
GREMWELL BVBA
Sint-Katherinastraat 24, 1742 Ternat

Tel: +32 2 215 53 58 Fax: +32 2 791 98 38

Guide to sslcaudit
v1.0rc1

May 1st 2012

Guide to sslcaudit v1.0rc1

Document Properties

Subject Guide to sslcaudit v1.0rc1

Author Alexandre Bezroutchko
E-mail: abb@gremwell.com
Web site: http://www.gremwell.com/

Document history 1/05/2012 - Initial version

Confidential Page 2 of 11

http://www.gremwell.com/
mailto:abb@gremwell.com

Guide to sslcaudit v1.0rc1

Table of Contents
 1 INTRODUCTION...4
 2 BACKGROUND INFORMATION..4
 3 WHAT WE TEST FOR...4

 3.1 Server certificate validation tests..5
 3.2 Testing for protocol version and cipher support..6
 3.3 Other security issues...6

 4 HOW TO USE THE TOOL...6
 4.1 Installation and dependencies...6
 4.2 Lab setup..6
 4.3 Example 1...7
 4.4 Example 2: A client who verifies the chain of trust...7
 4.5 Example 3: A client who validates the chain of trust, but ignores CN mismatch........................8
 4.6 Example 4: A client who verifies both the chain of trust and the CN.....................................8

 5 SUPPORTED SYSTEMS..9
 6 COMMAND LINE PARAMETERS..9
 7 TO BE IMPLEMENTED..10
 8 REFERENCES..10
 9 CONTACTS...11
 10 ABOUT GREMWELL...11

Confidential Page 3 of 11

Guide to sslcaudit v1.0rc1

 1 INTRODUCTION

The goal of sslcaudit project is to develop a utility to automate testing SSL/TLS clients for
resistance against MITM attacks. It might be useful for testing a thick client, a mobile application,
an appliance, pretty much anything communicating over SSL/TLS over TCP.

This document is based on sslcaudit version 1.0rc1. It contains some background information,
explanations of how the tool works, and several examples. An impatient reader can jump directly to
4 HOW TO USE THE TOOL.

 2 BACKGROUND INFORMATION

SSL/TLS protocols are widely used to protect confidentiality and integrity of communication over
untrusted networks. For protection to be effective, client and server both have to be implemented
correctly. Security properties and common implementation flaws in servers are well understood and
documented [WIKI-TLS, SCANIT-SSL, OWASP-TLS]. There is the OWASP Testing Guide
[OWASP-TLS], a rating guide [SSL-RATING], and tools to automate the tests, such as sslaudit
[SSLAUDIT].

When it comes to client security, things are less advanced. Till recently sslsniff [SSLSNIFF]
attacking tool was probably the most interesting effort in this direction. A recent Blackhat
presentation [BH-SSL-TTRUST] focuses on security issues introduced by SSL-aware proxies and
mentions common implementation flaws in SSL clients. The authors of that presentation have
published an online testing service [SSLTEST] suitable for testing web browsers.

 3 WHAT WE TEST FOR

In general, the tool is designed to automate testingTo assess security of SSL/TLS clients we have to
check:

• what server certificates it trusts enough to fully establish a connection,
• what flavors of SSL protocol the client supports

Behavior related to server certificate validation:
C
1

Reject self-signed certificates or
certificates not signed by a trusted CA

In practice a failure to implement C1, C2, or C3 is
the most dangerous and allows for a straightforward
MITM attack.C

2
Validate basic constraints of intermediate
CAs

C
3

Only accept server certificate with CN
matching the intended destination

C
4

Do not accept expired and revoked
certificates

Testing for or exploitation of C4 has the prerequisite
of an attacker being able to obtain a legitimate, but

Confidential Page 4 of 11

Guide to sslcaudit v1.0rc1

expired or revoked certificate for the server or an
intermediate/root CA. Some SSL clients (especially
embedded ones) don't have a reliable clock source
nor CRL/OSCP support at all by design.

C
5

Do not be fooled by NUL-character in
CN.

To test or exploit C5 a valid certificate with NUL-
byte in CN is needed. It is difficult to obtain a such a
certificate in practice.

Protocol version and cipher support:
P
1

Do not support SSLv2 (version/cipher
downgrade)

The failure to implement P1 leads to theoretical
possibility of cipher downgrade attacks. To our
knowledge practical exploitation is very tricky, no
free or commercial tool exist.

P
2

Do not support SSL and TLS 1.0 (CBC
attack)

P2 was demonstrated to allow cookie theft in web
browsers, and has a prerequisite of an attacker being
able to inject malicious JavaScript code into victim's
browser [BS-BEAST]

P
3

Do not support weak key exchange
protocols, low key lengths, low ciphers
strengths

If strong ciphers are supported by the peers, the
presence of weak ones is only exploitable via cipher
downgrade attack.

Testing for C1-C3 is already implemented in v1.0. Checking C4, C5, and protocol-level tests will
come in v1.1.

 3.1 Server certificate validation tests
Sslcaudit starts with a user-supplied certificate, if provided with --user-cert parameter. An
unprotected private key must be provided as well with --user-key parameter.

Next, sslcaudit automatically generates certificates with the following properties:

1. With hardcoded CN (nonexistent.gremwell.com). Can be disabled with --no-default-cn
2. With user-specified CN, if any. Use --user-cn
3. Matching attributes of a certificate fetched from from user-specified SSL/TLS server. To

enable use --server HOST:PORT.

Each certificate will be signed in the following ways:

1. Self-signed. To disable, specify --no-self-signed.
2. Signed by the user-supplied certificate (--user-cert / --user-key). To disable use --no-user-

cert-signed.
3. Signed by the user-supplied CA (--user-ca-cert / --user-ca-key).

This way, sslcaudit will use between 1 and 10 certificates.

Confidential Page 5 of 11

Guide to sslcaudit v1.0rc1

 3.2 Testing for protocol version and cipher
support

Will come in v1.1. The functionality will be similar to sslaudit [SSLAUDIT], but backwards.

 3.3 Other security issues
Just for completeness, there are two other attacks having an impact on SSL/TLS communication:

• "SSL 3.0/TLS 1.0 renegotiation attack" [TLS-RENEG], but has no client-side effects.
• Another related (but not SSL/TLS-specific) attack is [OSCP-ATTACK], not testing for it.

 4 HOW TO USE THE TOOL

 4.1 Installation and dependencies

There is no procedure for installation yet. Just grab the code:
• Download ZIP archive at https://github.com/grwl/sslcaudit/zipball/release_1_0_rc1
• Or clone leading edge master GIT repository: git clone git://github.com/grwl/sslcaudit.git
• Find sslcaudit in the top level directory and run it with -h option.

Sslcaudit uses M2Crypto Python library. If you dependencies problem, you might see following:
$./sslcaudit
Traceback (most recent call last):
…
ImportError: No module named M2Crypto

On Debian system M2Crypto library can be installed with the following command:
$ sudo apt-get install python-m2crypto

 4.2 Lab setup
To use sslcaudit, a penetration tester has to convince the client under test to establish a series of
connections to the listener of sslcaudit. This can be done in number of ways, for example with
Marvin [MARVIN], but this topic is outside of the scope of this document. Sslcaudit plays a role of
a rogue SSL/TLS server, presenting the client with various certificates and logging the outcome of
the tests.

Sslcaudit does not (yet) do any risk assessment. Instead it displays the information about what
certificate configurations have been tried and what has been observed. It is up to the user to make
conclusions, which are obvious in most cases.

Below we will consider four examples showing how sslcaudit helps testing the behavior of SSL

Confidential Page 6 of 11

https://github.com/grwl/sslcaudit/zipball/release_1_0_rc1

Guide to sslcaudit v1.0rc1

clients.

 4.3 Example 1

Open two terminal windows. In one window run 'sslcaudit'.
$./sslcaudit

The command starts and runs silently. If you dependencies problem, you might see
$./sslcaudit
Traceback (most recent call last):
…
ImportError: No module named M2Crypto

On debian system required M2Crypto library can be installed with
$ sudo apt-get install python-m2crypto

By default it listens on all interfaces on port 8443.

In another terminal run openssl to connect to sslcaudit.
$ openssl s_client -connect localhost:8443
CONNECTED(00000003)
depth=0 /CN=nonexistent.gremwell.com/C=BE/O=Gremwell bvba
verify error:num=18:self signed certificate
verify return:1
depth=0 /CN=nonexistent.gremwell.com/C=BE/O=Gremwell bvba
verify return:1

In the first terminal you will see a the result of the test.
$./sslcaudit
127.0.0.1:58375 sslcert(('nonexistent.gremwell.com', 'SELF')) connected, 2.9s timeout

The output says:
• a connection was received from 127.0.0.1:58375
• the connection was handled by sslcert module, using a self-signed certificate with

CN=nonexistent.gremwell.com
• SSL connection was established successfully, client did not close for 3s

 4.4 Example 2: A client who verifies the
chain of trust

Now do the same as above, but use socat instead of openssl. Socat validates server certificates by
default and will not connect to an arbitrary peer.
$ socat - OPENSSL:localhost:8443
2012/05/01 10:50:50 socat[18692] E SSL_connect(): error:14090086:SSL
routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed

On the side of sslcaudit we can see:
$./sslcaudit

Confidential Page 7 of 11

Guide to sslcaudit v1.0rc1

127.0.0.1:52749 sslcert(('nonexistent.gremwell.com', 'SELF'))
tlsv1 alert unknown ca

Again:
• a connection was received from 127.0.0.1:527
• the connection was handled by sslcert module, using a self-signed certificate with

CN=nonexistent.gremwell.com
• SSL connection setup has failed

 4.5 Example 3: A client who validates the
chain of trust, but ignores CN mismatch

Let's take a more complicated example of testing a thick client. We will simulate a situation when
• the client runs on a host under our control,
• we have already created a test CA and imported it into the list of trusted CAs on the client

host,
• we know that the client originally communicates with 62.213.200.252:443 server

To simulate the client side we will use socat in a loop (doc/example3-client-openssl.sh).
$ for _ in `seq 1 4` ; do socat -
OPENSSL:localhost:8443,cafile=/home/abb/certs/sslcaudit-test-cacert.pem ; done
2012/05/01 11:24:37 socat[19110] E SSL_connect(): error:14090086:SSL
routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
2012/05/01 11:24:37 socat[19112] E SSL_connect(): error:14090086:SSL
routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed

We tell sslcaudit to use the test CA and the certificate of the remote server (doc/example3-
server.sh):
$./sslcaudit --user-ca-cert \

~/certs/sslcaudit-test-cacert.pem \
--user-ca-key ~/certs/sslcaudit-test-cakey.pem \
--server 62.213.200.252:443

127.0.0.1:58352 sslcert(('nonexistent.gremwell.com', 'SELF')) tlsv1
alert unknown ca
127.0.0.1:58353 sslcert(('brufeprd1.hackingmachines.com', 'SELF')) tlsv1
alert unknown ca
127.0.0.1:58354 sslcert(('nonexistent.gremwell.com', 'sslcaudit-test')) connected,
got nothing in 2.999s
127.0.0.1:58355 sslcert(('brufeprd1.hackingmachines.com', 'sslcaudit-test')) connected,
got nothing in 2.996s

As expected, socat rejects the self-signed certificate, but trusts the test CA. We can see that it knows
nothing about CN validation, and happily accepts any CN.

 4.6 Example 4: A client who verifies both
the chain of trust and the CN

We can use curl to simulate the behavior of a proper SSL client, validating both the chain of trust

Confidential Page 8 of 11

Guide to sslcaudit v1.0rc1

and the CN. To simplify the simulation we have edited our /etc/hosts to resolve
brufeprd1.hackingmachines.com into 127.0.0.1 (not shown here).

Run curl in a loop (doc/example4-client-curl.sh):
$ for _ in `seq 1 4` ; do curl --cacert /home/abb/certs/sslcaudit-test-cacert.pem
https://localhost:8443/ ; done
curl: (60) SSL certificate problem, verify that the CA cert is OK. Details:
curl: (60) SSL certificate problem, verify that the CA cert is OK. Details:
curl: (51) SSL: certificate subject name 'nonexistent.gremwell.com' does not match
target host name 'brufeprd1.hackingmachines.com'
curl: (52) Empty reply from server

Sslcaudit is invoked exactly like in the previous example (doc/example3-server.sh).
$./sslcaudit --user-ca-cert /home/abb/certs/sslcaudit-test-cacert.pem --user-ca-key
/home/abb/certs/sslcaudit-test-cakey.pem --server 62.213.200.252:443
127.0.0.1:58470 sslcert(('nonexistent.gremwell.com', 'SELF')) tlsv1
alert unknown ca
127.0.0.1:58471 sslcert(('brufeprd1.hackingmachines.com', 'SELF')) tlsv1
alert unknown ca
127.0.0.1:58472 sslcert(('nonexistent.gremwell.com', 'sslcaudit-test')) connected,
got EOF after 0.000686s
127.0.0.1:58473 sslcert(('brufeprd1.hackingmachines.com', 'sslcaudit-test')) connected,
got 175 octets after 0.000894s

As expected, curl has established a connection to sslcaudit only if the server certificate is fully
valid.

 5 SUPPORTED SYSTEMS
Written in Python, should work on any python2.x. Requires M2Crypto python library (binding to OpenSSL,
http://chandlerproject.org/bin/view/Projects/MeTooCrypto).

Developed and tested on Ubuntu Natty 11.04, with stock python-m2crypto-0.20.1-1ubuntu5 package
installed. Partially tested on BackTrack 5 R2.

OpenSSL library shipped with recent Linux distributions does not support SSLv2. This does not affect this
version of sslcaudit. The next version of sslcaudit will feature protocol level tests and will require OpenSSL
library supporting SSLv2.

 6 COMMAND LINE PARAMETERS
$./sslcaudit -h
Usage: sslcaudit [OPTIONS]

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -l LISTEN_ON Specify IP address and TCP PORT to listen on, in
 format of [HOST:]PORT
 -m MODULE Launch specific audit module. For now the only
 functional module is 'sslcert'. There is also 'dummy'
 module used for internal testing or as a template code
 for new modules. By default 'sslcert' is started.
 -d DEBUG_LEVEL Set debug level. Default is 0, which disables debugging
 output. Try 1 to enable it.
 -c NCLIENTS Number of clients to handle before quitting. By
 default sslcaudit will quit as soon as it gets one

Confidential Page 9 of 11

http://chandlerproject.org/bin/view/Projects/MeTooCrypto

Guide to sslcaudit v1.0rc1

 client fully processed.
 -N TEST_NAME Set the name of the test. If specified will appear in
 the leftmost column in the output.
 --user-cn=USER_CN Set user-specified CN.
 --server=SERVER Where to fetch the server certificate from, in
 HOST:PORT format.
 --user-cert=USER_CERT_FILE
 Set path to file containing the user-supplied
 certificate.
 --user-key=USER_KEY_FILE
 Set path to file containing the user-supplied key.
 --user-ca-cert=USER_CA_CERT_FILE
 Set path to file containing certificate for user-
 supplied CA.
 --user-ca-key=USER_CA_KEY_FILE
 Set path to file containing key for user-supplied CA.
 --no-default-cn Do not use default CN (nonexistent.gremwell.com)
 --no-self-signed Don't try self-signed certificates
 --no-user-cert-signed
 Do not sign server certificates with user-supplied one

 7 TO BE IMPLEMENTED

• Better report formatting (v1.1)
• Support protocol-level tests (v1.1)
• Save a copy of all keys/certificates used during the test (right now they remain under /tmp)

(v1.1)
• Capture logs and relevant packet traces (v1.1)
• Synchronize test execution with external world (>v1.1)
• Support SSL server-side tests to allow end-to-end analysis of client-server communication

(>v1.1)
• Optionally run same test several times, to detect random glitches. (>1.1)
• Is there a need for “SSL Client Rating” scheme?
• Embedded HTTP server to automate testing of web browsers [low]
• Allow certificate and private key to be specified in a single file [low]
• Support password-protected private keys [low]

 8 REFERENCES

SSL/TLS security - the server side
 [WIKI-TLS] http://en.wikipedia.org/wiki/Transport_Layer_Security
 [SCANIT-SSL] http://www.scanit.be/uploads/ssl%20security%20in%20be%20-%2003-2008.pdf
 [OWASP-TLS] https://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29
 [SSL-RATING] https://www.ssllabs.com/projects/rating-guide/index.html
 [SSLAUDIT] http://code.google.com/p/sslaudit/
 [TLS-RENEG] http://www.g-sec.lu/practicaltls.pdf

SSL/TLS security - the client side

Confidential Page 10 of 11

http://www.g-sec.lu/practicaltls.pdf
http://code.google.com/p/sslaudit/
https://www.ssllabs.com/projects/rating-guide/index.html
https://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)
http://www.scanit.be/uploads/ssl%20security%20in%20be%20-%2003-2008.pdf
http://en.wikipedia.org/wiki/Transport_Layer_Security

Guide to sslcaudit v1.0rc1

 [SSLSNIFF] http://www.thoughtcrime.org/software/sslsniff/
 [SSLSTRIP] http://www.thoughtcrime.org/software/sslstrip/
 [BH-SSL-STRIP] http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-
Marlinspike-Defeating-SSL.pdf
 [BH-SSL-TTRUST] https://media.blackhat.com/bh-eu-12/Jarmoc/bh-eu-12-Jarmoc-
SSL_TLS_Interception-Slides.pdf
 [SSL-TTRUST] http://www.secureworks.com/research/threats/transitive-trust/
 [SSLTEST] https://ssltest.offenseindepth.com/
 [BS-BEAST] http://www.schneier.com/blog/archives/2011/09/man-in-the-midd_4.html
 [OPERA-BEAST] http://my.opera.com/securitygroup/blog/2011/09/28/the-beast-ssl-tls-issue
 [OSCP-ATTACK] http://www.thoughtcrime.org/papers/ocsp-attack.pdf

IE5 SSL Spoofing vulnerability
 [IE-SSL-CHAIN] http://www.thoughtcrime.org/ie-ssl-chain.txt
 [BID-2737] http://www.securityfocus.com/bid/2737
 [MS01-027] http://technet.microsoft.com/en-us/security/bulletin/ms01-027

Multiple Vendor Invalid X.509 Certificate Chain Vulnerability
 [BID-5410] http://www.securityfocus.com/bid/5410

Apple iOS Data Security Certificate Chain Validation Security Vulnerability
 [TWSL2011-007] https://www.trustwave.com/spiderlabs/advisories/TWSL2011-007.txt
 [CVE-2011-0228] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0228

[MARVIN] http://www.gremwell.com/marvin-mitm-tapping-dot1x-links

 9 CONTACTS

Sslcaudit is written by Alexandre Bezroutchko, abb@gremwell.com, http://www.gremwell.com/.
Released under GPLv3 terms.

 10 ABOUT GREMWELL

Gremwell offers security consulting services in the area of penetration testing, ethical hacking,
vulnerability assessments and security code and configuration reviews. We are located in the
neighbourhood of Brussels, and service clients in Belgium and abroad. Gremwell's consultants have
more than 10 years experience in IT security.

Gremwell develops MagicTree - a data management tool for penetration testers.

Confidential Page 11 of 11

http://www.gremwell.com/what_is_magictree
http://www.gremwell.com/
mailto:abb@gremwell.com
http://www.gremwell.com/marvin-mitm-tapping-dot1x-links
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0228
https://www.trustwave.com/spiderlabs/advisories/TWSL2011-007.txt
http://www.securityfocus.com/bid/5410
http://technet.microsoft.com/en-us/security/bulletin/ms01-027
http://www.securityfocus.com/bid/2737
http://www.thoughtcrime.org/ie-ssl-chain.txt
http://www.thoughtcrime.org/papers/ocsp-attack.pdf
http://my.opera.com/securitygroup/blog/2011/09/28/the-beast-ssl-tls-issue
http://www.schneier.com/blog/archives/2011/09/man-in-the-midd_4.html
https://ssltest.offenseindepth.com/
http://www.secureworks.com/research/threats/transitive-trust/
https://media.blackhat.com/bh-eu-12/Jarmoc/bh-eu-12-Jarmoc-SSL_TLS_Interception-Slides.pdf
https://media.blackhat.com/bh-eu-12/Jarmoc/bh-eu-12-Jarmoc-SSL_TLS_Interception-Slides.pdf
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://www.thoughtcrime.org/software/sslstrip/
http://www.thoughtcrime.org/software/sslsniff/

	 1 INTRODUCTION
	 2 BACKGROUND INFORMATION
	 3 WHAT WE TEST FOR
	 3.1 Server certificate validation tests
	 3.2 Testing for protocol version and cipher support
	 3.3 Other security issues

	 4 HOW TO USE THE TOOL
	 4.1 Installation and dependencies
	 4.2 Lab setup
	 4.3 Example 1
	 4.4 Example 2: A client who verifies the chain of trust
	 4.5 Example 3: A client who validates the chain of trust, but ignores CN mismatch
	 4.6 Example 4: A client who verifies both the chain of trust and the CN

	 5 SUPPORTED SYSTEMS
	 6 COMMAND LINE PARAMETERS
	 7 TO BE IMPLEMENTED
	 8 REFERENCES
	 9 CONTACTS
	 10 ABOUT GREMWELL

