Actual source code: ex30.c
slepc-3.11.2 2019-07-30
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2019, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Illustrates the use of a region for filtering; the number of wanted eigenvalues in not known a priori.\n\n"
12: "The problem is the Brusselator wave model as in ex9.c.\n"
13: "The command line options are:\n"
14: " -n <n>, where <n> = block dimension of the 2x2 block matrix.\n"
15: " -L <L>, where <L> = bifurcation parameter.\n"
16: " -alpha <alpha>, -beta <beta>, -delta1 <delta1>, -delta2 <delta2>,\n"
17: " where <alpha> <beta> <delta1> <delta2> = model parameters.\n\n";
19: #include <slepceps.h>
21: /*
22: This example tries to compute all eigenvalues lying outside the real axis.
23: This could be achieved by computing LARGEST_IMAGINARY eigenvalues, but
24: here we take a different route: define a region of the complex plane where
25: eigenvalues must be emphasized (eigenvalues outside the region are filtered
26: out). In this case, we select the region as the complement of a thin stripe
27: around the real axis.
28: */
30: PetscErrorCode MatMult_Brussel(Mat,Vec,Vec);
31: PetscErrorCode MatGetDiagonal_Brussel(Mat,Vec);
32: PetscErrorCode MyStoppingTest(EPS,PetscInt,PetscInt,PetscInt,PetscInt,EPSConvergedReason*,void*);
34: typedef struct {
35: Mat T;
36: Vec x1,x2,y1,y2;
37: PetscScalar alpha,beta,tau1,tau2,sigma;
38: PetscInt lastnconv; /* last value of nconv; used in stopping test */
39: PetscInt nreps; /* number of repetitions of nconv; used in stopping test */
40: } CTX_BRUSSEL;
42: int main(int argc,char **argv)
43: {
44: Mat A; /* eigenvalue problem matrix */
45: EPS eps; /* eigenproblem solver context */
46: RG rg; /* region object */
47: PetscScalar delta1,delta2,L,h;
48: PetscInt N=30,n,i,Istart,Iend,mpd;
49: CTX_BRUSSEL *ctx;
50: PetscBool terse;
51: PetscViewer viewer;
54: SlepcInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
56: PetscOptionsGetInt(NULL,NULL,"-n",&N,NULL);
57: PetscPrintf(PETSC_COMM_WORLD,"\nBrusselator wave model, n=%D\n\n",N);
59: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
60: Generate the matrix
61: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
63: /*
64: Create shell matrix context and set default parameters
65: */
66: PetscNew(&ctx);
67: ctx->alpha = 2.0;
68: ctx->beta = 5.45;
69: delta1 = 0.008;
70: delta2 = 0.004;
71: L = 0.51302;
73: /*
74: Look the command line for user-provided parameters
75: */
76: PetscOptionsGetScalar(NULL,NULL,"-L",&L,NULL);
77: PetscOptionsGetScalar(NULL,NULL,"-alpha",&ctx->alpha,NULL);
78: PetscOptionsGetScalar(NULL,NULL,"-beta",&ctx->beta,NULL);
79: PetscOptionsGetScalar(NULL,NULL,"-delta1",&delta1,NULL);
80: PetscOptionsGetScalar(NULL,NULL,"-delta2",&delta2,NULL);
82: /*
83: Create matrix T
84: */
85: MatCreate(PETSC_COMM_WORLD,&ctx->T);
86: MatSetSizes(ctx->T,PETSC_DECIDE,PETSC_DECIDE,N,N);
87: MatSetFromOptions(ctx->T);
88: MatSetUp(ctx->T);
90: MatGetOwnershipRange(ctx->T,&Istart,&Iend);
91: for (i=Istart;i<Iend;i++) {
92: if (i>0) { MatSetValue(ctx->T,i,i-1,1.0,INSERT_VALUES); }
93: if (i<N-1) { MatSetValue(ctx->T,i,i+1,1.0,INSERT_VALUES); }
94: MatSetValue(ctx->T,i,i,-2.0,INSERT_VALUES);
95: }
96: MatAssemblyBegin(ctx->T,MAT_FINAL_ASSEMBLY);
97: MatAssemblyEnd(ctx->T,MAT_FINAL_ASSEMBLY);
98: MatGetLocalSize(ctx->T,&n,NULL);
100: /*
101: Fill the remaining information in the shell matrix context
102: and create auxiliary vectors
103: */
104: h = 1.0 / (PetscReal)(N+1);
105: ctx->tau1 = delta1 / ((h*L)*(h*L));
106: ctx->tau2 = delta2 / ((h*L)*(h*L));
107: ctx->sigma = 0.0;
108: VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->x1);
109: VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->x2);
110: VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->y1);
111: VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->y2);
113: /*
114: Create the shell matrix
115: */
116: MatCreateShell(PETSC_COMM_WORLD,2*n,2*n,2*N,2*N,(void*)ctx,&A);
117: MatShellSetOperation(A,MATOP_MULT,(void(*)(void))MatMult_Brussel);
118: MatShellSetOperation(A,MATOP_GET_DIAGONAL,(void(*)(void))MatGetDiagonal_Brussel);
120: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
121: Create the eigensolver and configure the region
122: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
124: EPSCreate(PETSC_COMM_WORLD,&eps);
125: EPSSetOperators(eps,A,NULL);
126: EPSSetProblemType(eps,EPS_NHEP);
128: /*
129: Define the region containing the eigenvalues of interest
130: */
131: EPSGetRG(eps,&rg);
132: RGSetType(rg,RGINTERVAL);
133: RGIntervalSetEndpoints(rg,-PETSC_INFINITY,PETSC_INFINITY,-0.01,0.01);
134: RGSetComplement(rg,PETSC_TRUE);
135: /* sort eigenvalue approximations wrt a target, otherwise convergence will be erratic */
136: EPSSetTarget(eps,0.0);
137: EPSSetWhichEigenpairs(eps,EPS_TARGET_MAGNITUDE);
139: /*
140: Set solver options. In particular, we must allocate sufficient
141: storage for all eigenpairs that may converge (ncv). This is
142: application-dependent.
143: */
144: mpd = 40;
145: EPSSetDimensions(eps,2*mpd,3*mpd,mpd);
146: EPSSetTolerances(eps,1e-7,2000);
147: ctx->lastnconv = 0;
148: ctx->nreps = 0;
149: EPSSetStoppingTestFunction(eps,MyStoppingTest,(void*)ctx,NULL);
150: EPSSetFromOptions(eps);
152: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
153: Solve the eigensystem and display solution
154: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
156: EPSSolve(eps);
158: /* show detailed info unless -terse option is given by user */
159: PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer);
160: PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL);
161: EPSReasonView(eps,viewer);
162: PetscOptionsHasName(NULL,NULL,"-terse",&terse);
163: if (!terse) {
164: EPSErrorView(eps,EPS_ERROR_RELATIVE,viewer);
165: }
166: PetscViewerPopFormat(viewer);
168: EPSDestroy(&eps);
169: MatDestroy(&A);
170: MatDestroy(&ctx->T);
171: VecDestroy(&ctx->x1);
172: VecDestroy(&ctx->x2);
173: VecDestroy(&ctx->y1);
174: VecDestroy(&ctx->y2);
175: PetscFree(ctx);
176: SlepcFinalize();
177: return ierr;
178: }
180: PetscErrorCode MatMult_Brussel(Mat A,Vec x,Vec y)
181: {
182: PetscInt n;
183: const PetscScalar *px;
184: PetscScalar *py;
185: CTX_BRUSSEL *ctx;
186: PetscErrorCode ierr;
189: MatShellGetContext(A,(void**)&ctx);
190: MatGetLocalSize(ctx->T,&n,NULL);
191: VecGetArrayRead(x,&px);
192: VecGetArray(y,&py);
193: VecPlaceArray(ctx->x1,px);
194: VecPlaceArray(ctx->x2,px+n);
195: VecPlaceArray(ctx->y1,py);
196: VecPlaceArray(ctx->y2,py+n);
198: MatMult(ctx->T,ctx->x1,ctx->y1);
199: VecScale(ctx->y1,ctx->tau1);
200: VecAXPY(ctx->y1,ctx->beta - 1.0 + ctx->sigma,ctx->x1);
201: VecAXPY(ctx->y1,ctx->alpha * ctx->alpha,ctx->x2);
203: MatMult(ctx->T,ctx->x2,ctx->y2);
204: VecScale(ctx->y2,ctx->tau2);
205: VecAXPY(ctx->y2,-ctx->beta,ctx->x1);
206: VecAXPY(ctx->y2,-ctx->alpha * ctx->alpha + ctx->sigma,ctx->x2);
208: VecRestoreArrayRead(x,&px);
209: VecRestoreArray(y,&py);
210: VecResetArray(ctx->x1);
211: VecResetArray(ctx->x2);
212: VecResetArray(ctx->y1);
213: VecResetArray(ctx->y2);
214: return(0);
215: }
217: PetscErrorCode MatGetDiagonal_Brussel(Mat A,Vec diag)
218: {
219: Vec d1,d2;
220: PetscInt n;
221: PetscScalar *pd;
222: MPI_Comm comm;
223: CTX_BRUSSEL *ctx;
227: MatShellGetContext(A,(void**)&ctx);
228: PetscObjectGetComm((PetscObject)A,&comm);
229: MatGetLocalSize(ctx->T,&n,NULL);
230: VecGetArray(diag,&pd);
231: VecCreateMPIWithArray(comm,1,n,PETSC_DECIDE,pd,&d1);
232: VecCreateMPIWithArray(comm,1,n,PETSC_DECIDE,pd+n,&d2);
234: VecSet(d1,-2.0*ctx->tau1 + ctx->beta - 1.0 + ctx->sigma);
235: VecSet(d2,-2.0*ctx->tau2 - ctx->alpha*ctx->alpha + ctx->sigma);
237: VecDestroy(&d1);
238: VecDestroy(&d2);
239: VecRestoreArray(diag,&pd);
240: return(0);
241: }
243: /*
244: Function for user-defined stopping test.
246: Ignores the value of nev. It only takes into account the number of
247: eigenpairs that have converged in recent outer iterations (restarts);
248: if no new eigenvalus have converged in the last few restarts,
249: we stop the iteration, assuming that no more eigenvalues are present
250: inside the region.
251: */
252: PetscErrorCode MyStoppingTest(EPS eps,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nev,EPSConvergedReason *reason,void *ptr)
253: {
255: CTX_BRUSSEL *ctx = (CTX_BRUSSEL*)ptr;
258: /* check usual termination conditions, but ignoring the case nconv>=nev */
259: EPSStoppingBasic(eps,its,max_it,nconv,PETSC_MAX_INT,reason,NULL);
260: if (*reason==EPS_CONVERGED_ITERATING) {
261: /* check if nconv is the same as before */
262: if (nconv==ctx->lastnconv) ctx->nreps++;
263: else {
264: ctx->lastnconv = nconv;
265: ctx->nreps = 0;
266: }
267: /* check if no eigenvalues converged in last 10 restarts */
268: if (nconv && ctx->nreps>10) *reason = EPS_CONVERGED_USER;
269: }
270: return(0);
271: }
273: /*TEST
275: test:
276: suffix: 1
277: args: -n 100 -terse
278: requires: !single
280: TEST*/