
The Tig Manual
Jonas Fonseca

This is the manual for Tig, the ncurses-based text-mode interface for git. Tig allows you to browse
changes in a Git repository and can additionally act as a pager for output of various Git commands.
When used as a pager, it will display input from stdin and colorize it.

When browsing repositories, Tig uses the underlying Git commands to present the user with various
views, such as summarized commit log and showing the commit with the log message, diffstat, and the
diff.

1. Calling Conventions

1.1. Pager Mode

If stdin is a pipe, any log or diff options will be ignored and the pager view will be opened loading data
from stdin. The pager mode can be used for colorizing output from various Git commands.

Example on how to colorize the output of git-show(1):

$ git show | tig

1.2. Git Command Options

All Git command options specified on the command line will be passed to the given command and all
will be shell quoted before they are passed to the shell.

Note: If you specify options for the main view, you should not use the --pretty option as this option
will be set automatically to the format expected by the main view.

Example on how to view a commit and show both author and committer information:

$ tig show --pretty=fuller

See the section on specifying revisions for an introduction to revision options supported by the Git
commands. For details on specific Git command options, refer to the man page of the command in
question.

1

The Tig Manual

2. The Viewer

The display consists of a status window on the last line of the screen and one or more views. The default
is to only show one view at a time but it is possible to split both the main and log view to also show the
commit diff.

If you are in the log view and press Enter when the current line is a commit line, such as:

commit 4d55caff4cc89335192f3e566004b4ceef572521

You will split the view so that the log view is displayed in the top window and the diff view in the bottom
window. You can switch between the two views by pressing Tab. To maximize the log view again, simply
press l.

2.1. Views

Various views of a repository are presented. Each view is based on output from an external command,
most often git log, git diff , or git show.

The main view

Is the default view, and it shows a one line summary of each commit in the chosen list of revisions.
The summary includes author date, author, and the first line of the log message. Additionally, any
repository references, such as tags, will be shown.

The log view

Presents a more rich view of the revision log showing the whole log message and the diffstat.

The diff view

Shows either the diff of the current working tree, that is, what has changed since the last commit, or
the commit diff complete with log message, diffstat and diff.

The tree view

Lists directory trees associated with the current revision allowing subdirectories to be descended or
ascended and file blobs to be viewed.

The blob view

Displays the file content or "blob" of data associated with a file name.

The blame view

Displays the file content annotated or blamed by commits.

The refs view

Displays the branches, remotes and tags in the repository.

2

The Tig Manual

The status view

Displays status of files in the working tree and allows changes to be staged/unstaged as well as
adding of untracked files.

The stage view

Displays diff changes for staged or unstaged files being tracked or file content of untracked files.

The stash view

Displays the list of stashes in the repository.

The grep view

Displays a list of files and all the lines that matches a search pattern.

The pager view

Is used for displaying both input from stdin and output from Git commands entered in the internal
prompt.

The help view

Displays a quick reference of key bindings.

2.2. Browsing State and User-defined Commands

The viewer keeps track of both what head and commit ID you are currently viewing. The commit ID will
follow the cursor line and change every time you highlight a different commit. Whenever you reopen the
diff view it will be reloaded, if the commit ID changed. The head ID is used when opening the main and
log view to indicate from what revision to show history.

Some of the commands used or provided by Tig can be configured. This goes for some of the
environment variables as well as the external commands. These user-defined commands can use
arguments that refer to the current browsing state by using one of the following variables.

Table 1. Browsing state variables

%(head) The currently viewed head ID. Defaults to HEAD

%(commit) The currently selected commit ID.

%(blob) The currently selected blob ID.

%(branch) The currently selected branch name.

%(remote) The currently selected remote name. For remote branches %(branch) will
contain the branch name.

%(tag) The currently selected tag name.

%(stash) The currently selected stash name.

%(directory) The current directory path in the tree view or "." if undefined.

%(file) The currently selected file.

3

The Tig Manual

%(lineno) The currently selected line number. Defaults to 0.

%(ref) The reference given to blame or HEAD if undefined.

%(revargs) The revision arguments passed on the command line.

%(fileargs) The file arguments passed on the command line.

%(cmdlineargs) All other options passed on the command line.

%(diffargs) Options from diff-options or TIG_DIFF_OPTS used by the diff and stage
view.

%(blameargs) Options from blame-options used by the blame view.

%(logargs) Options from log-options used by the log view.

%(mainargs) Options from main-options used by the main view.

%(prompt) Prompt for the argument value. Optionally specify a custom prompt using
"%(prompt Enter branch name:)"

%(text) The text of the currently selected line.

%(repo:head) The name of the checked out branch, e.g. master

%(repo:head-id) The commit ID of the checked out branch.

%(repo:remote) The remote associated with the checked out branch, e.g. origin/master.

%(repo:cdup) The path to change directory to the repository root, e.g. ../

%(repo:prefix) The path prefix of the current work directory, e.g subdir/.

%(repo:git-dir) The path to the Git directory, e.g. /src/repo/.git.

%(repo:worktree) The worktree path, if defined.

%(repo:is-inside-work-tree)Whether Tig is running inside a work tree, either true or false.

Example user-defined commands:

• Allow to amend the last commit:

bind generic + !git commit --amend

• Copy commit ID to clipboard:

bind generic 9 !@sh -c "echo -n %(commit) | xclip -selection c"

• Add/edit notes for the current commit used during a review:

bind generic T !git notes edit %(commit)

• Enter Git’s interactive add for fine-grained staging of file content:

bind generic I !git add -i %(file)

• Rebase current branch on top of the selected branch:

bind refs 3 !git rebase -i %(branch)

4

The Tig Manual

2.3. Title Windows

Each view has a title window which shows the name of the view, current commit ID if available, and
where the view is positioned:

[main] c622eefaa485995320bc743431bae0d497b1d875 - commit 1 of 61 (1%)

By default, the title of the current view is highlighted using bold font. For long loading views (taking
over 3 seconds) the time since loading started will be appended:

[main] 77d9e40fbcea3238015aea403e06f61542df9a31 - commit 1 of 779 (0%) 5s

3. Environment Variables

Several options related to the interface with Git can be configured via environment options.

3.1. Configuration Files

Upon startup, Tig first reads the system wide configuration file ({sysconfdir}/tigrc by default) and
then proceeds to read the user’s configuration file (~/.tigrc or $XDG_CONFIG_HOME/tig/config by
default). The paths to either of these files can be overridden through the following environment variables:

TIGRC_USER

Path of the user configuration file.

TIGRC_SYSTEM

Path of the system wide configuration file.

History Files

If compiled with readline support, Tig writes a persistent command and search
history to ‘~/.tig_history‘ or ‘$XDG_DATA_HOME/tig/history‘.

[[repo-refs]]
Repository References

Commits that are referenced by tags and branch heads will be marked by the reference name surrounded
by [and]:

2006-03-26 19:42 Petr Baudis | [cogito-0.17.1] Cogito 0.17.1

5

The Tig Manual

If you want to limit what branches are shown, say only show branches named master or those which
start with the feature/ prefix, you can do it by setting the following variable:

$ TIG_LS_REMOTE="git ls-remote . master feature/*" tig

Or set the variable permanently in your environment.

TIG_LS_REMOTE

Command for retrieving all repository references. The command should output data in the same
format as git-ls-remote(1). Defaults to:

git ls-remote .

3.2. Diff options

It is possible to alter how diffs are shown by the diff view. If for example you prefer to have commit and
author dates shown as relative dates, use:

$ TIG_DIFF_OPTS="--relative-date" tig

Or set the variable permanently in your environment.

4. Default Keybindings

Below the default key bindings are shown.

4.1. View Switching

Key Action
m Switch to main view.
d Switch to diff view.
l Switch to log view.
p Switch to pager view.
t Switch to (directory) tree view.
f Switch to (file) blob view.
g Switch to grep view.
b Switch to blame view.
r Switch to refs view.
y Switch to stash view.

6

The Tig Manual

Key Action
h Switch to help view
s Switch to status view
c Switch to stage view

4.2. View Manipulation

Key Action
q Close view, if multiple views are open it will jump back to the previous view in the

view stack. If it is the last open view it will quit. Use Q to quit all views at once.
Enter This key is "context sensitive" depending on what view you are currently in. When

in log view on a commit line or in the main view, split the view and show the
commit diff. In the diff view pressing Enter will simply scroll the view one line
down.

Tab Switch to next view.
R Reload and refresh the current view.
O Maximize the current view to fill the whole display.
Up This key is "context sensitive" and will move the cursor one line up. However, if

you opened a diff view from the main view (split- or full-screen) it will change the
cursor to point to the previous commit in the main view and update the diff view
to display it. If you prefer this key to move the cursor or scroll within the diff view
instead, use bind diff <Up> move-up or bind diff <Up>

scroll-line-up, respectively.
Down Similar to Up but will move down.
, Move to parent. In the tree view, this means switch to the parent directory. In the

blame view it will load blame for the parent commit. For merges the parent is
queried.

4.3. View Specific Actions

Key Action
u Update status of file. In the status view, this allows you to add an untracked file or

stage changes to a file for next commit (similar to running git-add <filename>). In
the stage view, when pressing this on a diff chunk line stages only that chunk for
next commit, when not on a diff chunk line all changes in the displayed diff are
staged.

M Resolve unmerged file by launching git-mergetool(1). Note, to work correctly this
might require some initial configuration of your preferred merge tool. See the
manpage of git-mergetool(1).

! Checkout file with unstaged changes. This will reset the file to contain the content
it had at last commit.

7

The Tig Manual

Key Action
1 Stage single diff line.
@ Move to next chunk in the stage view.
] Increase the diff context.
[Decrease the diff context.

4.4. Cursor Navigation

Key Action
k Move cursor one line up.
j Move cursor one line down.
PgUp,-,a Move cursor one page up.
PgDown, Space Move cursor one page down.
End Jump to last line.
Home Jump to first line.

4.5. Scrolling

Key Action
Insert Scroll view one line up.
Delete Scroll view one line down.
ScrollBack Scroll view one page up.
ScrollFwd Scroll view one page down.
Left Scroll view one column left.
Right Scroll view one column right.
| Scroll view to the first column.

4.6. Searching

Key Action
/ Search the view. Opens a prompt for entering search regexp to use.
? Search backwards in the view. Also prompts for regexp.
n Find next match for the current search regexp.
N Find previous match for the current search regexp.

4.7. Misc

8

The Tig Manual

Key Action
Q Quit.
<C-L> Redraw screen.
z Stop all background loading. This can be useful if you use Tig in a repository with

a long history without limiting the revision log.
v Show version.
o Open option menu
Toggle line numbers on/off.
D Toggle date display on/off/relative/relative-compact/custom
A Toggle author display on/off/abbreviated/email/email user name.
G Toggle revision graph visualization on/off.
~ Toggle (line) graphics mode
F Toggle reference display on/off (tag and branch names).
W Toggle ignoring whitespace on/off for diffs
X Toggle commit ID display on/off
% Toggle file filtering in order to see the full diff instead of only the diff concerning

the currently selected file.
$ Toggle highlighting of commit title overflow.
: Open prompt. This allows you to specify what command to run and also to jump

to a specific line, e.g. :23
e Open file in editor.

4.8. Prompt

Key Action
:<number> Jump to the specific line number, e.g. :80.
:<sha> Jump to a specific commit, e.g. :2f12bcc.
:<x> Execute the corresponding key binding, e.g. :q.
:!<command> Execute a system command in a pager, e.g. :!git log -p.
:<action> Execute a Tig command, e.g. :edit.
:goto <rev> Jump to a specific revision, e.g. :goto %(commit)^2 to goto the current

commit’s 2nd parent or :goto some/branch to goto the commit denoting the
branch some/branch.

:save-display
<file>

Save current display to <file>.

:save-options
<file>

Save current options to <file>.

:save-view <file> Save view info to <file> (for testing purposes).
:script <file> Execute commands from <file>.
:exec
<flags><args. . . >

Execute command using <args> with external user-defined command option
flags defined in <flags>.

9

The Tig Manual

Key Action
:echo <args. . . > Display text in the status bar.

4.9. External Commands

For more custom needs, external commands provide a way to easily execute a script or program. They
are bound to keys and use information from the current browsing state, such as the current commit ID.
Tig comes with the following built-in external commands:

Keymap Key Action

main C git cherry-pick %(commit)
status C git commit
generic G git gc

5. Revision Specification

This section describes various ways to specify what revisions to display or otherwise limit the view to.
Tig does not itself parse the described revision options so refer to the relevant Git man pages for further
information. Relevant man pages besides git-log(1) are git-diff(1) and git-rev-list(1).

You can tune the interaction with Git by making use of the options explained in this section. For
example, by configuring the environment variable described in the section on diff options.

5.1. Limit by Path Name

If you are interested only in those revisions that made changes to a specific file (or even several files) list
the files like this:

$ tig Makefile README

To avoid ambiguity with Tig’s subcommands or repository references such as tag names, be sure to
separate file names from other Git options using "--". So if you have a file named status it will clash
with the status subcommand, and thus you will have to use:

$ tig -- status

10

The Tig Manual

5.2. Limit by Date or Number

To speed up interaction with Git, you can limit the amount of commits to show both for the log and main
view. Either limit by date using e.g. --since=1.month or limit by the number of commits using -n400.

If you are only interested in changes that happened between two dates you can use:

$ tig --after="May 5th" --before="2006-05-16 15:44"

Note: If you want to avoid having to quote dates containing spaces you can use "." instead, e.g.
--after=May.5th.

5.3. Limiting by Commit Ranges

Alternatively, commits can be limited to a specific range, such as "all commits between tag-1.0 and
tag-2.0". For example:

$ tig tag-1.0..tag-2.0

This way of commit limiting makes it trivial to only browse the commits which haven’t been pushed to a
remote branch. Assuming origin is your upstream remote branch, using:

$ tig origin..HEAD

will list what will be pushed to the remote branch. Optionally, the ending HEAD can be left out since it is
implied.

5.4. Limiting by Reachability

Git interprets the range specifier "tag-1.0..tag-2.0" as "all commits reachable from tag-2.0 but not from
tag-1.0". Where reachability refers to what commits are ancestors (or part of the history) of the branch or
tagged revision in question.

If you prefer to specify which commit to preview in this way use the following:

$ tig tag-2.0 ^tag-1.0

You can think of ^ as a negation operator. Using this alternate syntax, it is possible to further prune
commits by specifying multiple branch cut offs.

11

The Tig Manual

5.5. Combining Revisions Specification

Revision options can to some degree be combined, which makes it possible to say "show at most 20
commits from within the last month that changed files under the Documentation/ directory."

$ tig --since=1.month -n20 -- Documentation/

5.6. Examining All Repository References

In some cases, it can be useful to query changes across all references in a repository. An example is to
ask "did any line of development in this repository change a particular file within the last week". This can
be accomplished using:

$ tig --all --since=1.week -- Makefile

6. More Information

Please visit Tig’s home page (https://jonas.github.io/tig) or main Git repository
(https://github.com/jonas/tig) for information about new releases and how to report bugs and feature
requests.

7. Copyright

Copyright (c) 2006-2014 Jonas Fonseca <jonas.fonseca@gmail.com
(mailto:jonas.fonseca@gmail.com)>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

8. See Also

Manpages:

• tig(1)

• tigrc(5)

12

	1. Calling Conventions
	1.1. Pager Mode
	1.2. Git Command Options

	2. The Viewer
	2.1. Views
	2.2. Browsing State and Userdefined Commands
	2.3. Title Windows

	3. Environment Variables
	3.1. Configuration Files
	3.2. Diff options

	4. Default Keybindings
	4.1. View Switching
	4.2. View Manipulation
	4.3. View Specific Actions
	4.4. Cursor Navigation
	4.5. Scrolling
	4.6. Searching
	4.7. Misc
	4.8. Prompt
	4.9. External Commands

	5. Revision Specification
	5.1. Limit by Path Name
	5.2. Limit by Date or Number
	5.3. Limiting by Commit Ranges
	5.4. Limiting by Reachability
	5.5. Combining Revisions Specification
	5.6. Examining All Repository References

	6. More Information
	7. Copyright
	8. See Also

