date less than 08. When you press OK the dates
will appear in the appropriate column of the main window. You can then check
these and edit them manually as required. At the top of the window you can
set the units that the dates are given in (years, months, days) and whether they
are specified relative to a point in the past (as would be the case for years such
as 1984) or backwards in time from the present (as in the case of radiocarbon
ages).

Translating the data in amino acid sequences

At the bottom of the main window is the option to translate the data into
amino acid sequences. This will be done using the genetic code specified in the
associated drop down menu. If the loaded sequence are not nucleotides then
this option will be disabled.

15



18.2.5 Setting the evolutionary model

The next thing to do is to click on the Model tab at the top of the main
window. This will reveal the evolutionary model settings for BEAST. Exactly
which options appear depend on whether the data are nucleotides or amino acids
(or nucleotides translated into amino acids). Figure 18.3 shows the settings that
will appear after loading the RSVA data and selecting a codon partitioning.

Figure 18.3: The evolutionary model settings in BEAUti

This chapter assumes that you are familiar with the evolutionary models
available, however there are a couple of points to note about selecting a model
in BEAUti:

• Selecting the Partition into codon positions option assumes that the data
are aligned as codons. This option will then estimate a separate rate of
substitution for each codon position, or for 1+2 versus 3, depending on
the setting.

• Selecting the Unlink substitution model across codon positions will spec-
ify that BEAST should estimate a separate transition-transversion ratio or
general time reversible rate matrix for each codon position.

• Selecting the Unlink rate heterogeneity model across codon positions will
specify that BEAST should estimate set of rate heterogeneity parameters
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(gamma shape parameter and/or proportion of invariant sites) for each
codon position.

• If there are no dates for the sequences (they are contemporaneous) then
you can specify a fixed mean substitution rate obtained from another
source. Setting this to 1.0 will result in the ages of the nodes of the
tree being estimated in units of substitutions per site (i.e. the normal
units of branch lengths in popular packages such as MrBayes).

For this tutorial, select the ’3 partitions: codon positions 1, 2 & 3’ option so
that each codon position has its own rate of evolution.

18.2.6 Setting up the operators

Each parameter in the model has one or more“operators” (these are variously
called moves and proposals by other MCMC software packages such as MrBayes
and LAMARC). The operators specify how the parameters change as the MCMC
runs. The operators tab in BEAUti has a table that lists the parameters, their
operators and the tuning settings for these operators. In the first column are
the parameter names. These will be called things like hky.kappa which means
the HKY model’s kappa parameter (the transition-transversion bias). The next
column has the type of operators that are acting on each parameter. For ex-
ample, the scale operator scales the parameter up or down by a proportion,
the random walk operator adds or subtracts an amount to the parameter and
the uniform operator simply picks a new value uniformly within a range. Some
parameters relate to the tree or to the divergence times of the nodes of the tree
and these have special operators.

The next column, labelled Tuning, gives a tuning setting to the operator.
Some operators don’t have any tuning settings so have n/a under this column.
The tuning parameter will determine how large a move each operator will make
which will affect how often that change is accepted by the MCMC which will
affect the efficency of the analysis. For most operators (like random walk and
subtree slide operators) a larger tuning parameter means larger moves. However
for the scale operator a tuning parameter value closer to 0.0 means bigger moves.
At the top of the window is an option called Auto Optimize which, when selected,
will automatically adjust the tuning setting as the MCMC runs to try to achieve
maximum efficiency. At the end of the run a table of the operators, their
performance and the final values of these tuning settings will be written to
standard ouput. These can then be used to set the starting tuning settings in
order to minimize the amount of time taken to reach optimum performance in
subsequent runs.

The next column, labelled Weight, specifies how often each operator is ap-
plied relative to the others. Some parameters tend to be sampled very efficiently
- an example is the kappa parameter - these parameters can have their oper-
ators down-weighted so that they are not changed as often (this may mean
upweighting other operators since the weights must be integers).
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18.2.7 Setting the MCMC options

The MCMC tab in BEAUti provides settings to control the MCMC chain (Fig-
ure 18.4). Firstly we have the Length of chain. This is the number of steps the
MCMC will make in the chain before finishing. How long this should be de-
pends on the size of the dataset, the complexity of the model and the precision
of the answer required. The default value of 10,000,000 is entirely arbitrary and
should be adjusted according to the size of your dataset. We will see later how
the resulting log file can be analysed using Tracer in order to examine whether
a particular chain length is adequate.

The next couple of options specify how often the current parameter values
should be displayed on the screen and recorded in the log file. The screen output
is simply for monitoring the program’s progress so can be set to any value
(although if set too small, the sheer quantity of information being displayed on
the screen will slow the program down). For the log file, the value should be
set relative to the total length of the chain. Sampling too often will result in
very large files with little extra benefit in terms of the precision of the estimates.
Sample too infrequently and the log file will not contain much information about
the distributions of the parameters. You probably want to aim to store no more
than 10,000 samples so this should be set to the chain length / 10,000.

For this dataset let’s initially set the chain length to 100,000 as this will run
reasonably quickly on most modern computers. Although the suggestion, above,
would indicate a lower sampling frequency, in this case set both the sampling
frequencies to 100.

The final two options give the file names of the log files for the parameters
and the trees. These will be set to a default based on the name of the imported
NEXUS file but feel free to change these.

18.2.8 Running BEAST

At this point we are ready to generate a BEAST XML file and to use this to
run the Bayesian evolutionary analysis. To do this, either select the Generate
BEAST File... option from the File menu or click the similarly labelled button at
the bottom of the window. Choose a name for the file (for example, RSVA.xml)
and save the file. For convenience, leave the BEAUti window open so that you
can change the values and re-generate the BEAST file as required later in this
tutorial.

Once the BEAST XML file has been created the analysis itself can be per-
formed using BEAST . The exact instructions for running BEAST depends on the
computer you are using, but in most cases a standard file dialog box will appear
in which you select the XML file. If the command line version is being used then
the name of the XML file is given after the name of the BEAST executable. The
analysis will then be performed with detailed information about the progress of
the run being written to the screen. When it has finished, the log file and the
trees file will have been created in the same location as your XML file.
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Figure 18.4: The MCMC settings in BEAUti

18.2.9 Analysing the BEAST output

To analyse the results of running BEAST we are going to use the program Tracer.
The exact instructions for running Tracer differs depending on which computer
you are using. Please see the README text file that was distributed with the
version you downloaded. Once running, Tracer will look similar irrespective of
which computer system it is running on.

Select the Open option from the File menu. If you have it available, select
the log file that you created in the previous section. The file will load and
you will be presented with a window similar to the one below (Figure 18.5).
Remember that MCMC is a stochastic algorithm so the actual numbers will not
be exactly the same.

On the left hand side is the name of the log file loaded and the traces that
it contains. There are traces for the posterior (this is the log of the product of
the tree likelihood and the prior probabilities), and the continuous parameters.
Selecting a trace on the left brings up analyses for this trace on the right hand
side depending on tab that is selected. When first opened (Figure 18.5), the
‘posterior’ trace is selected and various statistics of this trace are shown under
the Estimates tab.

In the top right of the window is a table of calculated statistics for the
selected trace. The statistics and their meaning are described in the table
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Figure 18.5: The main Tracer window with a BEAST log file loaded.

below.

• Mean - The mean value of the samples (excluding the burn-in).

• Stdev - The standard error of the mean. This takes into account the
effective sample size so a small ESS will give a large standard error.

• Median - The median value of the samples (excluding the burn-in).

• 95% HPD Lower - The lower bound of the highest posterior density
(HPD) interval. The HPD is the shortest interval that contains 95% of
the sampled values.

• 95% HPD Upper - The upper bound of the highest posterior density
(HPD) interval.

• Auto-Correlation Time (ACT) - The average number of states in the
MCMC chain that two samples have to be separated by for them to be
uncorrelated (i.e. independent samples from the posterior). The ACT is
estimated from the samples in the trace (excluding the burn-in).

• Effective Sample Size (ESS) - The effective sample size (ESS) is the
number of independent samples that the trace is equivalent to. This is
calculated as the chain length (excluding the burn-in) divided by the ACT.

Note that the effective sample sizes (ESSs) for all the traces are small (ESSs
less than 100 are highlighted in red by Tracer). This is not good. A low ESS
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means that the trace contained a lot of correlated samples and thus may not
represent the posterior distribution well. In the bottom right of the window is a
frequency plot of the samples which is expected given the low ESSs is extremely
rough (Figure 18.5).

If we select the tab on the right-hand-side labelled ‘Trace’ we can view the
raw trace, that is, the sampled values against the step in the MCMC chain
(Figure 18.6).

Figure 18.6: The trace of posterior against chain length in Tracer for a run of
100,000 steps.

Here you can see how the samples are correlated. There are 1000 samples
in the trace (we ran the MCMC for 100,000 steps sampling every 100) but it is
clear that adjacent samples often tend to have similar values. The ESS for the
age of the root (treeModel.rootHeight is about 18 so we are only getting 1
independent sample to every 56 actual samples. It also seems that the default
burn-in of 10% of the chain length is inadequate (the posterior values are still
increasing over most of the chain). Not excluding enough of the start of the
chain as burn-in will bias the results and render estimates of ESS unreliable.

The simple response to this situation is that we need to run the chain for
longer. Given the lowest ESS (for the prior) is 9, it would suggest that we
have to run it at least 12 times longer to get ESSs that are >100. However it
would be better to aim higher so lets go for a chain length of 5,000,000. Go back
to Section 18.2.7 and create a new BEAST XML file with a longer chain length.
Now run BEAST and load the new log file into Tracer (you can leave the old one
loaded for comparison). Click on the Trace tab and look at the raw trace plot
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(Figure 18.7).

Figure 18.7: The trace of posterior against chain length in Tracer for a run of
5,000,000 steps.

Again we have chosen options that produce 1000 samples and with an ESS of
about 500 there is still auto-correlation between the samples but 500 effectively
independent samples will now provide a good estimate of the posterior distri-
bution. There are no obvious trends in the plot which would suggest that the
MCMC has not yet converged, and there are no large-scale fluctuations in the
trace which would suggest poor mixing. As we are happy with the behaviour
of log-likelihood we can now move on to one of the parameters of interest: sub-
stitution rate. Select clock.rate in the left-hand table. This is the average
substitution rate across all sites in the alignment. Now choose the density plot
by selecting the tab labeled Density. This shows a plot of the posterior proba-
bility density of this parameter. You should see a plot similar to Figure 18.8.

As you can see the posterior probability density is roughly bell-shaped.
There is some sampling noise which would be reduced if we ran the chain for
longer but we already have a good estimate of the mean and HPD interval. You
can overlay the density plots of multiple traces in order to compare them (it is
up to the user to determine whether they are comparable on the the same axis
or not). Select the relative substitution rates for all three codon positions in the
table to the left (labelled siteModel1.mu, siteModel2.mu and siteModel3.mu.
You will now see the posterior probability densities for the relative substitution
rate at all three codon positions overlaid (Figure 18.9).
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Figure 18.8: The posterior density plot for the subtitution rate.

Figure 18.9: The posterior density plots for the relative rate of evolution at each
codon position.
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18.2.10 Summarizing the trees

We have seen how we can diagnose our MCMC run using Tracer and produce
estimates of the marginal posterior distributions of parameters of our model.
However, BEAST also samples trees (either phylogenies or geneologies) at the
same time as the other parameters of the model. These are written to a separate
file called the ‘trees’ file. This file is a standard NEXUS format file. As such it
can easily be loaded into other software in order to examine the trees it contains.
One possibility is to load the trees into a program such as PAUP* and construct
a consensus tree in a similar manner to summarizing a set of bootstrap trees.
In this case, the support values reported for the resolved nodes in the consensus
tree will be the posterior probability of those clades.

In this tutorial, however, we are going to use a tool that is provided as
part of the BEAST package to summarize the information contained within our
sampled trees. The tool is called ‘TreeAnnotator’ and once running, you will
be presented with a window like the one in Figure 18.10.

Figure 18.10: The user-interface for the TreeAnnotator tool.

TreeAnnotator takes a single ‘target’ tree and annotates it with the summa-
rized information from the entire sample of trees. The summarized information
includes the average node ages (along with the HPD intervals), the posterior
support and the average rate of evolution on each branch (for models where this
can vary). The program calculates these values for each node or clade observed
in the specified ’target’ tree.

• Burnin - This is the number of trees in the input file that should be
excluded from the summarization. This value is given as the number of
trees rather than the number of steps in the MCMC chain. Thus for the
example above, with a chain of 1,000,000 steps, sampling every 1000 steps,
there are 1000 trees in the file. To obtain a 10% burnin, set this value to
100.
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• Posterior probability limit - This is the minimum posterior probability for
a node in order for TreeAnnotator to store the annoted information. The
default is 0.5 so only nodes with this posterior probability or greater will
have information summarized (the equivalent to the nodes in a majority-
rule consensus tree). Set this value to 0.0 to summarize all nodes in the
target tree.

• Target tree type - This has two options ”Maximum clade credibility” or
”User target tree”. For the latter option, a NEXUS tree file can be speci-
fied as the Target Tree File, below. For the former option, TreeAnnotator
will examine every tree in the Input Tree File and select the tree that has
the highest sum of the posterior probabilities of all its nodes.

• Node heights - This option specifies what node heights (times) should be
used for the output tree. If the “Keep target heights” is selected, then the
node heights will be the same as the target tree. The other two options
give node heights as an average (Mean or Median) over the sample of trees.

• Target Tree File - If the ”User target tree” option is selected then you can
use ”Choose File...” to select a NEXUS file containing the target tree.

• Input Tree File - Use the ”Choose File...” button to select an input trees
file. This will be the trees file produced by BEAST.

• Output File - Select a name for the output tree file.

Once you have selected all the options, above, press the ”Run” button.
TreeAnnotator will analyse the input tree file and write the summary tree to
the file you specified. This tree is in standard NEXUS tree file format so may
be loaded into any tree drawing package that supports this. However, it also
contains additional information that can only be displayed using the FigTree

program.

18.2.11 Viewing the annotated tree

Run FigTree now and select the Open... command from the File menu. Select
the tree file you created using TreeAnnotator in the previous section. The tree
will be displayed in the FigTree window. On the left hand side of the window
are the options and settings which control how the tree is displayed. In this
case we want to display the posterior probabilities of each of the clades present
in the tree and estimates of the age of each node (see Figure 18.11). In order to
do this you need to change some of the settings.

First open the Branch Labels section of the control panel on the left. Now
select posterior from the Display popup menu. The posterior probabilities won’t
actually be displayed until you tick the check-box next to the Branch Labels title.

We now want to display bars on the tree to represent the estimated uncer-
tainty in the date for each node. TreeAnnotator will have placed this infor-
mation in the tree file in the shape of the 95% highest posterior density (HPD)

25



Figure 18.11: The annotated tree displayed in FigTree.

intervals (see the description of HPDs, above). Open the Node Bars section of
the control panel and you will notice that it is already set to display the 95%
HPDs of the node heights so all you need to do is to select the check-box in
order to turn the node bars on.

Finally, open the Appearance panel and alter the Line Weight to draw the
tree with thicker lines. None of the options actually alter the tree’s topology or
branch lengths in anyway so feel free to explore the options and settings. You
can also save the tree and this will save all your settings so that when you load
it into FigTree again it will be displayed exactly as you selected.

18.2.12 Conclusion and Resources

This chapter only scratches the surface of the analyses that are possible to
undertake using BEAST. It has hopefully provided a relatively gentle introduction
to the fundamental steps that will be common to all BEAST analyses and provide
a basis for more challenging investigations. BEAST is an ongoing development
project with new models and techniques being added on a regular basis. The
BEAST website provides details of the mailing list that is used to announce new
features and to discuss the use of the package. The website also contains a list
of tutorials and recipes to answer particular evolutionary questions using BEAST

as well as a description of the XML input format, common questions and error
messages.
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• The BEAST website: http://beast.bio.ed.ac.uk/

• Tutorials: http://beast.bio.ed.ac.uk/Tutorials/

• Frequently asked questions: http://beast.bio.ed.ac.uk/FAQ/
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