Boculo

__ .0rg

The Leading Open Source
Backup Solution

Bacula® Miscellaneous Guide

Kern Sibbald

March 9, 2020
This manual documents Bacula version 9.6.3 (09 March 2020)

Copyright (©) 2000-2018, Kern Sibbald
Bacula®™ is a registered trademark of Kern Sibbald.

This Bacula documentation by Kern Sibbald with contributions from many
others,
a complete list can be found in the License chapter. Creative Commons

Attribution-ShareAlike 4.0 International License
http://creativecommons.org/licenses/by-sa/4.0/

©Nole

Bacula® is a registered trademark of Kern Sibbald

Contents

(1

Variable Expansion|

2.5 Securing the Data Channel]

2.6 Data Channel Configuration]. o

2.7 Stunnel Configuration for the Data Channel| 000,

2.8 Starting and Testing the Data Encryption|

2.9 Encrypting the Control Channell

[2.10 Control Channel Configuration|

[2.11 Stunnel Configuration for the Control Channel|

[2.12 Starting and Testing the Control Channel|o 000

[2.13 Using stunnel to Encrypt to a Second Client|.

2.14 Creating a Self-signed Certificate]

2.15 Getting a CA Signed Certificate]

[2.16 Using ssh to Secure the Communications|.

(3

Bacula Projects|

13

‘ ii CONTENTS

[4 Bacula Copyright, Trademark, and Licenses| 15

M1 CC-DBY-DAl e 15

4.10 GNU LESSER GENBERAL PUBLIC DICENSE 29

4.12 TERMS AND CONDITIONS 30

4.13 How to Apply These Terms to Your New Libraries| 35

Chapter 1

Variable Expansion

Variable expansion is somewhat similar to Unix shell variable expansion. Currently (version 1.31), it is used
only in format labels, but in the future, it will most likely be used in more places.

1.1 General Functionality

This is basically a string expansion capability that permits referencing variables, indexing arrays, conditional
replacement of variables, case conversion, substring selection, regular expression matching and replacement,
character class replacement, padding strings, repeated expansion in a user controlled loop, support of arith-
metic expressions in the loop start, step and end conditions, and recursive expansion.

When using variable expansion characters in a Volume Label Format record, the format should always be
enclosed in double quotes ().

For example, ${HOME} will be replaced by your home directory as defined in the environment. If you
have defined the variable xxx to be Test, then the reference ${xxx:p/7/Y /r} will right pad the contents
of xxx to a length of seven characters filling with the character Y giving YY Y Test.

1.2 Bacula Variables

Within Bacula, there are three main classes of variables with some minor variations within the classes. The
classes are:

Counters Counters are defined by the Counter resources in the Director’s conf file. The counter can either
be a temporary counter that lasts for the duration of Bacula’s execution, or it can be a variable that
is stored in the catalog, and thus retains its value from one Bacula execution to another. Counter
variables may be incremented by postfixing a plus sign (4 after the variable name).

Internal Variables Internal variables are read-only, and may be related to the current job (i.e. Job name),
or maybe special variables such as the date and time. The following variables are available:

Year — the full year
Month — the current month 1-12
Day — the day of the month 1-31
Hour — the hour 0-24
Minute — the current minute 0-59
Second — the current second 0-59
WeekDay — the current day of the week 0-6 with 0 being Sunday

2 Bacula Version 9.6.3

Job — the job name
general — the Director’s name
Level — the Job Level
Type — the Job type
Jobld - the Jobld
JobName — the unique job name composed of Job and date
Storage — the Storage daemon’s name
Client — the Client’s name
NumVols — the current number of Volumes in the Pool
Pool — the Pool name
Catalog — the Catalog name
MediaType — the Media Type

Environment Variables Environment variables are read-only, and must be defined in the environment
prior to executing Bacula. Environment variables may be either scalar or an array, where the ele-
ments of the array are referenced by subscripting the variable name (e.g. ${Months[3]}). Envi-
ronment variable arrays are defined by separating the elements with a vertical bar (—), thus set
Months="Jan—Feb—Mar—Apr—...” defines an environment variable named Month that will
be treated as an array, and the reference ${Months[3]} will yield Mar. The elements of the array
can have differing lengths.

1.3 Full Syntax

Since the syntax is quite extensive, below, you will find the pseudo BNF. The special characters have the
following meaning;:

= definition
) grouping if the parens are not quoted
| separates alternatives
2/ literal / (or any other character)
CAPS a character or character sequence
* preceding item can be repeated zero or more times
? preceding item can appear zero or one time
+ preceding item must appear one or more times

And the pseudo BNF describing the syntax is:

>x> (TEXT_EXP|variable)+
’s? ?/° (TEXT_PATTERN)+
>/ (variable|TEXT_SUBST) *
:/) (’m’l’g’l’i’l’t’)*
| >y> >/’ (variable|TEXT_SUBST)+
>/’ (variable|TEXT_SUBST)*
7/;

input = (TEXT
| variable
| INDEX_OPEN input INDEX_CLOSE (loop_limits)?
) *
variable ::= DELIM_INIT (name|expression)
name ::= (NAME_CHARS)+
expression = DELIM_OPEN
(name|variable)+
(INDEX_OPEN num_exp INDEX_CLOSE)?
(?:? command)*
DELIM_CLOSE
command = ’-> (TEXT_EXP|variable)+
| >+’ (TEXT_EXP|variable)+
| 0’ NUMBER (°-’|’,’) (NUMBER)?
I ;#7
|
|

Bacula Version 9.6.3 3

| ’p’> ’/’ NUMBER
>/ (variable|TEXT_SUBST) *
)/1 ()r)lil)llci)

| »%’ (namel|variable)+
(> (> (TEXT_ARGS)? ’)’)7?

|]

I ‘u?
num_exp = operand

I operand (;+7|J_;|J*)|>/J|7%J) num_exp
operand r:= (°+’|’-’)7 NUMBER

| INDEX_MARK

| >’ num_exp ’)’

| variable
loop_limits = DELIM_OPEN

(num_exp)? ’,’ (num_exp)? (’,’ (num_exp)?)?
DELIM_CLOSE

NUMBER ti= (0. 179%)+
TEXT_PATTERN::= (“(C’/?))+
TEXT_SUBST ::= ("(DELIM_INIT|’/’))+
TEXT_ARGS ::= (T(DELIM_INIT|’)’))+
TEXT_EXP ::= (" (DELIM_INIT|DELIM_CLOSE|’:’|’+7))+
TEXT ::= (" (DELIM_INIT|INDEX_OPEN|INDEX_CLOSE))+
DELIM_INIT ::=’$’
DELIM_OPEN ::= ’{’
DELIM_CLOSE ::= ’}’
INDEX_OPEN ::= [’
INDEX_CLOSE ::= ’]°
INDEX_MARK ::= ’#’
NAME_CHARS ::= ’a’|...|°z°[’A’|...1’Z° 1’0’ |...|’9’

1.4 Semantics

The items listed in command above, which always follow a colon (:) have the following meanings:

perform substitution if variable is empty

+ perform substitution if variable is not empty

o cut out substring of the variable value

length of the variable value

* substitute empty string if the variable value is not empty,
otherwise substitute the trailing parameter

s regular expression search and replace. The trailing
options are: m = multiline, i = case insensitive,

g = global, t = plain text (no regexp)

y transpose characters from class A to class B

P pad variable to 1 = left, r = right or c = center,
with second value.

% special function call (none implemented)

1 lower case the variable value

u upper case the variable value

The loop_limits are start, step, and end values.

A counter variable name followed immediately by a plus (4) will cause the counter to be incremented by
one.

1.5 Examples

To create an ISO date:
DLT-${Year}-${Month:p/2/0/r}-${Day:p/2/0/r}

on 20 June 2003 would give DLT-2003-06-20

If you set the environment variable mon to

4 Bacula Version 9.6.3

January |February |March|April|Mayl ...
File-${mon[${Month}]}/${Day}/${Year}

on the first of March would give File-March/1/2003

Chapter 2

Using Stunnel to Encrypt
Communications

Prior to version 1.37, Bacula did not have built-in communications encryption. Please see the chapter
(chapter 40 on page 379) of the Bacula Community Main Manual if you are using Bacula 1.37 or greater.

Without too much effort, it is possible to encrypt the communications between any of the daemons. This
chapter will show you how to use stunnel to encrypt communications to your client programs. We assume
the Director and the Storage daemon are running on one machine that will be called server and the Client or
File daemon is running on a different machine called client. Although the details may be slightly different,
the same principles apply whether you are encrypting between Unix, Linux, or Win32 machines. This
example was developed between two Linux machines running stunnel version 4.04-4 on a Red Hat Enterprise
3.0 system.

2.1 Communications Ports Used

First, you must know that with the standard Bacula configuration, the Director will contact the File daemon
on port 9102. The File daemon then contacts the Storage daemon using the address and port parameters
supplied by the Director. The standard port used will be 9103. This is the typical server/client view of the
world, the File daemon is a server to the Director (i.e. listens for the Director to contact it), and the Storage
daemon is a server to the File daemon.

2.2 Encryption

The encryption is accomplished between the Director and the File daemon by using an stunnel on the
Director’s machine (server) to encrypt the data and to contact an stunnel on the File daemon’s machine
(client), which decrypts the data and passes it to the client.

Between the File daemon and the Storage daemon, we use an stunnel on the File daemon’s machine to
encrypt the data and another stunnel on the Storage daemon’s machine to decrypt the data.

As a consequence, there are actually four copies of stunnel running, two on the server and two on the client.
This may sound a bit complicated, but it really isn’t. To accomplish this, we will need to construct four
separate conf files for stunnel, and we will need to make some minor modifications to the Director’s conf file.
None of the other conf files need to be changed.

6 Bacula Version 9.6.3

2.3 A Picture

Since pictures usually help a lot, here is an overview of what we will be doing. Don’t worry about all the
details of the port numbers and such for the moment.

File daemon (client):
stunnel-fdl.conf

Port 29102 >----| Stunnel 1 |----- > Port 9102

Port 9103 >----| Stunnel 2 |----- > server:29103

Director (server):
stunnel-dir.conf

Port 29102 >----| Stunnel 3 |----- > client:29102

Port 29103 >----| Stunnel 4 |----- > 9103

2.4 Certificates

In order for stunnel to function as a server, which it does in our diagram for Stunnel 1 and Stunnel 4, you
must have a certificate and the key. It is possible to keep the two in separate files, but normally, you keep
them in one single .pem file. You may create this certificate yourself in which case, it will be self-signed, or
you may have it signed by a CA.

If you want your clients to verify that the server is in fact valid (Stunnel 2 and Stunnel 3), you will need
to have the server certificates signed by a CA (Certificate Authority), and you will need to have the CA’s
public certificate (contains the CA’s public key).

Having a CA signed certificate is highly recommended if you are using your client across the Internet,
otherwise you are exposed to the man in the middle attack and hence loss of your data.

See below for how to create a self-signed certificate.

2.5 Securing the Data Channel

To simplify things a bit, let’s for the moment consider only the data channel. That is the connection between
the File daemon and the Storage daemon, which takes place on port 9103. In fact, in a minimalist solution,
this is the only connection that needs to be encrypted, because it is the one that transports your data. The
connection between the Director and the File daemon is simply a control channel used to start the job and
get the job status.

Normally the File daemon will contact the Storage daemon on port 9103 (supplied by the Director), so we
need an stunnel that listens on port 9103 on the File daemon’s machine, encrypts the data and sends it
to the Storage daemon. This is depicted by Stunnel 2 above. Note that this stunnel is listening on port
9103 and sending to server:29103. We use port 29103 on the server because if we would send the data to
port 9103, it would go directly to the Storage daemon, which doesn’t understand encrypted data. On the
server machine, we run Stunnel 4, which listens on port 29103, decrypts the data and sends it to the Storage
daemon, which is listening on port 9103.

Bacula Version 9.6.3 7

2.6 Data Channel Configuration

The Storage resource of the bacula-dir.conf normally looks something like the following:

Storage {
Name = File
Address = server
SDPort = 9103
Password = storage_password
Device = File
Media Type = File

Notice that this is running on the server machine, and it points the File daemon back to server:9103, which
is where our Storage daemon is listening. We modify this to be:

Storage {
Name = File
Address = localhost
SDPort = 9103
Password = storage_password
Device = File
Media Type = File

This causes the File daemon to send the data to the stunnel running on localhost (the client machine). We
could have used client as the address as well.

2.7 Stunnel Configuration for the Data Channel

In the diagram above, we see above Stunnel 2 that we use stunnel-fd2.conf on the client. A pretty much
minimal config file would look like the following;:

client = yes

[29103]

accept = localhost:9103
connect = server:29103

The above config file does encrypt the data but it does not require a certificate, so it is subject to the man
in the middle attack. The file I actually used, stunnel-fd2.conf, looked like this:

#

Stunnel conf for Bacula client -> SD

#

pid = /home/kern/bacula/bin/working/stunnel.pid
#

A cert is not mandatory here. If verify=2, a
cert signed by a CA must be specified, and
either CAfile or CApath must point to the CA’s
cert

#

cert = /home/kern/stunnel/stunnel.pem

CAfile = /home/kern/ssl/cacert.pem
verify = 2

client = yes

debug = 7

foreground = yes

[29103]

accept = localhost:9103
connect = server:29103

8 Bacula Version 9.6.3

You will notice that I specified a pid file location because I ran stunnel under my own userid so I could not
use the default, which requires root permission. I also specified a certificate that I have as well as verify
level 2 so that the certificate is required and verified, and I must supply the location of the CA (Certificate
Authority) certificate so that the stunnel certificate can be verified. Finally, you will see that there are two
lines commented out, which when enabled, produce a lot of nice debug info in the command window.

If you do not have a signed certificate (stunnel.pem), you need to delete the cert, CAfile, and verify lines.

Note that the stunnel.pem, is actually a private key and a certificate in a single file. These two can be kept
and specified individually, but keeping them in one file is more convenient.

The config file, stunnel-sd.conf, needed for Stunnel 4 on the server machine is:

#

Bacula stunnel conf for Storage daemon

#

pid = /home/kern/bacula/bin/working/stunnel.pid
#

A cert is mandatory here, it may be self signed
1If it is self signed, the client may not use
verify

#

cert /home/kern/stunnel/stunnel .pem

client no

debug = 7

foreground = yes

[29103]

accept = 29103

connect = 9103

2.8 Starting and Testing the Data Encryption
It will most likely be the simplest to implement the Data Channel encryption in the following order:

e Setup and run Bacula backing up some data on your client machine without encryption.
e Stop Bacula.

e Modify the Storage resource in the Director’s conf file.

e Start Bacula

e Start stunnel on the server with:

stunnel stunnel-sd.conf

e Start stunnel on the client with:

stunnel stunnel-fd2.conf

e Run a job.

e If it doesn’t work, turn debug on in both stunnel conf files, restart the stunnels, rerun the job, repeat
until it works.

2.9 Encrypting the Control Channel

The Job control channel is between the Director and the File daemon, and as mentioned above, it is not
really necessary to encrypt, but it is good practice to encrypt it as well. The two stunnels that are used in

Bacula Version 9.6.3 9

this case will be Stunnel 1 and Stunnel 3 in the diagram above. Stunnel 3 on the server might normally
listen on port 9102, but if you have a local File daemon, this will not work, so we make it listen on port
29102. It then sends the data to client:29102. Again we use port 29102 so that the stunnel on the client
machine can decrypt the data before passing it on to port 9102 where the File daemon is listening.

2.10 Control Channel Configuration

We need to modify the standard Client resource, which would normally look something like:

Client {
Name = client-fd
Address = client
FDPort = 9102
Catalog = BackupDB
Password = "xxx"

to be:

Client {
Name = client-fd
Address = localhost
FDPort = 29102
Catalog = BackupDB
Password = "xxx"

This will cause the Director to send the control information to localhost:29102 instead of directly to the
client.

2.11 Stunnel Configuration for the Control Channel

The stunnel config file, stunnel-dir.conf, for the Director’s machine would look like the following;:

#

Bacula stunnel conf for the Directory to contact a client
#

pid = /home/kern/bacula/bin/working/stunnel.pid
#

A cert is not mandatory here. If verify=2, a

cert signed by a CA must be specified, and

either CAfile or CApath must point to the CA’s
cert

#

cert = /home/kern/stunnel/stunnel.pem

CAfile = /home/kern/ssl/cacert.pem

verify = 2

client = yes

debug = 7

foreground = yes

[29102]

accept = localhost:29102
connect = client:29102

and the config file, stunnel-fd1.conf, needed to run stunnel on the Client would be:

#
Bacula stunnel conf for the Directory to contact a client
#

10 Bacula Version 9.6.3

pid = /home/kern/bacula/bin/working/stunnel.pid
#

A cert is not mandatory here. If verify=2, a

cert signed by a CA must be specified, and

either CAfile or CApath must point to the CA’s

cert

#

cert = /home/kern/stunnel/stunnel.pem
CAfile = /home/kern/ssl/cacert.pem
verify = 2

client = yes

debug = 7

foreground = yes

[29102]

accept = localhost:29102
connect = client:29102

2.12 Starting and Testing the Control Channel

It will most likely be the simplest to implement the Control Channel encryption in the following order:

e Stop Bacula.
e Modify the Client resource in the Director’s conf file.
e Start Bacula

e Start stunnel on the server with:

stunnel stunnel-dir.conf

e Start stunnel on the client with:

stunnel stunnel-fdl.conf

e Run a job.

e If it doesn’t work, turn debug on in both stunnel conf files, restart the stunnels, rerun the job, repeat

until it works.

2.13 Using stunnel to Encrypt to a Second Client

On the client machine, you can just duplicate the setup that you have on the first client file for file and it

should work fine.

In the bacula-dir.conf file, you will want to create a second client pretty much identical to how you did for

the first one, but the port number must be unique. We previously used:

Client {
Name = client-fd
Address = localhost
FDPort = 29102
Catalog = BackupDB

Password = "xxx"

so for the second client, we will, of course, have a different name, and we will also need a different port.
Remember that we used port 29103 for the Storage daemon, so for the second client, we can use port 29104,

and the Client resource would look like:

Bacula Version 9.6.3 11

Client {
Name = client2-fd
Address = localhost
FDPort = 29104
Catalog = BackupDB
Password = "yyy"

Now, fortunately, we do not need a third stunnel to on the Director’s machine, we can just add the new port
to the config file, stunnel-dir.conf, to make:

#

Bacula stunnel conf for the Directory to contact a client
#

pid = /home/kern/bacula/bin/working/stunnel.pid

#

A cert is not mandatory here. If verify=2, a

cert signed by a CA must be specified, and

either CAfile or CApath must point to the CA’s
cert

#

cert = /home/kern/stunnel/stunnel.pem
CAfile = /home/kern/ssl/cacert.pem
verify = 2

client = yes

debug = 7

foreground = yes

[29102]

accept = localhost:29102
connect = client:29102
[29104]

accept = localhost:29102
connect = client2:29102

There are no changes necessary to the Storage daemon or the other stunnel so that this new client can talk
to our Storage daemon.

2.14 Creating a Self-signed Certificate

You may create a self-signed certificate for use with stunnel that will permit you to make it function, but
will not allow certificate validation. The .pem file containing both the certificate and the key can be made
with the following, which I put in a file named makepem:

#!/bin/sh
#
Simple shell script to make a .pem file that can be used
with stunnel and Bacula
#
OPENSSL=openssl
umask 77
PEM1="/bin/mktemp openssl.XXXXXX"
PEM2="/bin/mktemp openssl.XXXXXX"
${0PENSSL} req -newkey rsa:1024 -keyout $PEM1 -nodes \
-x509 -days 365 -out $PEM2
cat $PEM1 > stunnel.pem
echo "" >>stunnel.pem
cat $PEM2 >>stunnel.pem
rm $PEM1 $PEM2

The above script will ask you a number of questions. You may simply answer each of them by entering a
return, or if you wish you may enter your own data.

12 Bacula Version 9.6.3

2.15 Getting a CA Signed Certificate

The process of getting a certificate that is signed by a CA is quite a bit more complicated. You can purchase
one from quite a number of PKI vendors, but that is not at all necessary for use with Bacula.

To get a CA signed certificate, you will either need to find a friend that has setup his own CA or to become
a CA yourself, and thus you can sign all your own certificates. The book OpenSSL by John Viega, Matt
Mesier & Pravir Chandra from O’Reilly explains how to do it, or you can read the documentation provided
in the Open-source PKI Book project at Source Forge: | http://ospkibook.sourceforge.net/docs/OSPKI-
2.4.7/0OSPKI-html/ospki-book.htm/ . Note, this link may change.

2.16 Using ssh to Secure the Communications

Please see the script ssh-tunnel.sh in the examples directory. It was contributed by Stephan Holl.

http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm
http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm

Chapter 3

Bacula Projects

In the past, when Bacula still lacked many essential features, new projects to add those features were tracked
and the project even held voting to determine which features were the most popular.

Now that Bacula is full-featured and very robust, we no longer keep an official new features list, though
some of the developers such as myself (Kern) have their own favorite projects they would like to do. Also,
now that Bacula Systems is a solid successful company, it is the source of the major contributions to Bacula
Community. Bacula Systems spends a lot on development of new features. These features are determined
by the Research and Development department based on input from the Sales and Marketing department,
the Support and Presales department, and independent IT experts. Currently for the most part Bacula
Community relies on Bacula Systems to provide most of the new features.

13

Bacula Version 9.6.3

Chapter 4

Bacula Copyright, Trademark, and
Licenses

There are a number of different licenses that are used in Bacula. If you have a printed copy of this manual,
the details of each of the licenses referred to in this chapter can be found in the online version of the manual
at |http://www.bacula.org .

4.1 CC-BY-SA

The [Creative Commons Attribution-ShareAlike 4.0 International License (CC-BY-SA)|is used for this man-
ual, which is a free and open license. Though there are certain restrictions that come with this license you
may in general freely reproduce it and even make changes to it. However, rather than distribute your own
version of this manual, we would much prefer if you would send any corrections or changes to the Bacula
project.

The most recent version of the manual can always be found online at http://www.bacula.org .

4.2 GPL

The vast bulk of the source code is released under the [Affero GNU General Public License version 3.1
Most of this code is copyrighted: Copyright (©2000-2016, Kern Sibbald.

Portions may be copyrighted by other people. These files are released under different licenses which are
compatible with the Bacula AGPLv3 license.

4.3 LGPL

Some of the Bacula library source code is released under the [GNU Lesser General Public License.| This
permits third parties to use these parts of our code in their proprietary programs to interface to Bacula.

4.4 Public Domain

Some of the Bacula code, or code that Bacula references, has been released to the public domain. E.g.
md5.c, SQLite.

15

http://www.bacula.org
http://www.bacula.org

. 16 Bacula Version 9.6.3

4.5 Trademark

Bacula® is a registered trademark of Kern Sibbald.

4.6 Fiduciary License Agreement

Developers who have contributed significant changes to the Bacula code should have signed a Fiduciary
License Agreement (FLA), which guarantees them the right to use the code they have developed, and also
ensures that the Free Software Foundation Europe (and thus the Bacula project) has the rights to the code.
This Fiduciary License Agreement is found on the Bacula web site at:

http://www.bacula.org/en/FLA-bacula.en.pdf

and if you are submitting code, you should fill it out then sent to:

Kern Sibbald
Cotes-de-Montmoiret 9
1012 Lausanne
Switzerland

When you send in such a complete document, please notify me: kern at sibbald dot com.

4.7 Disclaimer

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

4.8 Authors

The following people below have contributed to making this document what it is today:

Alexandre Baron jbalexfr at users dot sourceforge dot net; Arno Lehmann jarnol at users dot sourceforge dot
net; Bastian Friedrich jbastian dot friedrich at collax dot com,; Christopher S dot Hull jcsh at raidersolutions

http://www.bacula.org/en/FLA-bacula.en.pdf

Bacula Version 9.6.3 17

dot com;, Dan Langille Davide Franco jdfranco at dflc dot ch;, Dirk H Bartley jdbartley at schupan dot comj,
Eric Bollengier jeric.bollengier at baculasystems dot com;, Frank Sweetser James Harper bendigoit dot com
dot au;, Jeremy C dot Reed jjeremy-c-reed at users dot sourceforge dot net; Jose Herrera jherrerajs at yahoo
dot comy Jo Simoens Juan Luis Francis jindpnday at users dot sourceforge dot net; Karl Cunningham
jkarlec at users dot sourceforge dot net; Kern Sibbald jkern at sibbald dot com; Landon Fuller jlandonf at
opendarwin dot org; Lucas Di Pentima Ludovic Strappazon Meno Abels Nicolas Boichat Peter Buschman
Philippe Chauvat jphilippe.chauvat at baculasystems dot com; Philipp Storz Richard Mortimer jrichm at
oldelvet dot org dot uk; Robert Nelson jrobertn at the-nelsons dot org; Scott Barninger Sebastien Guilbaud
Thomas Glatthor Thomas Mueller jthomas at chaschperli dot ch; Thorsten Engel jthorsten dot engel at
matrix-computer dot com;, Victor Hugo dos Santos jvictorhugops at users dot sourceforge dot net

18 Bacula Version 9.6.3

Creative Commons Attribution-ShareAlike 4.0 International

Attribution-ShareAlike 4.0 International

Creative Commons Corporation (Creative Commons) is not a law firm and does not provide legal service

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and ot
Considerations for licensors: Our public licenses are intended for use by those authorized to gi
Considerations for the public: By using one of our public licenses, a licensor grants the public

Creative Commons Attribution-ShareAlike 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and

Section 1 Definitions.

Adapted Material means material subject to Copyright and Similar Rights that is derived from or

Adapter’s License means the license You apply to Your Copyright and Similar Rights in Your contr
BY-SA Compatible License means a license listed at creativecommons.org/compatiblelicenses, appro
Copyright and Similar Rights means copyright and/or similar rights closely related to copyright

Effective Technological Measures means those measures that, in the absence of proper authority,

Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitatio
License Elements means the license attributes listed in the name of a Creative Commons Public Li
Licensed Material means the artistic or literary work, database, or other material to which the

Licensed Rights means the rights granted to You subject to the terms and conditions of this Publ
Licensor means the individual(s) or entity(ies) granting rights under this Public License.

Share means to provide material to the public by any means or process that requires permission u
Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC o
You means the individual or entity exercising the Licensed Rights under this Public License. You

Section 2 Scope.

License grant.
Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
reproduce and Share the Licensed Material, in whole or in part; and
produce, reproduce, and Share Adapted Material.
Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations app
Term. The term of this Public License is specified in Section 6(a).
Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
Downstream recipients.
Offer from the Licensor Licensed Material. Every recipient of the Licensed Material aut
Additional offer from the Licensor Adapted Material. Every recipient of Adapted Materia
No downstream restrictions. You may not offer or impose any additional or different term
No endorsement. Nothing in this Public License constitutes or may be construed as permission

Other rights.
Moral rights, such as the right of integrity, are not licensed under this Public License, no
Patent and trademark rights are not licensed under this Public License.
To the extent possible, the Licensor waives any right to collect royalties from You for the

Section 3 License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditioms.

Bacula Version 9.6.3 19

Attribution.

If You Share the Licensed Material (including in modified form), You must:
retain the following if it is supplied by the Licensor with the Licensed Material:
identification of the creator(s) of the Licensed Material and any others designated

a copyright notice;

a notice that refers to this Public License;

a notice that refers to the disclaimer of warranties;

a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
indicate if You modified the Licensed Material and retain an indication of any previous
indicate the Licensed Material is licensed under this Public License, and include the te

You may satisfy the conditions in Section 3(a) (1) in any reasonable manner based on the medi
If requested by the Licensor, You must remove any of the information required by Section 3(a
ShareAlike.

In addition to the conditions in Section 3(a), if You Share Adapted Material You produce, the fo
The Adapters License You apply must be a Creative Commons license with the same License Elem
You must include the text of, or the URI or hyperlink to, the Adapter’s License You apply. Y
You may not offer or impose any additional or different terms or conditions on, or apply any

Section 4 Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed
for the avoidance of doubt, Section 2(a) (1) grants You the right to extract, reuse, reproduce, a
if You include all or a substantial portion of the database contents in a database in which You
You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under t

Section 5 Disclaimer of Warranties and Limitation of Liability.

Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor off
To the extent possible, in no event will the Licensor be liable to You on any legal theory (incl

The disclaimer of warranties and limitation of liability provided above shall be interpreted in
Section 6 Term and Termination.
This Public License applies for the term of the Copyright and Similar Rights licensed here. Howe

Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:
automatically as of the date the violation is cured, provided it is cured within 30 days of
upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to

For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate ter

Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 Other Terms and Conditions.

The Licensor shall not be bound by any additional or different terms or conditions communicated
Any arrangements, understandings, or agreements regarding the Licensed Material not stated herei

Section 8 Interpretation.

For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduc
To the extent possible, if any provision of this Public License is deemed unenforceable, it shal
No term or condition of this Public License will be waived and no failure to comply consented to
Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver

20 Bacula Version 9.6.3

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect

Creative Commons may be contacted at creativecommons.org.

Bacula Version 9.6.3 21

Affero GNU General Public License

Version 3, 19 November 2007

Copyright (© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

The GNU Affero General Public License is a free, copyleft license for software and other kinds of works,
specifically designed to ensure cooperation with the community in the case of network server software.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. By contrast, our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program—to make sure it remains free software for all its users.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

Developers that use our General Public Licenses protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License which gives you legal permission to copy, distribute and/or
modify the software.

A secondary benefit of defending all users’ freedom is that improvements made in alternate versions of
the program, if they receive widespread use, become available for other developers to incorporate. Many
developers of free software are heartened and encouraged by the resulting cooperation. However, in the case
of software used on network servers, this result may fail to come about. The GNU General Public License
permits making a modified version and letting the public access it on a server without ever releasing its
source code to the public.

The GNU Affero General Public License is designed specifically to ensure that, in such cases, the modified
source code becomes available to the community. It requires the operator of a network server to provide
the source code of the modified version running there to the users of that server. Therefore, public use of a
modified version, on a publicly accessible server, gives the public access to the source code of the modified
version.

An older license, called the Affero General Public License and published by Affero, was designed to accomplish
similar goals. This is a different license, not a version of the Affero GPL, but Affero has released a new
version of the Affero GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.
“This License” refers to version 3 of the GNU Affero General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed

4

as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version”
of the earlier work or a work “based on” the earlier work.

22

Bacula Version 9.6.3

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a
convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the extent that warranties are provided),
that licensees may convey the work under this License, and how to view a copy of this License. If the
interface presents a list of user commands or options, such as a menu, a prominent item in the list
meets this criterion.

. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it.
“Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that
(a) is included in the normal form of packaging a Major Component, but which is not part of that
Major Component, and (b) serves only to enable use of the work with that Major Component, or to
implement a Standard Interface for which an implementation is available to the public in source code
form. A “Major Component”, in this context, means a major essential component (kernel, window
system, and so on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to
generate, install, and (for an executable work) run the object code and to modify the work, including
scripts to control those activiti