
GREMWELL BVBA
Sint-Katherinastraat 24, 1742 Ternat

Tel: +32 2 215 53 58 Fax: +32 2 791 98 38

sslcaudit 1.0
User Guide

May 15th 2012

Sslcaudit 1.0 User Guide

Document Properties

Subject Sslcaudit 1.0 User Guide

Author Alexandre Bezroutchko
E-mail: abb@gremwell.com
Web site: http://www.gremwell.com/

Document history 1/05/2012 - Initial version, for sslcaudit 1.0rc1
11/05/2012 - Updated for sslcaudit 1.0
15/05/2012 - Changed git repo URL to https

 Page 2 of 13

http://www.gremwell.com/
mailto:abb@gremwell.com

Sslcaudit 1.0 User Guide

Table of Contents
 1 INTRODUCTION...4
 2 BACKGROUND INFORMATION..4
 3 WHAT WE TEST FOR...4
 4 WHAT WE DO NOT TEST FOR...6
 5 HOW TO USE THE TOOL...6

 5.1 Installation and dependencies...6
 5.2 Network and client setup...6
 5.3 Test if client trusts an arbitrary self-signed certificate (example 1).......................................7
 5.4 Test if client trusts an arbitrary self-signed certificate (example 2).......................................8
 5.5 Re-purpose a certificate (example 3)...9
 5.6 Tests with user-supplied CA (example 4)...9
 5.7 Tests with user-supplied CA (example 5)...10

 6 SUPPORTED SYSTEMS..10
 7 COMMAND LINE PARAMETERS...11
 8 LICENSE AND AUTHORS...11
 9 SUPPORT...12
 10 ABOUT GREMWELL..12
 11 REFERENCES..13

 Page 3 of 13

Sslcaudit 1.0 User Guide

 1 INTRODUCTION

The goal of sslcaudit project is to develop a utility to automate testing SSL/TLS clients for
resistance against MITM attacks. It is useful for testing thick clients, mobile applications,
appliances, pretty much anything communicating over SSL/TLS over TCP.

This guide contains some background information, explanations of how sslaudit v1.0 works, and
several practical examples. An impatient reader can jump directly to 4 HOW TO USE THE TOOL.

 2 BACKGROUND INFORMATION
SSL/TLS suite of protocols is widely used to protect confidentiality and integrity of
communications over untrusted networks. For effective protection both the client and the server
must be implemented correctly. Security properties and common implementation flaws in servers
are well understood and documented [WIKI-TLS, SCANIT-SSL, OWASP-TLS]. There is the
OWASP Testing Guide [OWASP-TLS], a rating guide [SSL-RATING], and tools to automate the
tests, such as sslaudit [SSLAUDIT].

When it comes to the client security, things are less advanced. Sslsniff [SSLSNIFF] attacking tool is
probably the most interesting effort in this direction. A recent Blackhat presentation [BH-SSL-
TTRUST] focuses on security issues introduced by SSL-aware proxies and describes common
implementation flaws in SSL clients. The authors of that presentation have published an on-line
testing service [SSLTEST] suitable for testing web browsers.

 3 WHAT WE TEST FOR
The goal of sslcaudit project is to develop a utility to automate testing SSL/TLS clients for
resistance against MITM attacks, focusing on flaws exploitable in practice. On the high level
sslcaudit tests:

• what server certificates the client trusts enough to establish SSL/TLS connection,
• what flavors of SSL protocol the client supports (coming in sslcaudit v1.1).

In general, a correctly implemented SSL/TLS client exhibits the following testable behavior.
Related to the server certificate validation:
C1 Rejects self-signed certificates,

certificates not signed by a trusted CA
In practice a failure to implement C1, C2, or C3 is
the most dangerous and allows for a straightforward
MITM attack.

C2 Validates basic constraints of
intermediate CAs

C3 Only accepts server certificate with CN
matching the intended destination

C4 Does not accept expired certificates To abuse an expired certificate an attacker being able
to obtain a legitimate, but expired or revoked

 Page 4 of 13

Sslcaudit 1.0 User Guide

certificate for the server or an intermediate/root CA
trusted by the client. Under normal circumstance this
is not possible for MITM attacker.

C5 Does not accept revoked certificates Majority of SSL/TLS clients do not support
CRL/OSCP support by design.

C6 Do not be fooled by NUL-character in
CN.

To exploit C5 a valid certificate with NUL-byte in
CN is needed. According to author's knowledge,
nowadays public CAs do not issue such certificates.

Testable behavior related to SSL/TLS protocol support:
P1 Do not support SSLv2 (version/cipher

downgrade)
The failure to implement P1 leads to theoretical
possibility of cipher downgrade attacks. To author's
knowledge practical exploitation is very tricky, there
is no free or commercial tool for it.

P2 Do not support SSL and TLS 1.0 (CBC
attack)

An attack leading to cookie theft in web browsers
was demonstrated [BS-BEAST]. It has a prerequisite
of an attacker being able to inject a malicious
JavaScript code into victim's browser. According to
author's knowledge the attack is generally not
applicable to applications using SSL/TLS to
machine-to-machine communication.

P3 Do not support weak key exchange
protocols, low key lengths, low ciphers
strengths

If strong ciphers are supported by the peers, the
presence of weak ones is only exploitable via cipher
downgrade attack.

Testing for C1, C2, C3 (chain of trust, CN mismatch) are already implemented in sslcaudit v1.0.
Protocol-level tests will come in v1.1. C4, C5, C6 appear to have lower practical interest and might
be implemented in later versions.

More specifically, sslcaudit uses the following algorighm to generate test server certificates.

If user has supplied a certificate via –user-cert/--user-key options,
• sslcaudit tries to use the user-supplied certificate as is,

Next, sslcaudit generates certificate requests with the following properties:
• default hardcoded CN (www.example.com), unless disabled by --no-default-cn
• user-specified CN, if supplied via --user-cn
• matching attributes of a certificate fetched from user-specified SSL/TLS server, if set by

--server HOST:PORT option

Each certificate request gets signed in the following ways:
• self-signed, unless --no-self-signed is specified
• signed by the user-supplied certificate, to disable use --no-user-cert-signed
• signed by the user-supplied CA (--user-ca-cert / --user-ca-key)
• signed by the user-supplied CA with an intermediate CA

 Page 5 of 13

Sslcaudit 1.0 User Guide

◦ without basicConstraints
◦ with basicConstraints CA:FALSE
◦ with basicConstraints CA:TRUE

This way, sslcaudit will treat clients with up to 19 specially crafted certificates.

 4 WHAT WE DO NOT TEST FOR
• Testing for protocol version and cipher support will come in v1.1. The functionality will be

similar to sslaudit [SSLAUDIT], but backwards.
• "SSL 3.0/TLS 1.0 renegotiation attack" [TLS-RENEG]
• [OSCP-ATTACK], reportedly implemented by ssnsliff. Will be implemented in the future

versions.

 5 HOW TO USE THE TOOL

 5.1 Installation and dependencies

There is no proper installation procedure yet (Debian package and distutils-based Python installer
are coming soon). For now just fetch the release from GIT repository:

$ git clone -b release_1_0 https://github.com/grwl/sslcaudit.git
Cloning into sslcaudit...

Then find sslcaudit in the top level directory and run it with -h option. To terminate press Ctrl-C.

Sslcaudit uses M2Crypto Python library. If it is not installed, you might see following:
abb@e6510:~/dvp/sslcaudit$./sslcaudit
Failed to load M2Crypto: No module named M2Crypto

Sslcaudit requires M2Crypto library. Please install your OS package or see
website http://chandlerproject.org/bin/view/Projects/MeTooCrypto.

On Debian-based systems M2Crypto library can be installed with the following command:
$ sudo apt-get install python-m2crypto

 5.2 Network and client setup
To use sslcaudit, a penetration tester has to convince the client under test to establish a series of
connections to the listener of sslcaudit. Relevant TCP connections are supposed to be redirected to
the local listener created by sslcaudit. This can be done in number of ways, for example by
changing hosts file on the client under test or using Marvin [MARVIN]. The matter of connection
redirection is outside of the scope of this document.

 Page 6 of 13

https://github.com/grwl/sslcaudit.git

Sslcaudit 1.0 User Guide

Sslcaudit plays a role of a rogue SSL/TLS server, presenting the client with various certificates and
logging the outcome of the tests.

For best test coverage sslcaudit should be provided with additional information:

1. If possible, a user-controlled CA should be added to the list of CAs trusted by the client
under test. Certificate and a key of that CA should be passed to sslcaudit. This will allow for
generation of the widest range of certificates and perform all relevant tests and validation of
the test setup.

2. If it is not possible to add a custom CA into the list of CAs trusted by the client, try to get
hold of any valid non-CA certificate (and its private key) issued by CA trusted by the client.
If such a certificate is passed to sslcaudit via --user-cert/--user-key, it will be used to produce
certificates used for basicConstraints validation exercise.

3. Sslcaudit should be provided with CN of the server the client communicates with. It can be
given explicitly via --user-cn option, or by specifying the server address and port with
--server option. In the latter case sslcaudit will try to fetch certificate information from the
server.

Sslcaudit does not (yet) do any risk assessment. Instead it displays information about what
certificate configurations have been tried and how the client has been behaving. It is up to the user
to make conclusions, which are obvious in most cases anyway.

Below we will consider four examples showing how sslcaudit helps testing the behavior of SSL
clients.

 5.3 Test if client trusts an arbitrary self-
signed certificate (example 1)
Open two terminal windows, run sslcaudit in one of them.
$./sslcaudit

When launched sslcaudit starts listening on all interfaces on port 8443.

In another terminal let's run openssl to connect to sslcaudit.
$ openssl s_client -connect localhost:8443
CONNECTED(00000003)
depth=0 /CN=www.example.com/C=BE/O=Gremwell bvba
verify error:num=18:self signed certificate
verify return:1
depth=0 /CN=www.example.com/C=BE/O=Gremwell bvba
verify return:1

In the first terminal you will see a the result of the test.
$./sslcaudit
127.0.0.1:38849 selfsigned(www.example.com) connected, read timeout (in 3.0s)

The output says:
• a connection was received from 127.0.0.1:38849
• the connection was handled with a self-signed certificate with CN=www.example.com

 Page 7 of 13

Sslcaudit 1.0 User Guide

• SSL connection was established successfully, but client has sent no data in 3 sec

The client establishes SSL session with a server presenting a self-signed certificate and does not
close it immediately. It appears the client verifies nothing at all and therefore vulnerable to MITM
attack.

 5.4 Test if client trusts an arbitrary self-
signed certificate (example 2)
Now do the same as above, but use socat instead of openssl. Socat validates server certificates by
default and will not connect to an arbitrary peer. Now run sslaudit as in the previous example, then
start socat:
$ socat - OPENSSL:localhost:8443
2012/05/01 10:50:50 socat[18692] E SSL_connect(): error:14090086:SSL
routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed

On the side of sslcaudit we will see:
127.0.0.1:38889 selfsigned(www.example.com) tlsv1 alert unknown ca

Again:
• a connection was received from 127.0.0.1:38889
• the connection was handled with a self-signed certificate with CN=www.example.com
• SSL connection setup has failed

The client refuses connecting to the server presenting self-signed certificate for an arbitrary CN.
Based on this we can only conclude that the client is not completely broken and refuses connecting
to obviously insecure server.

Let's assume we cannot tamper with client's list of trusted CAs nor find any certificate issued by a
CA already trusted by the client. One thing we should do under the circumstances is point sslcaudit
towards the real server and let it mimic server's certificate. Connecting with socat again, but now
run it in an infinite loop:
$ while true ; do socat - OPENSSL:localhost:8443; sleep .5; done

The following appears on the side of sslcaudit:
$./sslcaudit --server 62.213.200.252:443
...
127.0.0.1:41264 selfsigned(www.example.com) tlsv1 alert unknown ca
127.0.0.1:41265 selfsigned(brufeprd1.hackingmachines.com) tlsv1 alert unknown ca

We can see that the client rejects self-signed certificate even if its subject matches the one fetched
from the server. So far there are no evidences of an insecure behavior. Still no tests done confirming
the client does proper basicConstraints validation.

 Page 8 of 13

Sslcaudit 1.0 User Guide

 5.5 Re-purpose a certificate (example 3)
If we don't have a chance to alter the list of CAs trusted by the client, there is only one additional
thing we can do: supply sslcaudit with some certificate issued by CA already trusted by the client. If
such a certificate is passed to sslcaudit (via --user-cert/--user-key), it will be used to produce
certificates for basicConstraints validation exercises.

To simulate client we use socat again, but pass extra parameter to make it trust CA which has issued
the certificate.
$ while true ; do socat - OPENSSL:localhost:8443,cafile=test/certs/test-ca-cacert.pem ;
sleep .5; done

Running sslcaudit, passing it the certificate and the key:
$./sslcaudit --server 62.213.200.252:443 \

--user-cert test/certs/www.example.com-cert.pem
--user-key test/certs/www.example.com-key.pem

127.0.0.1:41764 user-supplied(www.example.com) connected, read timeout (in 3.0s)
127.0.0.1:41765 selfsigned(www.example.com) tlsv1 alert unknown ca
127.0.0.1:41766 selfsigned(brufeprd1.hackingmachines.com) tlsv1 alert unknown ca
127.0.0.1:41767 signed1(www.example.com, www.example.com) tlsv1 alert unknown ca
127.0.0.1:41768 signed1(brufeprd1.hackingmachines.com, www.example.com)
 tlsv1 alert unknown ca

The result of the first test indicates the client has established connection and didn't close it right
away. This suggests that the client validates CA, but does ignores CN mismatch. This weakness is
exploitable if an attacker can get hold of a certificate (and private key) issued by any CA trusted by
the client.

The last two lines correspond to attempts to produce a certificate by signing it with user-supplied
certificate. The client under test has rejected those certificates, which suggests the client validates
basicConstraints of the certificate in the chain of trust.

 5.6 Tests with user-supplied CA (example 4)
As mentioned earlier, for most comprehensive testing it is necessary to add test CA to the client
configuration. Here we assume it was done and CA certificate (test/certs/test-ca-cacert.pem) is
already added to the list of CAs trusted by the client.

To simulate client side we will use socat again.
$ while true ; do socat - OPENSSL:localhost:8443,cafile=test/certs/test-ca-cacert.pem ;
sleep .5; done

$./sslcaudit --server 62.213.200.252:443 \
--user-ca-cert test/certs/test-ca-cacert.pem \
--user-ca-key test/certs/test-ca-cakey.pem

127.0.0.1:41907 selfsigned(www.example.com) tlsv1 alert unknown ca
127.0.0.1:41908 selfsigned(brufeprd1.hackingmachines.com) tlsv1 alert unknown ca
127.0.0.1:41909 signed1(www.example.com, test-ca) connected, read timeout (in 3.0s)
127.0.0.1:41911 signed1(brufeprd1.hackingmachines.com, test-ca)
 connected, read timeout (in 3.0s)
127.0.0.1:41912 signed2(www.example.com, ca-none, test-ca) tlsv1 alert unknown ca
127.0.0.1:41913 signed2(www.example.com, ca-false, test-ca) tlsv1 alert unknown ca

 Page 9 of 13

Sslcaudit 1.0 User Guide

127.0.0.1:41914 signed2(www.example.com, ca-true, test-ca)
 connected, read timeout (in 3.0s)
127.0.0.1:41916 signed2(brufeprd1.hackingmachines.com, ca-none, test-ca)
 tlsv1 alert unknown ca
127.0.0.1:41917 signed2(brufeprd1.hackingmachines.com, ca-false, test-ca)
 tlsv1 alert unknown ca
127.0.0.1:41918 signed2(brufeprd1.hackingmachines.com, ca-true, test-ca)
 connected, read timeout (in 3.0s)

From the output of sslcaudit above it is apparent that the client properly validates the trust of chain,
but accepts certificate with any CN. This is consistent with what is expected from socat.
Additionally this proves that sslcaudit produces well formatted “trustable” certificates.

 5.7 Tests with user-supplied CA (example 5)
Finally we repeat the last test, but against a proper SSL client, curl, invoked as following:

$ while true ; do curl --cacert test/certs/test-ca-cacert.pem https://localhost:8443/ ;
sleep .5 ; done

Now we run sslcaudit. Here we assume we somehow know what CN the client expects and specify
it directly via --user-cn parameter.
$./sslcaudit --user-cn localhost \

--user-ca-cert test/certs/test-ca-cacert.pem \
--user-ca-key test/certs/test-ca-cakey.pem

127.0.0.1:42028 selfsigned(www.example.com) tlsv1 alert unknown ca
127.0.0.1:42029 selfsigned(localhost) tlsv1 alert unknown ca
127.0.0.1:42030 signed1(www.example.com, test-ca)
 connected, EOF before timeout (in 0.001s)
127.0.0.1:42031 signed1(localhost, test-ca) connected, got 155 octets in 0.0s
127.0.0.1:42032 signed2(www.example.com, ca-none, test-ca) tlsv1 alert unknown ca
127.0.0.1:42033 signed2(www.example.com, ca-false, test-ca) tlsv1 alert unknown ca
127.0.0.1:42034 signed2(www.example.com, ca-true, test-ca)
 connected, EOF before timeout (in 0.001s)
127.0.0.1:42035 signed2(localhost, ca-none, test-ca) tlsv1 alert unknown ca
127.0.0.1:42036 signed2(localhost, ca-false, test-ca) tlsv1 alert unknown ca
127.0.0.1:42037 signed2(localhost, ca-true, test-ca) connected, got 155 octets in 0.0s

Here we can see that the client only establishes connection with servers having certificate signed by
a trusted CA. Self-signed certificates and certificate signed by an intermediate CA with unsafe
basicConstraints are rejected. Also, the client closes the connection right away if there is a CN
mismatch.

This kind of output in general means that server certificate validation is implemented correctly.
(The behavior of the client towards servers with an expired certificate or a certificate with NUL-
characters in CN remains untested.)

 6 SUPPORTED SYSTEMS
Sslcaudit is written in Python. It is tested on Python 2.7. Requires M2Crypto
(http://chandlerproject.org/bin/view/Projects/MeTooCrypto) library which provides binding to OpenSSL.

It is developed and tested on Ubuntu Natty 11.04, with stock python-m2crypto-0.20.1-1ubuntu5 package

 Page 10 of 13

http://chandlerproject.org/bin/view/Projects/MeTooCrypto

Sslcaudit 1.0 User Guide

installed. Partially tested on BackTrack 5 R2.

OpenSSL library shipped with recent Linux distributions does not support SSLv2. This does not affect this
version of sslcaudit. The next version of sslcaudit will feature protocol level tests and will require OpenSSL
library supporting SSLv2.

 7 COMMAND LINE PARAMETERS
$./sslcaudit -h
Usage: sslcaudit [OPTIONS]

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -l LISTEN_ON Specify IP address and TCP PORT to listen on, in
 format of HOST:PORT. Default is 0.0.0.0:8443
 -m MODULES Launch specific modules. For now the only functional
 module is 'sslcert'. There is also 'dummy' module used
 for internal testing or as a template code for new
 modules. Default is sslcert
 -v VERBOSE Increase verbosity level. Default is 0. Try 1.
 -d DEBUG_LEVEL Set debug level. Default is 0, which disables
 debugging output. Try 1 to enable it.
 -c NCLIENTS Number of clients to handle before quitting. By
 default sslcaudit will quit as soon as it gets one
 client fully processed.
 -N TEST_NAME Set the name of the test. If specified will appear in
 the leftmost column in the output.
 -T SELF_TEST Launch self-test. 0 - plain TCP client, 1 - CN
 verifying client, 2 - curl.
 --user-cn=USER_CN Set user-specified CN.
 --server=SERVER Where to fetch the server certificate from, in
 HOST:PORT format.
 --user-cert=USER_CERT_FILE
 Set path to file containing the user-supplied
 certificate.
 --user-key=USER_KEY_FILE
 Set path to file containing the user-supplied key.
 --user-ca-cert=USER_CA_CERT_FILE
 Set path to file containing certificate for user-
 supplied CA.
 --user-ca-key=USER_CA_KEY_FILE
 Set path to file containing key for user-supplied CA.
 --no-default-cn Do not use default CN
 --no-self-signed Don't try self-signed certificates
 --no-user-cert-signed
 Do not sign server certificates with user-supplied one

 8 LICENSE AND AUTHORS
The tool is released under GPLv3 license.

Most of the sslcaudit code written by Alexandre Bezroutchko, abb@gremwell.com. Code handling
keyboard interrupts contributed by Raf Somers raf.somers@telenet.be.

 Page 11 of 13

mailto:raf.somers@telenet.be
mailto:abb@gremwell.com

Sslcaudit 1.0 User Guide

 9 SUPPORT
If you have a question, post it to the forum dedicated to sslcaudit support available . You can also
send an email to info@gremwell.com if your matter is confidential.

 10 ABOUT GREMWELL
Gremwell (http://www.gremwell.com/) offers security consulting services in the area of penetration
testing, ethical hacking, vulnerability assessments and security code and configuration reviews. We
are located in the neighbourhood of Brussels, and service clients in Belgium and abroad.
Gremwell's consultants have more than 10 years experience in IT security.

Gremwell develops MagicTree - a data management tool for penetration testers.

 Page 12 of 13

http://www.gremwell.com/what_is_magictree
http://www.gremwell.com/
mailto:info@gremwell.com

Sslcaudit 1.0 User Guide

 11 REFERENCES
SSL/TLS security - the server side
 [WIKI-TLS] http://en.wikipedia.org/wiki/Transport_Layer_Security
 [SCANIT-SSL] http://www.scanit.be/uploads/ssl%20security%20in%20be%20-%2003-2008.pdf
 [OWASP-TLS] https://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29
 [SSL-RATING] https://www.ssllabs.com/projects/rating-guide/index.html
 [SSLAUDIT] http://code.google.com/p/sslaudit/
 [TLS-RENEG] http://www.g-sec.lu/practicaltls.pdf

SSL/TLS security - the client side
 [SSLSNIFF] http://www.thoughtcrime.org/software/sslsniff/
 [SSLSTRIP] http://www.thoughtcrime.org/software/sslstrip/
 [BH-SSL-STRIP] http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-
Marlinspike-Defeating-SSL.pdf
 [BH-SSL-TTRUST] https://media.blackhat.com/bh-eu-12/Jarmoc/bh-eu-12-Jarmoc-
SSL_TLS_Interception-Slides.pdf
 [SSL-TTRUST] http://www.secureworks.com/research/threats/transitive-trust/
 [SSLTEST] https://ssltest.offenseindepth.com/
 [BS-BEAST] http://www.schneier.com/blog/archives/2011/09/man-in-the-midd_4.html
 [OPERA-BEAST] http://my.opera.com/securitygroup/blog/2011/09/28/the-beast-ssl-tls-issue
 [OSCP-ATTACK] http://www.thoughtcrime.org/papers/ocsp-attack.pdf

IE5 SSL Spoofing vulnerability
 [IE-SSL-CHAIN] http://www.thoughtcrime.org/ie-ssl-chain.txt
 [BID-2737] http://www.securityfocus.com/bid/2737
 [MS01-027] http://technet.microsoft.com/en-us/security/bulletin/ms01-027

Multiple Vendor Invalid X.509 Certificate Chain Vulnerability
 [BID-5410] http://www.securityfocus.com/bid/5410

Apple iOS Data Security Certificate Chain Validation Security Vulnerability
 [TWSL2011-007] https://www.trustwave.com/spiderlabs/advisories/TWSL2011-007.txt
 [CVE-2011-0228] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0228

[MARVIN] http://www.gremwell.com/marvin-mitm-tapping-dot1x-links

 Page 13 of 13

http://www.gremwell.com/marvin-mitm-tapping-dot1x-links
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0228
https://www.trustwave.com/spiderlabs/advisories/TWSL2011-007.txt
http://www.securityfocus.com/bid/5410
http://technet.microsoft.com/en-us/security/bulletin/ms01-027
http://www.securityfocus.com/bid/2737
http://www.thoughtcrime.org/ie-ssl-chain.txt
http://www.thoughtcrime.org/papers/ocsp-attack.pdf
http://my.opera.com/securitygroup/blog/2011/09/28/the-beast-ssl-tls-issue
http://www.schneier.com/blog/archives/2011/09/man-in-the-midd_4.html
https://ssltest.offenseindepth.com/
http://www.secureworks.com/research/threats/transitive-trust/
https://media.blackhat.com/bh-eu-12/Jarmoc/bh-eu-12-Jarmoc-SSL_TLS_Interception-Slides.pdf
https://media.blackhat.com/bh-eu-12/Jarmoc/bh-eu-12-Jarmoc-SSL_TLS_Interception-Slides.pdf
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://www.thoughtcrime.org/software/sslstrip/
http://www.thoughtcrime.org/software/sslsniff/
http://www.g-sec.lu/practicaltls.pdf
http://code.google.com/p/sslaudit/
https://www.ssllabs.com/projects/rating-guide/index.html
https://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)
http://www.scanit.be/uploads/ssl%20security%20in%20be%20-%2003-2008.pdf
http://en.wikipedia.org/wiki/Transport_Layer_Security

	1 INTRODUCTION
	2 BACKGROUND INFORMATION
	3 WHAT WE TEST FOR
	4 WHAT WE DO NOT TEST FOR
	5 HOW TO USE THE TOOL
	5.1 Installation and dependencies
	5.2 Network and client setup
	5.3 Test if client trusts an arbitrary self-signed certificate (example 1)
	5.4 Test if client trusts an arbitrary self-signed certificate (example 2)
	5.5 Re-purpose a certificate (example 3)
	5.6 Tests with user-supplied CA (example 4)
	5.7 Tests with user-supplied CA (example 5)

	6 SUPPORTED SYSTEMS
	7 COMMAND LINE PARAMETERS
	8 LICENSE AND AUTHORS
	9 SUPPORT
	10 ABOUT GREMWELL
	11 REFERENCES

