Actual source code: test2.c
slepc-3.11.2 2019-07-30
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2019, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test ST with one matrix.\n\n";
13: #include <slepcst.h>
15: int main(int argc,char **argv)
16: {
17: Mat A,B,mat[1];
18: ST st;
19: Vec v,w;
20: STType type;
21: PetscScalar sigma,tau;
22: PetscInt n=10,i,Istart,Iend;
25: SlepcInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
26: PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
27: PetscPrintf(PETSC_COMM_WORLD,"\n1-D Laplacian, n=%D\n\n",n);
29: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
30: Compute the operator matrix for the 1-D Laplacian
31: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
33: MatCreate(PETSC_COMM_WORLD,&A);
34: MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n);
35: MatSetFromOptions(A);
36: MatSetUp(A);
38: MatGetOwnershipRange(A,&Istart,&Iend);
39: for (i=Istart;i<Iend;i++) {
40: if (i>0) { MatSetValue(A,i,i-1,-1.0,INSERT_VALUES); }
41: if (i<n-1) { MatSetValue(A,i,i+1,-1.0,INSERT_VALUES); }
42: MatSetValue(A,i,i,2.0,INSERT_VALUES);
43: }
44: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
45: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
46: MatCreateVecs(A,&v,&w);
47: VecSet(v,1.0);
49: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
50: Create the spectral transformation object
51: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
53: STCreate(PETSC_COMM_WORLD,&st);
54: mat[0] = A;
55: STSetMatrices(st,1,mat);
56: STSetTransform(st,PETSC_TRUE);
57: STSetFromOptions(st);
59: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
60: Apply the transformed operator for several ST's
61: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
63: /* shift, sigma=0.0 */
64: STSetUp(st);
65: STGetType(st,&type);
66: PetscPrintf(PETSC_COMM_WORLD,"ST type %s\n",type);
67: STApply(st,v,w);
68: VecView(w,NULL);
70: /* shift, sigma=0.1 */
71: sigma = 0.1;
72: STSetShift(st,sigma);
73: STGetShift(st,&sigma);
74: PetscPrintf(PETSC_COMM_WORLD,"With shift=%g\n",(double)PetscRealPart(sigma));
75: STApply(st,v,w);
76: VecView(w,NULL);
77: STApplyTranspose(st,v,w);
78: VecView(w,NULL);
80: /* sinvert, sigma=0.1 */
81: STPostSolve(st); /* undo changes if inplace */
82: STSetType(st,STSINVERT);
83: STGetType(st,&type);
84: PetscPrintf(PETSC_COMM_WORLD,"ST type %s\n",type);
85: STGetShift(st,&sigma);
86: PetscPrintf(PETSC_COMM_WORLD,"With shift=%g\n",(double)PetscRealPart(sigma));
87: STApply(st,v,w);
88: VecView(w,NULL);
90: /* sinvert, sigma=-0.5 */
91: sigma = -0.5;
92: STSetShift(st,sigma);
93: STGetShift(st,&sigma);
94: PetscPrintf(PETSC_COMM_WORLD,"With shift=%g\n",(double)PetscRealPart(sigma));
95: STApply(st,v,w);
96: VecView(w,NULL);
98: /* cayley, sigma=-0.5, tau=-0.5 (equal to sigma by default) */
99: STPostSolve(st); /* undo changes if inplace */
100: STSetType(st,STCAYLEY);
101: STSetUp(st);
102: STGetType(st,&type);
103: PetscPrintf(PETSC_COMM_WORLD,"ST type %s\n",type);
104: STGetShift(st,&sigma);
105: STCayleyGetAntishift(st,&tau);
106: PetscPrintf(PETSC_COMM_WORLD,"With shift=%g, antishift=%g\n",(double)PetscRealPart(sigma),(double)PetscRealPart(tau));
107: STApply(st,v,w);
108: VecView(w,NULL);
110: /* cayley, sigma=1.1, tau=1.1 (still equal to sigma) */
111: sigma = 1.1;
112: STSetShift(st,sigma);
113: STGetShift(st,&sigma);
114: STCayleyGetAntishift(st,&tau);
115: PetscPrintf(PETSC_COMM_WORLD,"With shift=%g, antishift=%g\n",(double)PetscRealPart(sigma),(double)PetscRealPart(tau));
116: STApply(st,v,w);
117: VecView(w,NULL);
119: /* cayley, sigma=1.1, tau=-1.0 */
120: tau = -1.0;
121: STCayleySetAntishift(st,tau);
122: STGetShift(st,&sigma);
123: STCayleyGetAntishift(st,&tau);
124: PetscPrintf(PETSC_COMM_WORLD,"With shift=%g, antishift=%g\n",(double)PetscRealPart(sigma),(double)PetscRealPart(tau));
125: STApply(st,v,w);
126: VecView(w,NULL);
128: /* check inner product matrix in Cayley */
129: STGetBilinearForm(st,&B);
130: MatMult(B,v,w);
131: VecView(w,NULL);
133: /* check again sinvert, sigma=0.1 */
134: STPostSolve(st); /* undo changes if inplace */
135: STSetType(st,STSINVERT);
136: STGetType(st,&type);
137: PetscPrintf(PETSC_COMM_WORLD,"ST type %s\n",type);
138: sigma = 0.1;
139: STSetShift(st,sigma);
140: STGetShift(st,&sigma);
141: PetscPrintf(PETSC_COMM_WORLD,"With shift=%g\n",(double)PetscRealPart(sigma));
142: STApply(st,v,w);
143: VecView(w,NULL);
145: STDestroy(&st);
146: MatDestroy(&A);
147: MatDestroy(&B);
148: VecDestroy(&v);
149: VecDestroy(&w);
150: SlepcFinalize();
151: return ierr;
152: }
154: /*TEST
156: test:
157: suffix: 1
158: args: -st_matmode {{copy inplace shell}}
159: output_file: output/test2_1.out
160: requires: !single
162: TEST*/