Actual source code: ex11.c
slepc-3.11.2 2019-07-30
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2019, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Computes the smallest nonzero eigenvalue of the Laplacian of a graph.\n\n"
12: "This example illustrates EPSSetDeflationSpace(). The example graph corresponds to a "
13: "2-D regular mesh. The command line options are:\n"
14: " -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
15: " -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
17: #include <slepceps.h>
19: int main (int argc,char **argv)
20: {
21: EPS eps; /* eigenproblem solver context */
22: Mat A; /* operator matrix */
23: Vec x;
24: EPSType type;
25: PetscInt N,n=10,m,i,j,II,Istart,Iend,nev;
26: PetscScalar w;
27: PetscBool flag,terse;
30: SlepcInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
32: PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
33: PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag);
34: if (!flag) m=n;
35: N = n*m;
36: PetscPrintf(PETSC_COMM_WORLD,"\nFiedler vector of a 2-D regular mesh, N=%D (%Dx%D grid)\n\n",N,n,m);
38: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
39: Compute the operator matrix that defines the eigensystem, Ax=kx
40: In this example, A = L(G), where L is the Laplacian of graph G, i.e.
41: Lii = degree of node i, Lij = -1 if edge (i,j) exists in G
42: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
44: MatCreate(PETSC_COMM_WORLD,&A);
45: MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N);
46: MatSetFromOptions(A);
47: MatSetUp(A);
49: MatGetOwnershipRange(A,&Istart,&Iend);
50: for (II=Istart;II<Iend;II++) {
51: i = II/n; j = II-i*n;
52: w = 0.0;
53: if (i>0) { MatSetValue(A,II,II-n,-1.0,INSERT_VALUES); w=w+1.0; }
54: if (i<m-1) { MatSetValue(A,II,II+n,-1.0,INSERT_VALUES); w=w+1.0; }
55: if (j>0) { MatSetValue(A,II,II-1,-1.0,INSERT_VALUES); w=w+1.0; }
56: if (j<n-1) { MatSetValue(A,II,II+1,-1.0,INSERT_VALUES); w=w+1.0; }
57: MatSetValue(A,II,II,w,INSERT_VALUES);
58: }
60: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
61: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
63: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
64: Create the eigensolver and set various options
65: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
67: /*
68: Create eigensolver context
69: */
70: EPSCreate(PETSC_COMM_WORLD,&eps);
72: /*
73: Set operators. In this case, it is a standard eigenvalue problem
74: */
75: EPSSetOperators(eps,A,NULL);
76: EPSSetProblemType(eps,EPS_HEP);
78: /*
79: Select portion of spectrum
80: */
81: EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL);
83: /*
84: Set solver parameters at runtime
85: */
86: EPSSetFromOptions(eps);
88: /*
89: Attach deflation space: in this case, the matrix has a constant
90: nullspace, [1 1 ... 1]^T is the eigenvector of the zero eigenvalue
91: */
92: MatCreateVecs(A,&x,NULL);
93: VecSet(x,1.0);
94: EPSSetDeflationSpace(eps,1,&x);
95: VecDestroy(&x);
97: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
98: Solve the eigensystem
99: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
101: EPSSolve(eps);
103: /*
104: Optional: Get some information from the solver and display it
105: */
106: EPSGetType(eps,&type);
107: PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type);
108: EPSGetDimensions(eps,&nev,NULL,NULL);
109: PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %D\n",nev);
111: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
112: Display solution and clean up
113: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
115: /* show detailed info unless -terse option is given by user */
116: PetscOptionsHasName(NULL,NULL,"-terse",&terse);
117: if (terse) {
118: EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL);
119: } else {
120: PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL);
121: EPSReasonView(eps,PETSC_VIEWER_STDOUT_WORLD);
122: EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD);
123: PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);
124: }
125: EPSDestroy(&eps);
126: MatDestroy(&A);
127: SlepcFinalize();
128: return ierr;
129: }
131: /*TEST
133: testset:
134: args: -eps_nev 4 -terse
135: requires: !single
136: output_file: output/ex11_1.out
137: test:
138: suffix: 1
139: args: -eps_krylovschur_restart .2
140: test:
141: suffix: 2
142: args: -eps_ncv 20 -eps_target 0 -st_type sinvert -st_ksp_type cg -st_pc_type jacobi
144: TEST*/