Go to the documentation of this file.
42 #ifndef vtkQuadraticPyramid_h
43 #define vtkQuadraticPyramid_h
45 #include "vtkCommonDataModelModule.h"
82 int& subId,
double pcoords[3],
83 double& dist2,
double *weights) VTK_OVERRIDE;
85 double *weights) VTK_OVERRIDE;
87 void Derivatives(
int subId,
double pcoords[3],
double *values,
88 int dim,
double *derivs) VTK_OVERRIDE;
100 int insideOut) VTK_OVERRIDE;
106 int IntersectWithLine(
double p1[3],
double p2[3],
double tol,
double& t,
107 double x[3],
double pcoords[3],
int& subId) VTK_OVERRIDE;
113 int GetParametricCenter(
double pcoords[3]) VTK_OVERRIDE;
118 static
void InterpolationFunctions(
double pcoords[3],
double weights[13]);
122 static
void InterpolationDerivs(
double pcoords[3],
double derivs[39]);
128 void InterpolateFunctions(
double pcoords[3],
double weights[13]) VTK_OVERRIDE
142 static int *GetEdgeArray(
int edgeId);
143 static int *GetFaceArray(
int faceId);
151 void JacobianInverse(
double pcoords[3],
double **inverse,
double derivs[39]);
179 pcoords[0] = pcoords[1] = 6.0/13.0;
180 pcoords[2] = 3.0/13.0;
represent and manipulate 3D points
virtual int CellBoundary(int subId, double pcoords[3], vtkIdList *pts)=0
Given parametric coordinates of a point, return the closest cell boundary, and whether the point is i...
virtual void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)=0
Generate contouring primitives.
represent and manipulate point attribute data
static vtkObject * New()
Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
cell represents a parabolic, isoparametric triangle
a 3D cell that represents a linear pyramid
abstract superclass for arrays of numeric data
virtual void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights)=0
Determine global coordinate (x[3]) from subId and parametric coordinates.
cell represents a parabolic, 8-node isoparametric quad
int GetNumberOfEdges() override
Return the number of edges in the cell.
static void InterpolationDerivs(double pcoords[3], double derivs[39])
cell represents a parabolic, 13-node isoparametric pyramid
int GetNumberOfFaces() override
Return the number of faces in the cell.
virtual int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts)=0
Generate simplices of proper dimension.
abstract class to specify cell behavior
virtual void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs)=0
Compute derivatives given cell subId and parametric coordinates.
represent and manipulate cell attribute data
virtual vtkCell * GetFace(int faceId)=0
Return the face cell from the faceId of the cell.
a simple class to control print indentation
object to represent cell connectivity
Abstract class in support of both point location and point insertion.
list of point or cell ids
int GetCellDimension() override
Return the topological dimensional of the cell (0,1,2, or 3).
virtual double * GetParametricCoords()
Return a contiguous array of parametric coordinates of the points defining this cell.
int GetCellType() override
Implement the vtkCell API.
void InterpolateDerivs(double pcoords[3], double derivs[39]) override
abstract superclass for non-linear cells
virtual vtkCell * GetEdge(int edgeId)=0
Return the edge cell from the edgeId of the cell.
void PrintSelf(ostream &os, vtkIndent indent) override
Methods invoked by print to print information about the object including superclasses.
static void InterpolationFunctions(double pcoords[3], double weights[13])
dynamic, self-adjusting array of double
a 3D cell that represents a tetrahedron
cell represents a parabolic, isoparametric edge
virtual int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights)=0
Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; ev...