Actual source code: test28.c

slepc-3.11.2 2019-07-30
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2019, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Tests multiple calls to EPSSolve with different matrix of different size.\n\n"
 12:   "The command line options are:\n"
 13:   "  -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
 14:   "  -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";

 16: #include <slepceps.h>

 18: int main(int argc,char **argv)
 19: {
 20:   Mat            A,B;
 21:   EPS            eps;
 22:   PetscInt       N,n=10,m=11,Istart,Iend,II,nev=3,i,j;
 23:   PetscBool      flag,terse;

 26:   SlepcInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
 27:   PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
 28:   PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag);
 29:   N = n*m;
 30:   PetscPrintf(PETSC_COMM_WORLD,"\n2-D Laplacian Eigenproblem, N=%D (%Dx%D grid)\n\n",N,n,m);

 32:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 33:                 Create the 2-D Laplacian with coarse mesh
 34:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 36:   MatCreate(PETSC_COMM_WORLD,&A);
 37:   MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N);
 38:   MatSetFromOptions(A);
 39:   MatSetUp(A);
 40:   MatGetOwnershipRange(A,&Istart,&Iend);
 41:   for (II=Istart;II<Iend;II++) {
 42:     i = II/n; j = II-i*n;
 43:     if (i>0) { MatSetValue(A,II,II-n,-1.0,INSERT_VALUES); }
 44:     if (i<m-1) { MatSetValue(A,II,II+n,-1.0,INSERT_VALUES); }
 45:     if (j>0) { MatSetValue(A,II,II-1,-1.0,INSERT_VALUES); }
 46:     if (j<n-1) { MatSetValue(A,II,II+1,-1.0,INSERT_VALUES); }
 47:     MatSetValue(A,II,II,4.0,INSERT_VALUES);
 48:   }
 49:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
 50:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

 52:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 53:         Create the eigensolver, set options and solve the eigensystem
 54:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 56:   EPSCreate(PETSC_COMM_WORLD,&eps);
 57:   EPSSetOperators(eps,A,NULL);
 58:   EPSSetProblemType(eps,EPS_HEP);
 59:   EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL);
 60:   EPSSetDimensions(eps,nev,PETSC_DEFAULT,PETSC_DEFAULT);
 61:   EPSSetFromOptions(eps);

 63:   EPSSolve(eps);

 65:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 66:                     Display solution of first solve
 67:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 69:   PetscOptionsHasName(NULL,NULL,"-terse",&terse);
 70:   if (terse) {
 71:     EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL);
 72:   } else {
 73:     PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL);
 74:     EPSReasonView(eps,PETSC_VIEWER_STDOUT_WORLD);
 75:     EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD);
 76:     PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);
 77:   }

 79:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 80:                Create the 2-D Laplacian with finer mesh
 81:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 83:   n *= 2;
 84:   m *= 2;
 85:   N = n*m;
 86:   PetscPrintf(PETSC_COMM_WORLD,"\n2-D Laplacian Eigenproblem, N=%D (%Dx%D grid)\n\n",N,n,m);

 88:   MatCreate(PETSC_COMM_WORLD,&B);
 89:   MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,N,N);
 90:   MatSetFromOptions(B);
 91:   MatSetUp(B);
 92:   MatGetOwnershipRange(B,&Istart,&Iend);
 93:   for (II=Istart;II<Iend;II++) {
 94:     i = II/n; j = II-i*n;
 95:     if (i>0) { MatSetValue(B,II,II-n,-1.0,INSERT_VALUES); }
 96:     if (i<m-1) { MatSetValue(B,II,II+n,-1.0,INSERT_VALUES); }
 97:     if (j>0) { MatSetValue(B,II,II-1,-1.0,INSERT_VALUES); }
 98:     if (j<n-1) { MatSetValue(B,II,II+1,-1.0,INSERT_VALUES); }
 99:     MatSetValue(B,II,II,4.0,INSERT_VALUES);
100:   }
101:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
102:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);

104:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
105:        Solve again, calling EPSReset() since matrix size has changed
106:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

108:   EPSReset(eps);  /* if this is omitted, it will be called in EPSSetOperators() */
109:   EPSSetOperators(eps,B,NULL);
110:   EPSSolve(eps);

112:   if (terse) {
113:     EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL);
114:   } else {
115:     PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL);
116:     EPSReasonView(eps,PETSC_VIEWER_STDOUT_WORLD);
117:     EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD);
118:     PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);
119:   }

121:   EPSDestroy(&eps);
122:   MatDestroy(&A);
123:   MatDestroy(&B);
124:   SlepcFinalize();
125:   return ierr;
126: }

128: /*TEST

130:    test:
131:       suffix: 1
132:       args: -eps_type {{krylovschur arnoldi lanczos gd jd rqcg lobpcg lapack}} -terse
133:       requires: !single
134:       output_file: output/test28_1.out

136:    test:
137:       suffix: 2
138:       args: -eps_type {{power subspace}} -eps_target 8 -st_type sinvert -terse
139:       requires: !single
140:       output_file: output/test28_2.out

142:    test:
143:       suffix: 3
144:       args: -eps_interval 0.5,0.67 -st_type sinvert -st_pc_type cholesky -terse
145:       requires: !single

147: TEST*/