Actual source code: test1.c

slepc-3.11.2 2019-07-30
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2019, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Test the solution of a PEP without calling PEPSetFromOptions (based on ex16.c).\n\n"
 12:   "The command line options are:\n"
 13:   "  -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
 14:   "  -m <m>, where <m> = number of grid subdivisions in y dimension.\n"
 15:   "  -type <pep_type> = pep type to test.\n"
 16:   "  -epstype <eps_type> = eps type to test (for linear).\n\n";

 18: #include <slepcpep.h>

 20: int main(int argc,char **argv)
 21: {
 22:   Mat            M,C,K,A[3];      /* problem matrices */
 23:   PEP            pep;             /* polynomial eigenproblem solver context */
 24:   PetscInt       N,n=10,m,Istart,Iend,II,nev,i,j;
 25:   PetscReal      keep;
 26:   PetscBool      flag,isgd2,epsgiven,lock;
 27:   char           peptype[30] = "linear",epstype[30] = "";
 28:   EPS            eps;
 29:   ST             st;
 30:   KSP            ksp;
 31:   PC             pc;

 34:   SlepcInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;

 36:   PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
 37:   PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag);
 38:   if (!flag) m=n;
 39:   N = n*m;
 40:   PetscOptionsGetString(NULL,NULL,"-type",peptype,30,NULL);
 41:   PetscOptionsGetString(NULL,NULL,"-epstype",epstype,30,&epsgiven);
 42:   PetscPrintf(PETSC_COMM_WORLD,"\nQuadratic Eigenproblem, N=%D (%Dx%D grid)\n\n",N,n,m);

 44:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 45:      Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
 46:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 48:   /* K is the 2-D Laplacian */
 49:   MatCreate(PETSC_COMM_WORLD,&K);
 50:   MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,N,N);
 51:   MatSetFromOptions(K);
 52:   MatSetUp(K);
 53:   MatGetOwnershipRange(K,&Istart,&Iend);
 54:   for (II=Istart;II<Iend;II++) {
 55:     i = II/n; j = II-i*n;
 56:     if (i>0) { MatSetValue(K,II,II-n,-1.0,INSERT_VALUES); }
 57:     if (i<m-1) { MatSetValue(K,II,II+n,-1.0,INSERT_VALUES); }
 58:     if (j>0) { MatSetValue(K,II,II-1,-1.0,INSERT_VALUES); }
 59:     if (j<n-1) { MatSetValue(K,II,II+1,-1.0,INSERT_VALUES); }
 60:     MatSetValue(K,II,II,4.0,INSERT_VALUES);
 61:   }
 62:   MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY);
 63:   MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY);

 65:   /* C is the 1-D Laplacian on horizontal lines */
 66:   MatCreate(PETSC_COMM_WORLD,&C);
 67:   MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,N,N);
 68:   MatSetFromOptions(C);
 69:   MatSetUp(C);
 70:   MatGetOwnershipRange(C,&Istart,&Iend);
 71:   for (II=Istart;II<Iend;II++) {
 72:     i = II/n; j = II-i*n;
 73:     if (j>0) { MatSetValue(C,II,II-1,-1.0,INSERT_VALUES); }
 74:     if (j<n-1) { MatSetValue(C,II,II+1,-1.0,INSERT_VALUES); }
 75:     MatSetValue(C,II,II,2.0,INSERT_VALUES);
 76:   }
 77:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
 78:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);

 80:   /* M is a diagonal matrix */
 81:   MatCreate(PETSC_COMM_WORLD,&M);
 82:   MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,N,N);
 83:   MatSetFromOptions(M);
 84:   MatSetUp(M);
 85:   MatGetOwnershipRange(M,&Istart,&Iend);
 86:   for (II=Istart;II<Iend;II++) {
 87:     MatSetValue(M,II,II,(PetscReal)(II+1),INSERT_VALUES);
 88:   }
 89:   MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY);
 90:   MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY);

 92:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 93:                 Create the eigensolver and set various options
 94:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 96:   PEPCreate(PETSC_COMM_WORLD,&pep);
 97:   A[0] = K; A[1] = C; A[2] = M;
 98:   PEPSetOperators(pep,3,A);
 99:   PEPSetProblemType(pep,PEP_GENERAL);
100:   PEPSetDimensions(pep,4,20,PETSC_DEFAULT);
101:   PEPSetTolerances(pep,PETSC_SMALL,PETSC_DEFAULT);

103:   /*
104:      Set solver type at runtime
105:   */
106:   PEPSetType(pep,peptype);
107:   if (epsgiven) {
108:     PetscObjectTypeCompare((PetscObject)pep,PEPLINEAR,&flag);
109:     if (flag) {
110:       PEPLinearGetEPS(pep,&eps);
111:       PetscStrcmp(epstype,"gd2",&isgd2);
112:       if (isgd2) {
113:         EPSSetType(eps,EPSGD);
114:         EPSGDSetDoubleExpansion(eps,PETSC_TRUE);
115:       } else {
116:         EPSSetType(eps,epstype);
117:       }
118:       EPSGetST(eps,&st);
119:       STGetKSP(st,&ksp);
120:       KSPGetPC(ksp,&pc);
121:       PCSetType(pc,PCJACOBI);
122:       PetscObjectTypeCompare((PetscObject)eps,EPSGD,&flag);
123:     }
124:     PEPLinearSetExplicitMatrix(pep,PETSC_TRUE);
125:   }
126:   PetscObjectTypeCompare((PetscObject)pep,PEPQARNOLDI,&flag);
127:   if (flag) {
128:     STCreate(PETSC_COMM_WORLD,&st);
129:     STSetTransform(st,PETSC_TRUE);
130:     PEPSetST(pep,st);
131:     STDestroy(&st);
132:     PEPQArnoldiGetRestart(pep,&keep);
133:     PEPQArnoldiGetLocking(pep,&lock);
134:     if (!lock && keep<0.6) {
135:       PEPQArnoldiSetRestart(pep,0.6);
136:     }
137:   }
138:   PetscObjectTypeCompare((PetscObject)pep,PEPTOAR,&flag);
139:   if (flag) {
140:     PEPTOARGetRestart(pep,&keep);
141:     PEPTOARGetLocking(pep,&lock);
142:     if (!lock && keep<0.6) {
143:       PEPTOARSetRestart(pep,0.6);
144:     }
145:   }

147:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
148:                       Solve the eigensystem
149:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

151:   PEPSolve(pep);
152:   PEPGetDimensions(pep,&nev,NULL,NULL);
153:   PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %D\n",nev);

155:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
156:                     Display solution and clean up
157:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

159:   PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL);
160:   PEPDestroy(&pep);
161:   MatDestroy(&M);
162:   MatDestroy(&C);
163:   MatDestroy(&K);
164:   SlepcFinalize();
165:   return ierr;
166: }

168: /*TEST

170:    testset:
171:       args: -m 11
172:       requires: !single !complex
173:       output_file: output/test1_1.out
174:       test:
175:          suffix: 1
176:          args: -type {{toar qarnoldi linear}}
177:       test:
178:          suffix: 1_linear_gd
179:          args: -type linear -epstype gd

181: TEST*/