Actual source code: test3.c

slepc-3.11.2 2019-07-30
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2019, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Test ST with two matrices.\n\n";

 13: #include <slepcst.h>

 15: int main(int argc,char **argv)
 16: {
 17:   Mat            A,B,M,mat[2];
 18:   ST             st;
 19:   Vec            v,w;
 20:   STType         type;
 21:   PetscScalar    sigma,tau;
 22:   PetscInt       n=10,i,Istart,Iend;

 25:   SlepcInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
 26:   PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
 27:   PetscPrintf(PETSC_COMM_WORLD,"\n1-D Laplacian plus diagonal, n=%D\n\n",n);

 29:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 30:      Compute the operator matrix for the 1-D Laplacian
 31:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 33:   MatCreate(PETSC_COMM_WORLD,&A);
 34:   MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n);
 35:   MatSetFromOptions(A);
 36:   MatSetUp(A);

 38:   MatCreate(PETSC_COMM_WORLD,&B);
 39:   MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,n,n);
 40:   MatSetFromOptions(B);
 41:   MatSetUp(B);

 43:   MatGetOwnershipRange(A,&Istart,&Iend);
 44:   for (i=Istart;i<Iend;i++) {
 45:     MatSetValue(A,i,i,2.0,INSERT_VALUES);
 46:     if (i>0) {
 47:       MatSetValue(A,i,i-1,-1.0,INSERT_VALUES);
 48:       MatSetValue(B,i,i,(PetscScalar)i,INSERT_VALUES);
 49:     } else {
 50:       MatSetValue(B,i,i,-1.0,INSERT_VALUES);
 51:     }
 52:     if (i<n-1) { MatSetValue(A,i,i+1,-1.0,INSERT_VALUES); }
 53:   }
 54:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
 55:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
 56:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
 57:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
 58:   MatCreateVecs(A,&v,&w);
 59:   VecSet(v,1.0);

 61:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 62:                 Create the spectral transformation object
 63:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 65:   STCreate(PETSC_COMM_WORLD,&st);
 66:   mat[0] = A;
 67:   mat[1] = B;
 68:   STSetMatrices(st,2,mat);
 69:   STSetTransform(st,PETSC_TRUE);
 70:   STSetFromOptions(st);

 72:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 73:               Apply the transformed operator for several ST's
 74:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 76:   /* shift, sigma=0.0 */
 77:   STSetUp(st);
 78:   STGetType(st,&type);
 79:   PetscPrintf(PETSC_COMM_WORLD,"ST type %s\n",type);
 80:   STApply(st,v,w);
 81:   VecView(w,NULL);

 83:   /* shift, sigma=0.1 */
 84:   sigma = 0.1;
 85:   STSetShift(st,sigma);
 86:   STGetShift(st,&sigma);
 87:   PetscPrintf(PETSC_COMM_WORLD,"With shift=%g\n",(double)PetscRealPart(sigma));
 88:   STApply(st,v,w);
 89:   VecView(w,NULL);

 91:   /* sinvert, sigma=0.1 */
 92:   STPostSolve(st);   /* undo changes if inplace */
 93:   STSetType(st,STSINVERT);
 94:   STGetType(st,&type);
 95:   PetscPrintf(PETSC_COMM_WORLD,"ST type %s\n",type);
 96:   STGetShift(st,&sigma);
 97:   PetscPrintf(PETSC_COMM_WORLD,"With shift=%g\n",(double)PetscRealPart(sigma));
 98:   STApply(st,v,w);
 99:   VecView(w,NULL);

101:   /* sinvert, sigma=-0.5 */
102:   sigma = -0.5;
103:   STSetShift(st,sigma);
104:   STGetShift(st,&sigma);
105:   PetscPrintf(PETSC_COMM_WORLD,"With shift=%g\n",(double)PetscRealPart(sigma));
106:   STApply(st,v,w);
107:   VecView(w,NULL);

109:   /* cayley, sigma=-0.5, tau=-0.5 (equal to sigma by default) */
110:   STPostSolve(st);   /* undo changes if inplace */
111:   STSetType(st,STCAYLEY);
112:   STSetUp(st);
113:   STGetType(st,&type);
114:   PetscPrintf(PETSC_COMM_WORLD,"ST type %s\n",type);
115:   STGetShift(st,&sigma);
116:   STCayleyGetAntishift(st,&tau);
117:   PetscPrintf(PETSC_COMM_WORLD,"With shift=%g, antishift=%g\n",(double)PetscRealPart(sigma),(double)PetscRealPart(tau));
118:   STApply(st,v,w);
119:   VecView(w,NULL);

121:   /* cayley, sigma=1.1, tau=1.1 (still equal to sigma) */
122:   sigma = 1.1;
123:   STSetShift(st,sigma);
124:   STGetShift(st,&sigma);
125:   STCayleyGetAntishift(st,&tau);
126:   PetscPrintf(PETSC_COMM_WORLD,"With shift=%g, antishift=%g\n",(double)PetscRealPart(sigma),(double)PetscRealPart(tau));
127:   STApply(st,v,w);
128:   VecView(w,NULL);

130:   /* cayley, sigma=1.1, tau=-1.0 */
131:   tau = -1.0;
132:   STCayleySetAntishift(st,tau);
133:   STGetShift(st,&sigma);
134:   STCayleyGetAntishift(st,&tau);
135:   PetscPrintf(PETSC_COMM_WORLD,"With shift=%g, antishift=%g\n",(double)PetscRealPart(sigma),(double)PetscRealPart(tau));
136:   STApply(st,v,w);
137:   VecView(w,NULL);

139:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
140:                   Check inner product matrix in Cayley
141:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
142:   STGetBilinearForm(st,&M);
143:   MatMult(M,v,w);
144:   VecView(w,NULL);

146:   STDestroy(&st);
147:   MatDestroy(&A);
148:   MatDestroy(&B);
149:   MatDestroy(&M);
150:   VecDestroy(&v);
151:   VecDestroy(&w);
152:   SlepcFinalize();
153:   return ierr;
154: }

156: /*TEST

158:    test:
159:       suffix: 1
160:       args: -st_matmode {{copy inplace shell}}
161:       output_file: output/test3_1.out
162:       requires: !single

164: TEST*/