RadialDifferential

class astropy.coordinates.RadialDifferential(*args, **kwargs)[source]

Bases: astropy.coordinates.representation.BaseDifferential

Differential(s) of radial distances.

Parameters
d_distanceQuantity

The differential distance.

copybool, optional

If True (default), arrays will be copied. If False, arrays will be references, though possibly broadcast to ensure matching shapes.

Attributes Summary

attr_classes

d_distance

Component 'd_distance' of the Differential.

Methods Summary

from_cartesian(other, base)

from_representation(representation[, base])

norm([base])

Vector norm.

to_cartesian(base)

Convert the differential to 3D rectangular cartesian coordinates.

Attributes Documentation

attr_classes = {'d_distance': <class 'astropy.units.quantity.Quantity'>}
d_distance

Component ‘d_distance’ of the Differential.

Methods Documentation

classmethod from_cartesian(other, base)[source]
classmethod from_representation(representation, base=None)[source]
norm(base=None)[source]

Vector norm.

The norm is the standard Frobenius norm, i.e., the square root of the sum of the squares of all components with non-angular units.

Parameters
baseinstance of self.base_representation

Base relative to which the differentials are defined. This is required to calculate the physical size of the differential for all but Cartesian differentials or radial differentials.

Returns
normastropy.units.Quantity

Vector norm, with the same shape as the representation.

to_cartesian(base)[source]

Convert the differential to 3D rectangular cartesian coordinates.

Parameters
baseinstance of self.base_representation

The points for which the differentials are to be converted: each of the components is multiplied by its unit vectors and scale factors.

Returns
CartesianDifferential

This object, converted.