
The IFEFFIT Tutorial

Matthew Newville
Consortium for Advanced Radiation Sources

University of Chicago, Chicago, IL

Version 1.2.6
July 07, 2004

CONTENTS i

Contents

1 Introduction 1
1.1 Running IFEFFIT . 1

2 Data, Commands, and Simple Data Manipulation 2
2.1 Data Types and Naming Conventions . 2
2.2 Data Manipulation . 3
2.3 Commands and their conventions . 4
2.4 Storing Definitions of Scalars and Arrays: show() and def() 4
2.5 The show() command . 5
2.6 The print() command . 6
2.7 Command Files . 7

3 Reading Arrays from Data Files 8

4 Plotting Data 9

5 XAFS Data Processing 10
5.1 Data Reduction . 10
5.2 Pre-Edge Subtraction, E0 determination, and Normalization 10
5.3 Post-Edge Background Subtraction . 11
5.4 Fourier Transforms . 12

5.4.1 Forward Fourier Transforms . 12
5.4.2 Reverse Fourier Transforms . 13

6 XAFS Analysis 15
6.1 Defining Paths . 15
6.2 Combining Paths . 16
6.3 Getting and Viewing Path Parameters . 17
6.4 feffit(): Fitting XAFS Data with Paths 18
6.5 Uncertainties in Fitted Variables, Fitting Statistics 19

7 Modeling non-XAFS data 21

8 Saving data and logging your IFEFFIT session 22
8.1 Writing output data files . 22
8.2 Writing log files . 22
8.3 Saving the state of an IFEFFIT session . 23

9 Defining and Using Macros 24

10 The ifeffit command-line program 25

CONTENTS ii

License

Copyright ©1997–2000 Matthew Newville, The University of Chicago
Copyright ©1992–1996 Matthew Newville, University of Washington

Permission to use and redistribute the source code or binary forms of this software and its
documentation, with or without modification is hereby granted provided that the above notice
of copyright, these terms of use, and the disclaimer of warranty below appear in the source code
and documentation, and that none of the names of The University of Chicago, The University
of Washington, or the authors appear in advertising or endorsement of works derived from this
software without specific prior written permission from all parties.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THIS SOFTWARE.

1 INTRODUCTION 1

1 Introduction

IFEFFIT is an interactive program for XAFS data analysis. The main program runs like a
command-line ’shell’, in which you enter commands to process and manipulate data. IFEF-
FIT has a high-level command language, allowing you to do the complex data manipulation
needed for XAFS analysis (such as background subtraction and Fourier transforms) with sim-
ple commands.

One of the principle features of IFEFFIT is that it’s command-line functionality can be run
in either interactively, from files of commands (i.e., batch files), or accessed from within other
programming and high-level scripting languages like Tcl, Perl, and Python. While the details
of how this is done are beyond the scope of this tutorial, most people actually use IFEFFIT

through one of the GUI programs written on-top of the basic IFEFFIT engine, such as ATHENA,
ARTEMIS, or SIXPACK. In this sense, IFEFFIT is not a single program, but a family of related
programs and libraries using a common underlying engine.

This tutorial gives a brief description of the command structure and syntax of the IFEFFIT

engine, and an overview of the main IFEFFIT command-line program. Other documentation is
available at the IFEFFIT web site: http://cars9.uchicago.edu/ifeffit/

1.1 Running IFEFFIT

Once IFEFFIT has been installed on your computer, typing ifeffit at the system command
prompt (or double-clicking on the appropriate icon) will start the basic IFEFFIT program. You
should get a set of messages and a command prompt that looks something like this:

Ifeffit 1.2.6 Copyright (c) 2004 Matt Newville, Univ of Chicago
command-line shell version 1.1 with GNU Readline

Ifeffit>

At this point, you’re ready to start typing IFEFFIT commands at the prompt. Try typing

Ifeffit> print ’1 + 1 = ’ 1+1

If the result makes sense to you, you’re ready to continue. Now that you’ve started IFEFFIT

successfully, the rest of this tutorial describes what to type. To exit IFEFFIT, you can type
quit.

The main IFEFFIT program has a friendly shell environment and allows a simple subset
of system-level commands to be executed from within the command-line program. On Unix
systems, the commands ls and more will give a directory listing and show the contents of a
file, respectively. On Windows, the command dir takes the place of ls. Typing help will
give a brief list of the most common commands, while help <command name> will give a
little more of information on the nature and use of the selected command. The command history
buffer is accessible through the up- and down-arrow keys, so that you can scroll through and
edit previously executed commands. Further information about the command-line program on
Unix systems is given in section 10.

http://cars9.uchicago.edu/ifeffit/

2 DATA, COMMANDS, AND SIMPLE DATA MANIPULATION 2

2 Data, Commands, and Simple Data Manipulation

IFEFFIT has a simple view of data, and gives you access this data through high-level commands.
There are three types of data that IFEFFIT distinguishes: scalars contain a single floating point
number, arrays contains a list or vector of floating point numbers, and strings contains a set of
text characters. If you’ve done any programming, these data types should be familiar to you.
In keeping with the language of computer programming, I’ll refer to the data in IFEFFIT as
Variables. These are not necessarily the quantities varied in a fit you might do with your data:
I’ll call those Fitting Variables when there’s room for confusion.

2.1 Data Types and Naming Conventions

Variables in IFEFFIT are named, and you can create, name, and manipulate your own data vari-
ables. This makes IFEFFIT a fairly general purpose calculator and data plotter. That is, you can
type something like this at the IFEFFIT command line:

Ifeffit> a = 5
Ifeffit> phi = (sqrt(a) + 1) /2
Ifeffit> print a, phi

5.00000000 1.61803399
Ifeffit> print sin(10)
-0.544021111

Well, that only shows how to use scalars, not arrays or strings, but it does show how IFEFFIT

allows you to do simple calculations using syntax similar to most procedural programming
languages.

IFEFFIT distinguishes its three data types by name. This allows both you and IFEFFIT to
know exactly what kind of data each variable holds. Here are the naming rules for the variables:

Scalars must have names that begin with a letter, ampersand ’&’, or underscore ’ ’, and then
contain letters, numbers, ampersands, and underscores after that. The names are not sensitive
to case: A is the same as a.

Arrays have names that always have exactly one dot (’.’). This gives array names a prefix
and suffix. The prefix of the array name is associated with the array Group, which is a simple
and effective way to make several arrays related to each other. The naming rules for the prefix
or group name are exactly the same as for scalars. The suffix of the array name is associated
with the array contents. The naming rules for the suffix are similar to those for scalars, but
relaxed to allow it to begin with numbers as well as letters, ampersand ’& or underscore ’ ’.

Thus, ’data.energy’ and ’data.xmu’ are array names, and are said to be in the group ’data’.
When we get to discussing commands for doing background removal, Fourier transforms, and
the like, we’ll see that arrays created by IFEFFIT commands will use the same group name as
the input data, which make it easy to keep a group of data together. Other valid array names are
’cu.1’ and ’ XX .001’.

Strings have names that always begin with a dollar sign ’$’, and contain letters, numbers,
ampersands, and underscores after that. You can define a string like this:

Ifeffit> $string = Gosh, this is easy!
Ifeffit> print $string

Gosh, this is easy!

In fact, ’$1’ and ’$99” are valid string names, but their use is discouraged: ’$1’ ... ’$9’ may
be internally overwritten whenever you invoke a macro, so it’s not a good idea to rely on their
values.

2 DATA, COMMANDS, AND SIMPLE DATA MANIPULATION 3

There’s one more thing to note on names for variables. By convention, “system variables”
begin with an ampersand ’&’ (or ’$&’ for system strings). This convention is not enforced in
any way, but IFEFFIT tends to use such system variables for things that effect its behavior (such
as how output is written to the screen). Unusual behavior may result if you write over system
variables without knowing what you’re doing.

2.2 Data Manipulation
As shown in the brief example at the beginning of the previous section, working with scalar
variables in IFEFFIT is easy. You can create and use variables with normal algebraic syntax:

Ifeffit> a = 5
Ifeffit> phi = (sqrt(a) + 1) /2
Ifeffit> x = pi / phi
Ifeffit> y = cos(7*x)
Ifeffit> print a, phi, x, y
5.00000000 1.61803399 1.94161104 0.519178666

All scalars are floating point numbers (16 bits of precision). The usual mathematical operators
(sin, tan, log, exp, coth, and so on) are supported, and a few operators not often found are sup-
ported as well1. The variables you define can be used anywhere in the mathematical expressions
and assignment statements for other variables.

Manipulating arrays is just as easy as manipulating scalars, though creating arrays of data
is a bit more work. One very common way to create arrays is to read them in from data files –
that’s covered in the next section3. You can also create arrays from scratch using the built-in
functions indarr(), ones(), and zeros(). For example

Ifeffit> test.index = indarr(10)

will create an array with elements (1,2,3,...,10). You can make other evenly spaced arrays:

Ifeffit> npts = 100
Ifeffit> step = 0.01
Ifeffit> test.index = step * indarr(npts)

which will create an array with elements (0.01,0.02,...,1.0). (Starting with version 1.0053 you
can also say

Ifeffit> test.ones = range(0.01,1.0, 0.01)

to get the same effect. The range function takes ”start, stop, step” as it’s arguments). In addition,
you can create arrays using

Ifeffit> data.ones = ones(10)
Ifeffit> data.null = zeros(1000)

which will create first an array with 10 elements, all set to 1: (1,1,1,...,1) and then an array of
1000 zeros.

Once you have arrays created or read in from data files, manipulating them is easy:

Ifeffit> test.index = indarr(100)
Ifeffit> test.sqrt = sqrt(test.index / 10)

will fill test.sqrt with square-roots of the numbers (0.1, 0.2, 10.0). Note that the
assignment of test.sqrt is automatically done element-by-element, without looping over
elements needed. In fact, IFEFFIT doesn’t even allow looping over the elements of an array.

1For a complete list of operators, consult the Reference Guide

2 DATA, COMMANDS, AND SIMPLE DATA MANIPULATION 4

2.3 Commands and their conventions
The operations you type at the IFEFFIT command line are interpreted as commands. In gen-
eral, IFEFFIT commands consist of a name, followed by a set of arguments, usually with a
keyword/value syntax:

Ifeffit> command(key= value, key= value, key= value, ...)

The parentheses are optional, but if an opening parenthesis is used just after the command
name, the closing one is required even if that means the command has to extend over multiple
lines. We’ll see that many commands will become quite long, so this ability will become conve-
nient. Though they are optional, I’ll use the parentheses when talking about commands, so you
can tell I mean a command when I say print(). The keywords are usually short descriptive
names describing some parameter the command may need. The value is often a number, but
can often be a variable, string, or even a mathematical expression – a typical command would
look like this:

Ifeffit> spline(energy=data.e, xmu =data.xmu, rkbg=1, kweight="2")

The keyword/value syntax is not universal, and some commands (like the print() command
shown earlier) take simple lists of arguments separated by commas. Some commands even mix
lists and keyword/value pairs:

Ifeffit> command(argument1, argument2, argument2)
Ifeffit> command(argument1, argument2, key= value,

key= value, key=value)

This may seem a little surprising, especially since in the previous section we just used

Ifeffit> a = 2

which appears to have no command at all! The truth is that IFEFFIT always expects a command
to be the first word typed at the command line, but if the first word is not a known command, it
uses the default command def() – short for define, not default – to define a variable. That is,
the above definition was translated to

Ifeffit> def(a = 2)

As we’ll see in the next section, this can have some profound consequences, so it is often useful
to keep in mind that the def() command is the default. I’ll continue to use the simpler “a =
2” syntax throughout this tutorial, and expect that you will too.

2.4 Storing Definitions of Scalars and Arrays: show() and def()

Because IFEFFIT is primarily an XAFS modeling program, it is important to be able to set up
both simple and complex models for XAFS path parameters that can be adjusted during a fit. To
allow a flexible modeling environment, a principle feature of IFEFFIT is to allow you to define
Program Variables by formula and have the values automatically updated when the values of
variables in the formula change.

An example will probably help. Let’s consider the case of entering this seemingly innocent
set of assignments (which, we now know, will use the def() command):

Ifeffit> a = 1
Ifeffit> b = a + 1
Ifeffit> a = 2

2 DATA, COMMANDS, AND SIMPLE DATA MANIPULATION 5

What value should b have: 2 or 3? In most computer languages and programs, b is 2, because
the formula for it has not been stored, only the value at the time of its assignment. For IFEFFIT

the value will be 3 – the formula is stored, not just the value.
The main advantage for this is that you could tell IFEFFIT that a is a fitting variable (by

saying guess a = 1, and use both a and b for parameters in the fitting model. No matter
what value the fitting engine decides a should have, b will always obey the formula you spec-
ified. When we get to fitting XAFS and non-XAFS data, you’ll find (at least, eventually) this
somewhat unique behavior to be very useful.

Sometimes, however. you really want b to stay as 2, not be dependent on the future value
of a. That is, you sometimes want to turn off the ’store the formula’ aspect of IFEFFIT. To do
this, all you need to do is use the set() command as an alternative to def():

Ifeffit> a = 1
Ifeffit> set(b = a + 1)
Ifeffit> a = 2

Now the formula for b will not be saved, and it will remain 2 no matter how a changes. Again,
it is often useful to remember:

The default command is def(), which will save a variables definition.

2.5 The show() command
At some point you’re going to want to get information back from IFEFFIT such ’what exactly is
the value of e0, anyway?’ and ’what are the names of all the arrays I have?’. There are two main
commands for showing such information about program variables, and there’s no better place
to introduce them then right now. The first command is show(), which will show information
about Program Variables and other IFEFFIT objects like macros and paths (which we haven’t
gotten to yet, but which you’ll find useful soon). To follow the example of the previous section,
we can see the value and definitions of the scalars a and b like this:

Ifeffit> a = 2
Ifeffit> b = a + 1
Ifeffit> show a
a = 2.000000000

Ifeffit> show b
b = 3.000000000 := a+1

Note that not only the values are shown, but also the definitions, where appropriate. Although
a wasn’t actually set(), it was defined as an obviously constant value that didn’t depend on
any program variables, so FEFFIT knew to treat it as a set value. The show() command takes
a list of things (scalars, strings, arrays, etc) to show. We could have said something like this:

Ifeffit> a = 2, b = a + 1
Ifeffit> $doc_string = "here is a simple definition"
Ifeffit> show $doc_string, a, b
$doc_string = here is a simple definition
a = 2.000000000
b = 3.000000000 := a+1

For arrays, show() doesn’t show all the data points, but a one-line summary of the data:

Ifeffit> test.ones = ones(10)
Ifeffit> test.index = 0.1 * indarr(100)
Ifeffit> show test.ones, test.index
test.ones = 10 pts [1.000 : 1.000] := ones(10)
test.index = 100 pts [0.1000 : 10.00] := 0.1*indarr(100)

2 DATA, COMMANDS, AND SIMPLE DATA MANIPULATION 6

which shows test.index to have 100 point, with a minimum value of 0.1 and a maximum
value of 10, for example. As for defined scalars, the definition is shown after the “:=” characters.

It’s often necessary to show all the scalars, arrays, or string variables. The show() has
several modifiers to tell it to show entire classes of program variables. All the modifiers begin
with the @ symbol, so to see the values and definitions of arrays, you’d say show @arrays.
To see all the scalars and strings, you’d say show @scalars and show @strings.

If you try show @scalars or show @strings, you’ll notice several scalars and strings
that you didn’t define, but are loaded in to the program as it starts. These include pi and etok2

and several “system variables” that begin with a & (or $& for system string variables). As men-
tioned at the end of section 2.1, these “system variables” are used internally by IFEFFIT, and
though you can change their values, this is not necessarily recommended. For the most part
these “system variables” can be ignored during normal use, and won’t be discussed into detail
in this tutorial.

You may also notice that the order the scalars shown by show @scalars is not the same
order you put them in. The order may even change over time. This reflects the fact IFEFFIT

tries to manage the scalars and definitions for its own internal efficiency, and will attempt to
arrange it so that the set() values are listed before the def() values. Since many commands
can change the list of scalars, the order of listing may change at any time. The same behavior
applies to arrays: IFEFFIT will rearrange the list of arrays to suit its own needs and to try to list
the “constant” arrays before the defined arrays.

Speaking of array data, it’s useful to see information about the groups of arrays, as analysis
threads are generally done according to group. To show all the arrays in a particular group,
you’d say show @group=data, which will show all the arrays in the group data as if you
had said show data.energy, data.xmu and so forth. To get a list of the array groups,
type show @groups.

The show() command can take other “@” modifiers for FEFF paths, macros, and fitting
variables. These will be discussed when the time comes to discuss feff paths, writing macros,
and fitting. The show() command has a modifier to show a brief description of all the com-
mands: show @commands will list of all commands.

2.6 The print() command

We used the print() command before, but haven’t really explained what it’s doing. Unlike
the show() command, which tends to show information about the data type, the print()
command is a more literal command. That is, print e0 will simply print the values of the
scalar e0. No definitions will be shown. For array data, the entire array will be printed – hardly
ever what you really want, but sometimes it’s necessary. At it’s simplest, then, the print()
command prints the values of variables listed:

Ifeffit> number = 99.0
Ifeffit> print number
99.0000000

Ifeffit> print pi, number, $doc_string
3.14159265 99.0000000 here is a string

In addition to this simple behavior, the print() command can print literal strings and also
evaluate expressions in place. Thus, you can use print() to write simple messages:

2etok is the value of 2me/h̄
2 in units on Å

2
/eV, and is useful for converting x-ray energy values to photo-

electron wavenumber: set kval = sqrt(etok * (energy-e0))

2 DATA, COMMANDS, AND SIMPLE DATA MANIPULATION 7

Ifeffit> print " the square root of ", number, " is ", sqrt(number)
the square root of 99.0000000 is 9.94987437

Ifeffit> $descrip = " # of seconds per year"
Ifeffit> value = 365*24*60*60
Ifeffit> print $descrip, " = ", value
of seconds per year = 31536000.0

In addition to the print() command, there’s also an echo() command that simply prints a
string:

Ifeffit> echo "Hi Mom!"
Hi Mom!

This is not incredibly useful when typing at the command line, but does become useful when
you load files of IFEFFIT commands, as we’ll see next.

2.7 Command Files
Typing at the command line is all well and good until you have to do it the third or fourth time,
at which point it becomes pretty tedious. More importantly, it’s not convenient for processing
lots of data. For that, you’d like to be able to edit text files of IFEFFIT commands and run them
all at once. You can. A file of commands can be loaded with the load() command, which
will run through all the commands in the file. A command file show bkg.iff that looks like
this

File show_bkg.iff
read_data(file=Cu.dat, type=raw, group= cu)
cu.energy = cu.1 * 1000.0
cu.xmu = ln(cu.2 / cu.3)
spline(energy = cu.energy, xmu = cu.xmu,

rbkg=1.1, kweight=1., kmin=0)

plot(cu.energy, cu.xmu)
plot(cu.energy, cu.bkg, xmin=8850, xmax=9300,

color=red)
#

can be loaded as

Ifeffit> load show_bkg.iff

More than that, the history mechanism of the ifeffit command-line program saves a list
of the 500 most recent IFEFFIT commands run to the file .ifeffit hist in your home
directory. This file can be used as a starting point for creating and editing command files. These
topics will be discussed further in section 8

3 READING ARRAYS FROM DATA FILES 8

3 Reading Arrays from Data Files
IFEFFIT reads ASCII files with data listed in columns, delimited by whitespace (blanks or tabs).
The data are stored in IFEFFIT arrays, so that they are ready for immediate manipulation, plot-
ting, and analysis. The read data() command is used to read data arrays from an ASCII
file. A typical use would look like

Ifeffit> read_data(file = cu_001.xmu, group= ’cu’, type = ’xmu’)

Because of the naming rules for arrays (see 2.1), read data() needs to assign both a prefix
(or group name) and suffix for each array read in from the data file. Since data in a file is
usually grouped together logically, read data() will use just one group name for all the
arrays in an individual file. The group name used can be specified with the group keyword in
the read data() command. By default, the prefix of the filename itself is used.

The method for assigning the suffixes of the array names is a bit more involved. There are
four different ways for IFEFFIT to determine the array suffixes when reading in a file:

From the ’type’ argument : In the example above, the type = ’xmu’ argument tells IF-
EFFIT to use the suffixes energy and xmu for the first and second columns, and use 3,
4, ... for any remaining columns. Another commonly used file types is chi for columns
of k and chi. A more complete list of known file types and the suffixes they produce is
given in the Reference Guide.

From the ’label’ argument : For data that is not in one of the pre-defined types (or if you
just want to specify the array suffixes explicitly), then the label argument can be used.
label takes a string that is just the array suffixes listed separated by a space. Using
read data(file = cu 001.xmu, group=’cu’, label = ’energy xmu’)
would be equivalent to the above type version.

From the files own ’label’ line : Many files (especially, those written by IFEFFIT, FEFFIT, or
AUTOBK) will have a label line which contains the column labels (i.e, array suffixes) and
appears just before the data and just after a line of minus signs (#-------------):

Cu foil at 10K
OFFSETS 51284 50016 48319
#----------------------------------
energy xmu
.8786204E+04 .1013661E+01

If neither the type nor label keyword are specified, IFEFFIT will look for a label line
and use it.

By column index : If none of the above methods are used (that is neither the type nor label
keyword are given, and a label line is not found), IFEFFIT will name the arrays by column
number 1, 2, 3, Though primitive, this is actually the most predictable behavior, and
can be enforced by using ”type = ’raw’”.

4 PLOTTING DATA 9

4 Plotting Data

This section assumes that IFEFFIT has been built with the PGPLOT plotting package. This is
available for both Unix and Win32 systems, though support for Win32 is still experimental. For
Unix systems, this library has to be installed prior to installing IFEFFIT, which is fairly easy to
do for most systems. IFEFFIT can also be built without this plotting package.

Plotting in IFEFFIT is encapsulated in a handful of commands, the most important of which
is the plot() command, which takes two required arguments for the ordinate (x-array) and
abscissa (y-array) to be plotted, and take a large set of optional arguments. A simple plot can
be done like this:

Ifeffit> plot(cu.energy, cu.xmu)

The plot command will overplot , so that a second plot command:

Ifeffit> plot(cu.energy, cu.bkg)

will add a trace of the background to the earlier plot. To force the current plot to be erase before
plotting, you’d say

Ifeffit> newplot(cu.energy, cu.xmu)

Each x-y trace plotted has a color and line style associated with it. You can set the values in
these table explicitly for each particular plot command by specifying the color or linestyle (or
both) directly:

Ifeffit> plot(cu.energy, cu.xmu, color = blue)
Ifeffit> plot(cu.energy, cu.bkg, color = red, style = dashed)

You can also pre-define the color and linestyle for the first, second, . . . trace ahead of time

Ifeffit> color(1=blue, 2 = red, 3 = black)
Ifeffit> linestyle(1=solid, 2=dashed, 3 = linespoints2)

so that the first trace plotted is a solid blue line, and the second is a dashed red line, and the
third a black line with a ’+’ at each data point.

The allowed color names are the ’standard X Windows’ colors found in the rgb.txt file on
your system. Most common color names are supported, as well as the descriptive if ambiguous
’X Windows’ names like ”lightsalmon3” and ”bisque”. You may also use the conventional
hexadecimal representation of the color with a string of ’#RRGGBB’.

Allowed line styles are ’solid’, ’dashed’, ’dotted’, ’points’, and ’linespointsN’ where N = 1,
2, 3, The latter will draw a line connecting symbols at each data point, with symbols ’.’,
’+’, ’*’,’o’, ’X’, squares, and triangles for N=1,2,3,4,5, and 6. Setting the color and linestyle
tables like this is often a convenient thing to do in a macro (see section 9) or start-up file.

For Unix using X Windows, the PGPLOT window supports getting the (x,y) coordinates
from the plot window using the mouse device. To use this within IFEFFIT, you’d type cursor
at the command prompt, and then click on the desired point on the plotting window. The IFEFFIT

variables cursor x and cursor y will contain the (x,y) coordinates. The zoom command
will let you view a selected region of the plot by clicking the mouse on the corners of the area
to zoom in on. Many more plotting options exist – please consult the Reference Guide.

5 XAFS DATA PROCESSING 10

5 XAFS Data Processing

IFEFFIT’s main job is to help you analyze XAFS data, and IFEFFIT tries to make it easy to do
simple XAFS analysis tasks. These simple tasks include such things as converting beamline data
in µ(E), doing pre-edge subtraction, determining E0, fitting a post-edge (spline) subtraction to
determine µ0(E) and χ(k), and doing XAFS Fourier transforms to look at data in R-space.
These standard tasks of XAFS data manipulation are described in this section.

5.1 Data Reduction

The general algebraic manipulation of array data within IFEFFIT makes the conversion of raw
beamline data to XAFS µ(E) very easy, and also allows the averaging and re-scaling (if nec-
essary) of data. For example, reading raw beamline transmission and fluorescence data and
converting this to µ(E) might look like this:

Ifeffit> read_data(file = cu_expt.dat, group= ’cu’,
label = ’energy i0 i1 if’)

Ifeffit> set cu.xmu_t = log(cu.i1 / cu.i0)
Ifeffit> set cu.xmu_f = (cu.if / cu.i0)

If you’ve collected data in fluorescence using a multi-element-detector, you may need to sum
several arrays before dividing by I0, something like this will do the trick:

Ifeffit> read_data(file= med_fluor.dat, group=’med’, type=’raw’)
Ifeffit> set med.if= (med.4 + med.5 + med.6 + med.7 + med.8 +

med.9 +med.10 +med.11 +med.12 +med.13)
Ifeffit> set med.xmu= (med.if / med.2)

5.2 Pre-Edge Subtraction, E0 determination, and Normalization
Pre-edge subtraction removes the baseline from the EXAFS µ(E), determines the edge energy
(used as the origin of k), and normalizes the above-edge µ(E) to 1. All of this is done by the
pre edge() command which takes arrays of energy and absorption µ(E):

Ifeffit> pre_edge(cu.energy, cu.xmu)

Like most IFEFFIT command, this simple-looking command actually causes a fair amount of
data processing behind the scenes. It also creates several program variables, especially arrays
and scalars detailing the pre-edge subtraction. Here’s a list of the most important program
variables that pre edge() sets:

Variable Description
e0 Energy Origin (found near maximum derivative of µ(E)
edge step Edge Step / normalization constant
pre slope slope of pre-edge line
pre offset offset of pre-edge line
$group.pre array of pre-edge subtracted µ(E)
$group.norm array of pre-edge subtracted and normalized µ(E)

where $group is the ’group name’ taken from the input µ(E) array - ’cu’ in this case. Using
pre edge() on another array would generate new arrays of pre-edge subtracted and normal-
ized µ(E) for the corresponding group. Note, however, that it will overwrite the scalar values
from the earlier invocation of pre edge().

5 XAFS DATA PROCESSING 11

There are several optional arguments to pre edge() not mentioned here. These argu-
ments can be use to set the ranges over which to fit the pre-edge line and post-edge curve,
whether or not to perform every part of the calculation, and so forth. These optional arguments
would normally be used like this:

Ifeffit> pre_edge(cu.energy, cu.xmu, e0=8980.5)

which would force the value of E0 to be 8980.5 and prevent pre edge() from trying to
determine E0 by itself. As for all commands, the complete set of the optional parameters for
pre edge() are given in the Reference Guide.

5.3 Post-Edge Background Subtraction

Post-edge background subtraction involves drawing a “smooth background” (µ0(E) through
the oscillatory part of the XAFS and extracting χ(k) using this and the formula

χ(E) =
µ(E)− µ0(E)

∆µ(E0)

where µ0(E) is “the smooth background” of µ(E) and ∆µ(E0) is the edge-jump. Determining
the XAFS background function µ0(E) generally receives quite a bit of attention in the XAFS
community. IFEFFIT uses the AUTOBK algorithm, which simply asserts and then implements a
rather common-sense approach to background subtraction: only the low-frequency components
of µ(E) should make up µ0(E).

The implementation of AUTOBK in IFEFFIT is encompassed in the spline() command,
which takes arrays of energy and µ, and several optional parameters, and writes out χ(k),
µ0(E), and several scalars. A basic use of spline() would look like this

Ifeffit> spline(cu.energy, cu.xmu, rbkg=1.0)

Like pre edge(), this simple-looking command does quite a bit of data processing behind
the scenes, and creates or writes several variables with IFEFFIT. For one thing, spline()
will execute pre edge() unless it’s obvious that it shouldn’t3. That means that all the output
parameters of pre edge() will be created (or overwritten) by spline(), and E0 and the
edge jump ∆µ(E0) will be determined if needed.

To say much more about the spline() command, I’d have to discuss the details of the
AUTOBK algorithm. I’ll try to be brief: spline() chooses a smooth background spline such
that the low-R portion of the resulting EXAFS χ are minimized. That means that spline()
needs to do a Fourier transform of the χ(k) it generates. Because of this, the spline()
function takes many command arguments that resemble Fourier transform parameters, so that
in addition to the arguments of pre edge() the important arguments that spline() takes
are:

Variable Description
rbkg Rbkg, the highest R value to consider background
kmin kmin, the starting k for the Fourier transform
kweight w, the k-weight factor for the Fourier transform.

Please note that the Fourier transforms appropriate for spline() are not the same as those
appropriate for structural analysis. Usually, values of kmin ≈ 0 and w = 1 are appropriate for
spline().

3where “obvious” means that an array named $group.pre already exists. This really is mediocre definition of
obvious, especially if you’re writing scripts to automate the processing of lots of data. On the other hand, if you’re
casually strolling through your data at a command-line prompt, it’s probably fine.

5 XAFS DATA PROCESSING 12

Like pre edge(), the spline() command also creates new arrays, most importantly:
Variable Description
$group.bkg µ0(E), the background function itself
$group.k k, the array of wavenumbers
$group.chi χ(k), the (unweighted) EXAFS

5.4 Fourier Transforms

Fourier transforms are an integral part of XAFS analysis, and the ability to perform them
quickly and easily is very important. IFEFFIT has different commands for forward (k → R)
and reverse forward (R → q: I’ll use q to refer to back-transformed k-space data) Fourier trans-
forms. They’re very similar to one another, so I’ll first discuss forward Fourier transforms with
fftf() in detail, then reverse Fourier transforms with fftr() more quickly.

IFEFFIT use a simple Fast Fourier transform (FFT), which places some demands on the data
transformed by these commands. In addition, XAFS analysis usually imposes some conventions
on Fourier transforms, so that the commands discussed here are not general purpose Fourier
transform functions, but are really XAFS Fourier transforms. The most obvious difference
between ’normal’ and ’XAFS’ Fourier transforms is that the latter transforms k to R, while a
’normal’ FT would transform k to 2R. Aside from a scale factor, this changes the normalization
constants used. In addition, the XAFS Fourier transform (at least as IFEFFIT implements it)
allows a variety of smoothing window functions, and a weighting factor. More details can be
found in XAFS Analysis with IFEFFIT .

5.4.1 Forward Fourier Transforms

The Forward XAFS Fourier transform command is fftf(). It’s primary input is an array of
χ(k) data. The requirements of the FFT mean that the input χ(k) data must be an array that is
on an even k-grid with grid spacing of k = 0.05 Å−1, and starting at k = 0.

These are stringent requirements. Fortunately, the spline() command of section 5.3
writes its output χ(k) array according to these rules. If you’re importing χ(k) data written from
another program, you’ll have to make sure the data is moved to this k-grid. There are two ways
to this: either interpolate the data yourself (see the interpolation functions in the Reference
Guide) or specify the k-array corresponding to your χ data in the fftf() command and let it
do the interpolation for you.

Properly aligned χ(k) data can be transformed to R-space using a command like this:

Ifeffit> fftf(cu.chi, kmin=2.0, kmax=17.0, dk=1.0, kweight=2)

while data not on the expected grid would be Fourier transformed like this:

Ifeffit> fftf(cu.chi, k=cu.k,
kmin=2.0, kmax=17.0, dk=1.0, kweight=2)

The keywords kmin, kmax, and dk help define the window function, and kweight sets the k-
weighting factor. You can also specify the form of the window function. The full list of window
types and their functional form is given in the Reference Guide, but the most useful ones are the
Hanning window (kwindow=hanning – the default window function) which ramps up to
one on either end of the k-range as cos2, and the Kaiser-Bessel window (kwindow=kaiser),
which is often thought to give superior peak resolution.

Because it is often necessary to do many Fourier transforms with exactly the same param-
eters, the fftf() command, can also read Fourier transform parameters from appropriately

5 XAFS DATA PROCESSING 13

named program variables. This is actually a feature of many commands, but it seems most use-
ful for the Fourier transform commands. It works like this: setting scalars kmin, kmax, and so
forth will have the same effect as setting those arguments to the fftf() command.

Ifeffit> kmin=2.0, kmax=17.0, dk=1.0, kweight=2
Ifeffit> fftf(cu.chi)

would have the result as

Ifeffit> fftf(cu.chi, kmin=2.0, kmax=17.0, dk=1.0, kweight=2)

In fact, the fftf() command will first read the value for the parameter kmin from the pro-
gram variable kmin (and so on for the other Fourier transform parameters), and then from the
command argument kmin, so that the command argument will always override the program
variable value. Furthermore, fftf() will itself set the value of the program variable kmin,
possibly overwriting any value you had previously set. Thus

Ifeffit> kmin=2.0, kmax=17.0, dk=1.0, kweight=2
Ifeffit> fftf(cu.chi, kmin=3.)
Ifeffit> fftf(other.chi)

will use the same Fourier transform parameters (that is kmin = 3Å−1) for both transforms.
A Fourier transform inherently deals with complex data, and a minor complication arises

from the inconvenience that the measured XAFS χ(k) is strictly a real function. In fftf()
then, there is an ambiguity of whether to use the measured XAFS as the real or imaginary part
of the complex XAFS function. Since the measured XAFS is typically described as the imagi-
nary part of a complex fine-structure function χ̃, one might be tempted to say that the data χ(k)
ought to be set to the imaginary part of χ̃. IFEFFIT usually assumes that the data χ(k) is the real
part of the complex χ̃ and sets the imaginary part to zero – this is in keeping with the conven-
tion of older programs from the University of Washington, but it is purely a matter of conven-
tion. You can explicitly specify the behavior by saying fftf(imag = data.chi,...)
or fftf(real = data.chi,...). If you don’t specify, the data will be taken as the real
part. This is almost never important – at least not until you want to compare unfiltered χ(k)
with filtered χ(k). The output arrays generated by the fftf() command are

Variable Description
$group.win The k-space window function used
$group.r R, the array of distances
$group.chir mag |χ(R)|, the magnitude of χ(R)
$group.chir pha the phase of χ(R)
$group.chir re Re[χ(R)], the real part of χ(R)
$group.chir im Im[χ(R)], the imaginary part of χ(R)

It is possible to do “phase-corrected” Fourier transforms with IFEFFIT using the theoretical
phases from FEFF calculations, but that is beyond the scope of this tutorial.

5.4.2 Reverse Fourier Transforms

fftr() is the Reverse XAFS Fourier transform command, mainly used to filter χ(R) data to
backtransformed χ(k). Following the convention of FEFFIT, backtransformed k-space is called
q to avoid confusion with the original k-space data. The fftr() command then transforms
χ(R) to χ(q). As with the forward Fourier transform, the data is requirements of the FFT mean
that the input χ(k) data must be given as an array that is evenly spaced in R with a fixed grid
spacing of R = π/1024 ≈ 0.03068 Å, and starting at R = 0. To further complicate matters,

5 XAFS DATA PROCESSING 14

there is ambiguity as to whether to transform just the real part, just the imaginary part of χ(R),
or both. In general, both parts are transformed to ensure that the overall amplitude scale is
preserved.

fftr() has an almost identical command set to fftf(), with k replaced by r in the
parameter names. That is, the FT window parameters are defined with rmin, rmax, dr, and
so on. The window functional form is set by rwindow. A typical use might look like this

Ifeffit> fftr(real=cu.chir_re, imag=cu.chir_im,
rmin=1.70, rmax=3.0, dk=0.1)

The output arrays generated by the fftf() command are
Variable Description
$group.rwin The R-space window function used
$group.q q, the array of wavenumbers
$group.chiq mag |χ(q)|, the magnitude of χ(q)
$group.chiq pha the phase of χ(q)
$group.chiq re Re[χ(q)], the real part of χ(q)
$group.chiq im Im[χ(q)], the imaginary part of χ(q)

Before ending this section, let me say a few words about “Fourier filtering”. IFEFFIT’s approach
to Fourier transforms is fairly general, and the use of two Fourier transforms to “isolate a shell”
is not a trivial process with IFEFFIT. This partly reflects my experience and belief that “Fourier
filtering” can not be made a trivial process.

Comparing filtered with unfiltered data is a common desire. Given the ambiguities in how
to handle the real and imaginary parts of the data, getting the details right for this are not trivial.
Though macros won’t be discussed until section 9, using a macro to get the details right is a
good idea. Such a macro for Fourier filtering might look like this:

macro filter group "kweight=2,kmin=3" "dr=0"
fftf(real=$1.chi, $2)
fftr(real=$1.chir_re, imag=$1.chir_im, $3)
set $1.chik = $1.chi * $1.kˆkweight
set $1.chik_w = $1.chik * $1.win
set $1.chiq = $1.chiq_re / ($1.kˆkweight)

end macro

With this macro definition (which takes arguments as group name, k parameters, and R param-
eters), you could perform a filter, and overplot filtered and unfiltered data with

filter data "kweight=2,kmin=3,kmax=15,dk=1" "rmin=1.6,rmax=3."
newplot(data.q, data.chiq_re)
plot(data.k, data.chik_w)

Note that the convention used here is that the data χ(k) is the real part for the Forward transform,
so that the real part of χ(q) is the appropriate choice for comparison. Of course, that should be
compared to the k-weighted, windowed χ(k).

6 XAFS ANALYSIS 15

6 XAFS Analysis

XAFS Analysis in IFEFFIT consists of modeling XAFS χ(k) in terms of a sum of paths with
the XAFS contribution from each path being modeled by a calculation from FEFF. A Path is
an abstract formalism for breaking the EXAFS into manageable pieces based on the scattering
path that a photo-electron takes. Many EXAFS analysis methodologies use concepts such as
’shell’ or ’coordination sphere’. To some extent the distinction is only conceptual, and therefore
unimportant. In other ways, the path formalism is clearly a superior way to robustly analyze
complex EXAFS data that includes the effects of multiple scattering. If you’re used to thinking
of your EXAFS data as having contributions based on shells or coordination spheres, paths
aren’t that big of a change.

6.1 Defining Paths

IFEFFIT relies on FEFF for basic information about all of its paths. This means that you need
to run FEFF and sort through its results (neither of which are trivial tasks) prior to defining
paths with IFEFFIT. The outputs of FEFF that IFEFFIT needs is the set of feffnnnn.dat files,
where each file represents the result for a single path. Some versions of FEFF can write all
of the path information into a single file called feff.bin as an alternative to a large set of
feffnnnn.dat files. IFEFFIT can read some versions of feff.bin, but this discussion will
focus on using the more universal feffnnnn.dat files.

Once FEFF has run and a set of feffnnnn.dat files exists, using them within IFEFFIT

is fairly easy. The path() command is used to define paths within IFEFFIT. The information
needed to describe an XAFS path is a bit too complicated to conveniently hold as a set of IFEFFIT

scalars and arrays – it could be done, but the bookkeeping would be a nightmare. Instead, paths
are defined and stored internally, so that you can refer to a path by an integer index. Though a
break from the idea in section 2 that all data is stored in program variables that you can access
easily and directly, there are commands to convert the path data to program variables.

The path() command takes the name of a feffnnnn.dat file and a unique IFEFFIT

path index as its primary arguments. The IFEFFIT path index is an integer (from 1 to 10000).
It does not need to be the same index as FEFF used, but that is often a convenient way to
do it. In addition, the path() command takes several optional arguments, known as Path
Parameters that represent the parameters used to modify the EXAFS function for that path. The
path parameters include such things as ∆R, the change in path distance (well, half-path-length
for multiple scattering paths), σ2, the mean-square displacement of the bond, and an E0 shift.
The most important Path Parameters are

Path Parameter keyword Description
file Name of feffnnnn.dat file
index path index: a unique integer identification
label path label: a string describing the path
s02 S2

0 , amplitude reduction factor
e0 E0, energy shift
delr ∆R
sigma2 σ2

third C3, third cumulant
a full list is given in the Reference Guide. A simple path definition would look like this:

Ifeffit> path(index=1,file = feff0001.dat,
s02 = 0.9, sigma2 = 0.001)

6 XAFS ANALYSIS 16

This would define path 1, and assign values for S2
0 and σ2 for this path. An important aspect

of IFEFFIT is that the Path Parameters are defined in the same way as other defined scalars
(see section 2) – the formulas specified for the path parameters in the path() command are
remembered. This allows you to define the path like this

Ifeffit> s02_001 = 0.9
Ifeffit> e0_001 = -1.
Ifeffit> sig2_001 = 0.001
Ifeffit> path(index=1,file = feff0001.dat,

s02 = s02_001,
e0 = e0_001,
sigma2 = sig2_001)

where the parameter s02 for path 1 now depends on the definition of the scalar s02 001. This
is a fairly simple example, and the definition for the s02 parameter for path 1 could be more
complex – say, min(1.2,s02 001) to set an upper bound on this parameter. In addition, the
s02 001 scalar here could have a more complex definition or even be a fitting variable defined
with guess s02 001 = 0.9.

Additional paths are defined in the same way:

Ifeffit> path(index=2,file = feff0002.dat,
s02 = s02_001, e0 = e0_001,
sigma2 = sig2_001)

The only required keyword for a path is the integer index (if the keyword comes first in the list
of arguments, the index can be dropped, so a completely equivalent definition is

Ifeffit> path(2, file = feff0002.dat)
Ifeffit> path(2, s02 = s02_001)
Ifeffit> path(2, e0 = 2.0)
Ifeffit> path(2, sigma2 = sig2_001)

subsequent path() commands will set or overwrite the definitions for other path parameters.
This makes it fairly simple to change the definition of a path parameter half way through an
analysis, say between fits, where something like

Ifeffit> path(2, s02 = 0.85)

will change one path parameter and leave the rest as previously defined.

6.2 Combining Paths

Once defined, combining paths to give a χ(k) function is very easy with the command ff2chi().
ff2chi() takes its name from the FEFF module that combine FEFF path files into a single χ(k)
function. Because IFEFFIT allows you to alter the paths through the Path Parameters, and use
paths calculated from different runs of FEFF, this version of ff2chi() is significantly more
flexible and powerful than FEFF’s own version.

ff2chi() takes a list of path indices, and creates arrays for χ(k). Assuming that the paths
have already been defined, a command like this:

Ifeffit> ff2chi(1,2,3, group = ff)

6 XAFS ANALYSIS 17

will add paths 1, 2, and 3 together and create arrays ff.k and ff.chi containing the sum
of these paths. Each of the paths will be altered according to its own Path Parameters in
the sum. The list syntax ’1, 2, 3’ could also be replaced by ’1-3’. Lists of the form
1-3,5,7-10,23,11 are also allowed. An important note is that (currently), paths listed
twice are used twice. This is an easy mistake to make, so beware4.

Besides the list of paths and group name for the output arrays, ff2chi() has a few other
arguments, most of which you won’t really need. I’ll just mention a few convenient ones here.
The arguments kmin and kmax can set the k-range of the output arrays, and the argument
do real will cause the “real part” of χ(k) to be written to the array $group.chi real
– the confusion over real and imaginary parts of the complex χ(k) shows up again! The
$group.chi array that ff2chi() always generates is the imaginary part of the complex
χ(k), and should correspond to the experimentally derived χ(k).

6.3 Getting and Viewing Path Parameters
Once you’ve combined a few paths with ff2chi() or, as we’ll see shortly, done a fit with
feffit(), you may want to find out some information about the path parameters for a set of
paths. There are a few ways to get this information. The show() command, first discussed in
section 2.5, has a “@path” modifier to give some information about a defined path.

Ifeffit> show @path=1
PATH 1

feff = feffcu01.dat
id = Cu metal first neighbor
reff = 2.547800, degen = 12.000000
s02 = 0.937373, e0 = 0.510790
dr = 0.000525, ss2 = 0.003496
3rd = 0.000000, 4th = 0.000000
ei = 0.000000, dphase = 0.000000

This shows all the scalar values of the path parameters (reff is the half-path length, degen is
the path degeneracy, and so on). The argument to the @path modifier to show() can be any
valid path list as described in section 6.2 (for example: 1,2,4-9,12). To see all the defined
paths show @paths will work.

The show @path family of commands only prints the values of the path parameters. An-
other way to get path information is to convert them to program variables with the get path()
command. This command only takes one path at a time (not a path list), but allows you to
get the path parameter values into program variables for later manipulation. The syntax for
get path() is

Ifeffit> get_path(path = 1, prefix = path1)

or, equivalently and more simply

Ifeffit> get_path(1, path1)

This will create scalars path1 s02, path1 e0, path1 ei, path1 delr, path1 sigma2,
path1 third, path1 fourth, path1 degen, path1 reff and give the values of the
path parameters for path 1. In addition, the strings $path1 file and $path1 id will con-
tain the values of the path FEFF file name and path identification string, respectively. The
prefix argument to get path() can be any valid variable name. Of course, array variables
for a given path can be formed with the ff2chi() command, as described in the previous
section. Just to be clear, though

4it is on the “TODO list” to check for and warn about this possibility, which is hardly ever intended

6 XAFS ANALYSIS 18

Ifeffit> ff2chi(1, group = path1)

will create arrays of path1.k and path1.chi. Other arrays for the real part, magnitude,
and phase of χ(k) can be obtained from ff2chi() by using arguments do real, do mag,
and do phase, respectively.

6.4 feffit(): Fitting XAFS Data with Paths

At some point in the analysis of XAFS data, you’ll want to refine a set of path parameters so
that a sum of paths best matches the data. The feffit() command is the basic tool for fitting
EXAFS data to a set of paths. In some sense, feffit() is just a fancy version of ff2chi().
Another view might be that the feffit() command is the main point of the IFEFFIT library,
so that ff2chi() is a very simple version of feffit(). In any event, the two functions
are closely related and purposefully implemented with as much overlap as possible so that once
you feel comfortable with the paths() and ff2chi() commands, feffit() should be a
fairly small step.

feffit() has four basic requirements:

1. χ(k) data to fit,

2. a list of paths to sum to make the model XAFS.

3. Fourier transform and fit range parameters

4. one or more variables defined that affect the model XAFS.

First, feffit() needs some χ(k) data to fit. As you can probably guess, this data needs to
be a named array for χ(k) just as you would use for the Fourier transform routines (ie, starting at
k = 0, and progressing in steps of 0.05 Å−1). You specify the χ(k) array with feffit(chi=
data.chi,...). If the data you have is not on the expected grid, you’ll either need to
interpolate it on to the expected grid or specify the array of k values, with

Ifeffit> feffit(chi= data.chi,k=data.k, ...)

Second, feffit() needs a list of paths for the sum-over-paths that makes up the model XAFS.
This sum is essentially the same as for ff2chi(), comprising of a simple list of path indices.
Path lists of the ’1, 2, 3’, ’1-3’, and ’1-3,5,7-10,23,51’ are accepted, so that the
feffit() command would now look like (assuming the data is on the proper k grid)

Ifeffit> feffit(chi= data.chi,1-3, ...)

Third, feffit() needs Fourier transform and fit range parameters defined. This reflects the
fact that XAFS is a band-limited phenomenon, with a finite k- and R-range. As mentioned in
section 5.4.1, the Fourier transform parameters can be read either from the appropriately named
program variables (kmin, kmax, kweight, dk1, dk2, and so forth) or from the command
argument list (using these same identifiers as keywords). In addition to the k-space Fourier
transform parameters, feffit() needs the fit R-range, specified by rmin and rmax (this
reflects the fact that feffit() normally does the fit in R-space – fitting in k-space is possible,
as well). Like the Fourier transform parameters, the R-range can be set from program variables
(rmin and rmax or in the feffit() command statement itself. We could say either

Ifeffit> kmin = 3.0, kmax = 15.0, kweight = 2, dk1 = 2, dk2= 2
Ifeffit> rmin = 1.5, rmax = 3.5
Ifeffit> feffit(chi= data.chi, 1-3)

6 XAFS ANALYSIS 19

or

Ifeffit> feffit(chi= data.chi, 1-3, rmin=1.5, rmax=3.5,
kmin=3,kmax=15,kweight=2,dk=2)

The fourth requirement for a fit may seem obvious: feffit() needs some variables to
vary. Fitting Variables are like regular scalars, except that they are defined with the guess()
command instead of set(), as in guess e0 = 1. . Fitting variables also carry around
information about their estimated uncertainty, and correlation with other fitting variables. We’ll
discuss that in the next section.

Putting it all together, a simple fit of a single FEFF path to χ(k) data would look like this:

Ifeffit> read_data(file = cu_chi.dat, group= data, type = chi)
Ifeffit> set s02_001 = 0.9
Ifeffit> guess e0_001 = 1.
Ifeffit> guess dr_001 = 0.01
Ifeffit> guess sig2_001 = 0.001
Ifeffit> path(index = 1,

file = feff0001.dat,
s02 = s02_001,
e0 = e0_001,
delr = dr_001,
sigma2 = sig2_001)

Ifeffit> kmin = 3.0, kmax = 16.0, kweight = 2, dk1 = 2
Ifeffit> rmin = 1.5, rmax = 3.2
Ifeffit> feffit(data.chi, 1, group=fit)

The feffit() command will update the values of all the fitting variables, and also create
arrays for the best-fit χ(k) and χ̃(R) using the group name specified (fit in this case, feffit
by default), and also create arrays for the data χ̃(R), effectively running

Ifeffit> fftf(data.chi)
Ifeffit> fftf(fit.chi)

for you. The best-fit values and estimated uncertainties for the variables can be seen with show
@variables, as will be further discussed in the next section.

In addition to what has been discussed so far, feffit() has several optional parameters
for a wide range of things such as specifying uncertainty in the input data, whether to refine
background-spline parameters with the structural refinement, how to fit in k-space (with or
without Fourier filtering), and an IFEFFIT macro to run for each fit iteration. In the interest of
brevity, I’ll resist discussing any of these fascinating topics in this brief tutorial.

6.5 Uncertainties in Fitted Variables, Fitting Statistics

A fit is not very useful without some idea of the reliability of the fit and some estimate of
the uncertainty in the fitted variables. The feffit() command automatically calculates the
estimated uncertainties and goodness-of-fit parameters for you. The particulars of how these
values are determined is outside the scope of this tutorial – the attention here will be on how to
view and manipulate the values for these statistics that feffit() determines.

The feffit() command writes several fitting statistics to help you determine the good-
ness of fit. First, IFEFFIT will write the number of fit iterations to &fit iteration. Though
not necessarily useful as a fitting statistic, this can be valuable to see if a fit is taking far too many
iterations, probably indicating a problem with the set up or model. The number of variables is

6 XAFS ANALYSIS 20

stored in n varys. The number of independent points in the band-limited data is estimated
as 2∆k∆R/π, for fit k-range ∆k and R-range ∆R and stored in n idp. The estimated un-
certainty in the data itself is stored in the variables epsilon r for the uncertainty in the data
χ̃(R) and epsilon k for the uncertainty in the data χ(k).

The main goodness-of-fit statistics are r factor, chi square, and chi reduced,
which are three different ways of scaling the sum-of-squares of the final misfit. The full defini-
tion of these is given elsewhere, but briefly, r factor is the misfit scaled to the data itself, so
it a relative misfit, chi square is scaled to the estimated uncertainty in the data (epsilon r
for data fit in R-space). chi reduced is chi square divided by the number of “free pa-
rameters in the fit”, given by the difference of n idp and n varys. More information on these
terms and concepts is elsewhere in the IFEFFIT documentation.

For each fitting variable, IFEFFIT will create (or overwrite) a variable named delta VAR,
and write the estimated uncertainty for variable VAR to this variable. For example, the fit shown
above would put the uncertainties in the fitting variables in delta s02 001, delta e0 001,
delta sig2 001, and delta dr 001.

The estimated uncertainties are, of course, very valuable for assessing fit results. In addition,
it often instructive to know the correlations between pairs of variables resulting from the fit. To
extract the correlations from IFEFFIT, you use the correl() command, which simply takes
the names of two fitting variables, and the name of an output scalar variable to store the resulting
correlation to. Thus,

Ifeffit> correl(s02_001, sig2_001, out= cor1)
Ifeffit> print cor1
0.887130839

At this point, it is an error to give correl() the name of any variable that is not a fitting
variable.

7 MODELING NON-XAFS DATA 21

7 Modeling non-XAFS data

In the course of data analysis, it is often necessary to fit non-XAFS data. This can be any
task similar to fitting a line or quadratic function to a set of data (say σ2v.T), fitting a set
of Lorentzian, Gaussian and/or arc-tangent functions to a XANES spectra, or fitting some
weighted average of model XANES spectra to fit an unknown spectra. Building on the gen-
eral data-processing and XAFS modeling capabilities, IFEFFIT provides a simple and powerful
way to model many kinds of data.

The minimize() command implements a simple least-squares minimization routine. It
takes as its primary argument a residual array to minimize in the least-squares sense. Usually the
residual would be “Data - Fit”, but you may want to provide some scaling, possibly emphasizing
some region of the fit more than others.

The residual array is built just like any other array, and is expected to depend through def-
initions on a few variables defined with guess(). A very simple example would be a linear
fit:

Ifeffit>read_data(my_data.dat, group = ’data’, label = ’x y’)
Ifeffit>guess (m = 1, b = 0)
Ifeffit>fit.y = m * data.x + b
Ifeffit>fit.resid = fit.y - data.y
Ifeffit>minimize(fit.resid)

This will adjust the variables m and b to best-fit the data. As with feffit(), the fitting
statistics &fit iteration, chi square, chi reduced, and r factor will be written
and uncertainties in the variables delta m and delta b will be created for the uncertainties
in the fitted parameters. The correl() function described above can be used to retrieve the
correlation between 2 fitting variables. Since the general problem of estimating uncertainties
in experimental data is difficult, you’ll need to be quite mindful of this fact and careful when
interpreting these fitting statistics.

In order to specify an estimate of the uncertainty in the experimental data, create an array
(of the same size as the residual array) containing the estimated uncertainty at each point, and
tell minimize() to use this with the uncertainty argument:

Ifeffit> fit.eps = 0.01 * indarr(npts(fit.resid))
Ifeffit> minimize(fit.resid, uncertainty = fit.eps)

If you wish to limit the fit to be over a limited range of the residual array, you need to tell
minimize() what array to use as the ordinate or “x”-array, and the minimum and maximum
“x” values to use:

Ifeffit> minimize(fit.resid, x =data.x, xmin= 2, xmax =10)

There are several built-in special mathematical functions to aid in the modeling of data – more
information can be found in the Reference Guide.

8 SAVING DATA AND LOGGING YOUR IFEFFIT SESSION 22

8 Saving data and logging your IFEFFIT session

This section is about getting information back from IFEFFIT, either at the command-line, or
written to external files.

8.1 Writing output data files
At some point, you’ll want to write out some of IFEFFIT’s arrays to a file. This is done fairly
simply with the write data() command, which will write a plain ASCII file containing text
strings and scalar values at the top of the file as “comment lines”, then arrays in column format.
The syntax for write data() is fairly simple, consisting of a file name, and a list of arrays,
scalars, and strings to write out, as in

Ifeffit> $title1 = ’Fit #1, varying 4 variables’
Ifeffit> write_data(file=’x_fit.chi’, rmin, rmax,

fit.k, fit.chi, $title1)

which will write the file x fit.chi, which will have header lines from $title1, rmin,
rmax looking like this:

Fit #1, varying 4 variables
rmin = 1.5000000
rmax = 3.5000000
#------------------------
k chi

0.0000000 0.40189216E-01

followed by columns for the arrays fit.k and fit.chi. Notice that the file will have a label
line making it ready to be read back in with the read data() command using this “label”
line, as described in section 3.

The string program variables are always written first, in the order they appear in the argu-
ment list, followed by the scalars (as shown) in the order they appear in the argument. Finally,
the arrays will be written in the order they appear, with the first one being in the first column.

8.2 Writing log files

While doing a complex analysis, it’s often necessary to save values and information into a file
for later inspection. While not extremely sophisticated, one simple way to do this is to have
everything that would be written to the screen written to a log file. This is surprisingly effective
way of keeping track of your analysis session, and may well inspire you to insert many more
show() and print() commands in your scripts.

To open a log file, you use the log() command, naming the log file to use, and specify the
“screen echo” mode:

Ifeffit> log(my_test.log, screen_echo = 3)

where the “screen echo = 3” selects writing to both the screen and to the log file. Other
values for this parameter are discussed in the Reference Guide.

To close a log file, you say

Ifeffit> log(close)

8 SAVING DATA AND LOGGING YOUR IFEFFIT SESSION 23

Only one log file can be open at a time – opening a log file when one is already open will cause
the first to be closed. If the program exits with a log file opened, it is not guaranteed that all
information will be actually written to the log file. (NB: This is under investigation, and is
hoped to be fixed in a future version).

8.3 Saving the state of an IFEFFIT session

It’s often desirable to suspend an analysis session and save the current point in the session,
either to return to it later or to compare your results with someone else’s. To this end, IFEFFIT

allows you to save the current state of all program variables into a single file that can be read in
later. The saved file is portable across different platforms.

The save command will save the current state. It takes a few optional arguments, the most
important of which is the file name, which defaults to ifeffit.sav. That is

Ifeffit>save

will write ifeffit.sav, and

Ifeffit>save(current.sav)

will save the program state to current.sav. You can also specify what kinds of program
variables to save with optional arguments like with strings, no strings, with arrays,
no arrays, and so forth. The default is to save everything.

To restore a previously saved session, you use the restore command, giving it the name
of the save file (again, ifeffit.sav by default):

Ifeffit>restore(my_save_file.sav)

This will load all the program variables saved in the given file. Note that it will not erase any
program variables that may have existed in the current session, but will overwrite any variables
with the same name. This means that unless you start with a new session, it’s possible that
restoring a session may not produce an identical session to the previous one.

9 DEFINING AND USING MACROS 24

9 Defining and Using Macros

Macros are named sequence of IFEFFIT commands which can be run by simply typing the
macro name. Macros are primarily designed to cut down on typing for repetitive tasks and
to make IFEFFIT easier to use and customize. While not going far enough to making IFEFFIT

a real programming language, macros offer some flexibility normally associated with batch
processing languages.

A macro is defined with the macro keyword, after which comes a series of commands as
you would type them to the command line and ending with end macro. As a simple example,
defining a macro named make ps would look like this would be

macro make_ps
plot(device="/ps",file= "ifeffit.ps")

end macro

Now, typing the new command make ps will create a postscript file named ifeffit.ps of
the current plot. This macro is only one line long, which doesn’t save much typing, but we’ll get
to longer examples below. First, let’s add an optional argument: what if you want the Postscript
file to be named something other than ifeffit.ps, since multiple executions would just keep
overwriting this file? For this, you can supply macro arguments, which are variables named $1,
$2,. . . , $9 that are expanded in place as text strings by the first, second, . . . , ninth arguments
when the macro is run. The definition look like this

macro make_ps
plot(device="/ps",file= "$1")

end macro

and would be invoked by make ps data 01.ps or make ps my fit.ps. OK, but now
what happens if you don’t give an argument? Well, the argument $1 would be ””, so that would
be the same as saying ...,file=""), which would create the default file ifeffit.ps.

You can also define a default parameter for the macro at its definition, by including the
default value on the “macro” line. That is,

macro make_ps other.ps
plot(device="/ps",file= "$1")

end macro

the default value for $1 will be other.ps. The value for this parameter can still be overridden
by saying make ps data 01.ps.

Macros can be of arbitrary length (though the total number of macro lines in memory is
fixed at 2048 lines). In addition, if the first line of a macro definition is a plain text string, this
will be used as the macro documentation, and will be shown with show @macros. A more
typical macro may look like this

macro do_pre_edge a
"Read File, Calculate Pre-Edge, Plot, Write File"
read_data($1.xmu, type = xmu, group = my)
pre_edge(my.energy, my.xmu)
my.norm = my.pre / edge_step
$title1 = ’normalized, pre-edge subtracted data’
write_data(file = $1.pre, $title1, energy, pre, norm, xmu)

end macro

More example macros are included in the main IFEFFIT distribution.

10 THE IFEFFIT COMMAND-LINE PROGRAM 25

10 The ifeffit command-line program

The main program distributed with IFEFFIT is simply called ifeffit (or ifeffit.exe on
Win32 systems) and runs the basic command interpreter we’ve been discussing throughout this
tutorial. If you’ve been following along with the examples, you’ve run this program already.
This, the final section of the tutorial, will give a few additional details of using this program.
The emphasis here will be on the Unix version.

On Unix and Unix-like systems, the ifeffit program uses the GNU Readline library
which supports command-line editing, which greatly enhances the usability of the command-
line program by letting you 1) recall previous commands, 2) edit them with keyboard com-
mands, and 3) use tab-completion. In short, the up-arrow and down-arrow keys work to scroll
through previous commands, you can easily edit the command-line, and you can use the tab key
to help you finish typing commands and file names.

Following the usual GNU Readline behavior, ’emacs keybindings’ are used, and there is
a large number of ’control-keyboard-sequences’ to assist editing the current command line.
For example Ctrl-a (that’s holding the control key and ’a’ at the same time) will move to the
beginning of the line, Ctrl-e will move to the end of the line. Both Ctrl-f and the right-arrow key
will move one character to the right, and Ctrl-b and the left-arrow key will move one character
to the left. Ctrl-p is the same as the up-arrow key, and Ctrl-n is the same as the down-arrow key,
and will scroll through the previous and next commands in the “history buffer”. Ctrl-k will cut
the text from the current cursor position to the end of the line, and Ctrl-y will insert that cut text
at the current point of the cursor. Following the behavior of many shell programs, Ctrl-d has a
dual purpose: on an empty line it will exit the program (essentially the same as typing ’quit’!),
while on a non-empty line it will erase one character at a time. Ctrl-h, on the other hand, will
erase one character at a time backwards. There are several more control-sequences available for
more rapid command-line editing – consult the Readline documentation.

Tab completion means that if you’ve typed read at the command prompt and then hit the
tab key, the program will guess that you wanted to type the command name read data, and
complete this word for you. If you type re and hit tab, you should hear a beep because there
are more than one possible completions – hitting tab again will show the three possibilities
read data, rename, and restore. For the first word on a command-line, ifeffit will
use a restricted set of commands for tab completion (type ’help’ or hit the tab key twice at the
command prompt). For later words on the command-line, ifeffit will use the set of files in
the current working directory for tab completion.

In addition to keeping a ’command history’ for the current session, ifeffit will maintain
a recent history of commands between sessions, and re-load the command history on start-up.
This allows you to scroll through the commands of earlier sessions. The commands are kept in
memory, and re-saved into ahistory file when ifeffit exits. This file can be used as a record
of your session, and as a starting place for batch command files, scripts, and macros.

The name of the history file and the number of commands saved can be set with the environ-
mental variables IFF HISTORY FILE and IFF HISTORY LINES. If these variables aren’t
set, the history file used will be named .ifeffit hist in your home directory and will
contain up to 500 command lines.

When ifeffit is started, two ’start-up files’ will be loaded, if found. These are loaded
simply as command files, as if you typed their contents to the command-line. First, startup.iff
in the installation directory (typically /usr/local/share/ifeffit) is loaded, and then
the file .ifeffit in your home directory is loaded. These start-up files are intended for site-
wide or personal definitions for common macros and color-table preferences. In fact, these

10 THE IFEFFIT COMMAND-LINE PROGRAM 26

start-up files are not only loaded by the command-line program, but are loaded by the underly-
ing library, and so the definitions given in these start-up files can be used in scripts written using
the IFEFFIT library in perl or python. This can lead to a portability problem for scripts, however,
and it is not necessarily recommended to rely on definitions in start-up files in lengthy scripts.

When starting theifeffit program, you can give a list of IFEFFIT command files and
save files that will effectively be loaded or restoreed as necessary before the command-
prompt is given to you. Just to be clear, these are loaded after any start-up files, so definitions
in start-up files can be used in “loaded” files. If multiple files are listed they will be loaded /
restoreed in the order specified. To run a command file in ’batch mode’, or non-interactively,
you can use the -x switch, which will load all the files on the command line and then exit, with-
out ever showing the command prompt. Note that pause statements, which would normally
wait for your input are skipped in this ’batch mode’. For example,

˜> ifeffit my_file.iff

will load my file.iff and then give you the command prompt to continue, while

˜> ifeffit -x my_file.iff

will run my file.iff and then exit. If running in batch mode, you may want to redirect
the screen output to a file (ifeffit -x my file.iff > my file.out), or use the
-q switch (ifeffit -q -x my file.iff) to “run quietly”, suppressing screen output
altogether.

While in an ifeffit session, there are a few additional commands available besides the
standard commands of the IFEFFIT library. The standard Unix “shell commands” ls, cd, pwd,
and more work to give information about the current directory and files. Additional shell
commands can be executed by preceding it with a ! sign, as in

Ifeffit> ! gv ifeffit.ps

which will run gv (a popular postscript viewer) for you. Putting an ampersand & at the end of
this line will run the job in the background so that you can continue typing in the ifeffit
shell as well. That makes an effective way to edit command files:

Ifeffit> ! emacs test_cmnd.iff &
Ifeffit> load test_cmnd.iff

Finally, typing ’help’ at the ifeffit prompt will give a one-line description of the more
common IFEFFIT commands.

