Actual source code: test4.c

slepc-3.11.2 2019-07-30
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2019, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Test ST with four matrices.\n\n";

 13: #include <slepcst.h>

 15: int main(int argc,char **argv)
 16: {
 17:   Mat            A,B,C,D,mat[4];
 18:   ST             st;
 19:   KSP            ksp;
 20:   Vec            v,w;
 21:   STType         type;
 22:   PetscScalar    sigma;
 23:   PetscInt       n=10,i,Istart,Iend;

 26:   SlepcInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
 27:   PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
 28:   PetscPrintf(PETSC_COMM_WORLD,"\n1-D Laplacian plus diagonal, n=%D\n\n",n);
 29:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 30:      Compute the operator matrix for the 1-D Laplacian
 31:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 33:   MatCreate(PETSC_COMM_WORLD,&A);
 34:   MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n);
 35:   MatSetFromOptions(A);
 36:   MatSetUp(A);

 38:   MatCreate(PETSC_COMM_WORLD,&B);
 39:   MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,n,n);
 40:   MatSetFromOptions(B);
 41:   MatSetUp(B);

 43:   MatCreate(PETSC_COMM_WORLD,&C);
 44:   MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,n,n);
 45:   MatSetFromOptions(C);
 46:   MatSetUp(C);

 48:   MatCreate(PETSC_COMM_WORLD,&D);
 49:   MatSetSizes(D,PETSC_DECIDE,PETSC_DECIDE,n,n);
 50:   MatSetFromOptions(D);
 51:   MatSetUp(D);

 53:   MatGetOwnershipRange(A,&Istart,&Iend);
 54:   for (i=Istart;i<Iend;i++) {
 55:     MatSetValue(A,i,i,2.0,INSERT_VALUES);
 56:     if (i>0) {
 57:       MatSetValue(A,i,i-1,-1.0,INSERT_VALUES);
 58:       MatSetValue(B,i,i,(PetscScalar)i,INSERT_VALUES);
 59:     } else {
 60:       MatSetValue(B,i,i,-1.0,INSERT_VALUES);
 61:     }
 62:     if (i<n-1) {
 63:       MatSetValue(A,i,i+1,-1.0,INSERT_VALUES);
 64:     }
 65:     MatSetValue(C,i,n-i-1,1.0,INSERT_VALUES);
 66:     MatSetValue(D,i,i,i*.1,INSERT_VALUES);
 67:     if (i==0) {
 68:       MatSetValue(D,0,n-1,1.0,INSERT_VALUES);
 69:     }
 70:     if (i==n-1) {
 71:       MatSetValue(D,n-1,0,1.0,INSERT_VALUES);
 72:     }
 73:   }

 75:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
 76:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
 77:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
 78:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
 79:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
 80:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
 81:   MatAssemblyBegin(D,MAT_FINAL_ASSEMBLY);
 82:   MatAssemblyEnd(D,MAT_FINAL_ASSEMBLY);
 83:   MatCreateVecs(A,&v,&w);
 84:   VecSet(v,1.0);

 86:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 87:                 Create the spectral transformation object
 88:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 89:   STCreate(PETSC_COMM_WORLD,&st);
 90:   mat[0] = A;
 91:   mat[1] = B;
 92:   mat[2] = C;
 93:   mat[3] = D;
 94:   STSetMatrices(st,4,mat);
 95:   STGetKSP(st,&ksp);
 96:   KSPSetTolerances(ksp,100*PETSC_MACHINE_EPSILON,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);
 97:   STSetFromOptions(st);
 98:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 99:               Apply the transformed operator for several ST's
100:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
101:   /* shift, sigma=0.0 */
102:   STSetUp(st);
103:   STGetType(st,&type);
104:   PetscPrintf(PETSC_COMM_WORLD,"ST type %s\n",type);
105:   for (i=0;i<4;i++) {
106:     STMatMult(st,i,v,w);
107:     PetscPrintf(PETSC_COMM_WORLD,"k= %D\n",i);
108:     VecView(w,NULL);
109:   }
110:   STMatSolve(st,v,w);
111:   PetscPrintf(PETSC_COMM_WORLD,"solve\n");
112:   VecView(w,NULL);

114:   /* shift, sigma=0.1 */
115:   sigma = 0.1;
116:   STSetShift(st,sigma);
117:   STGetShift(st,&sigma);
118:   PetscPrintf(PETSC_COMM_WORLD,"With shift=%g\n",(double)PetscRealPart(sigma));
119:   for (i=0;i<4;i++) {
120:     STMatMult(st,i,v,w);
121:     PetscPrintf(PETSC_COMM_WORLD,"k= %D\n",i);
122:     VecView(w,NULL);
123:   }
124:   STMatSolve(st,v,w);
125:   PetscPrintf(PETSC_COMM_WORLD,"solve\n");
126:   VecView(w,NULL);

128:   /* sinvert, sigma=0.1 */
129:   STPostSolve(st);
130:   STSetType(st,STSINVERT);
131:   STGetType(st,&type);
132:   PetscPrintf(PETSC_COMM_WORLD,"ST type %s\n",type);
133:   STGetShift(st,&sigma);
134:   PetscPrintf(PETSC_COMM_WORLD,"With shift=%g\n",(double)PetscRealPart(sigma));
135:   for (i=0;i<4;i++) {
136:     STMatMult(st,i,v,w);
137:     PetscPrintf(PETSC_COMM_WORLD,"k= %D\n",i);
138:     VecView(w,NULL);
139:   }
140:   STMatSolve(st,v,w);
141:   PetscPrintf(PETSC_COMM_WORLD,"solve\n");
142:   VecView(w,NULL);

144:   /* sinvert, sigma=-0.5 */
145:   sigma = -0.5;
146:   STSetShift(st,sigma);
147:   STGetShift(st,&sigma);
148:   PetscPrintf(PETSC_COMM_WORLD,"With shift=%g\n",(double)PetscRealPart(sigma));
149:   for (i=0;i<4;i++) {
150:     STMatMult(st,i,v,w);
151:     PetscPrintf(PETSC_COMM_WORLD,"k= %D\n",i);
152:     VecView(w,NULL);
153:   }
154:   STMatSolve(st,v,w);
155:   PetscPrintf(PETSC_COMM_WORLD,"solve\n");
156:   VecView(w,NULL);
157:   STDestroy(&st);
158:   MatDestroy(&A);
159:   MatDestroy(&B);
160:   MatDestroy(&C);
161:   MatDestroy(&D);
162:   VecDestroy(&v);
163:   VecDestroy(&w);
164:   SlepcFinalize();
165:   return ierr;
166: }

168: /*TEST

170:    test:
171:       suffix: 1
172:       args: -st_transform -st_matmode {{copy shell}}
173:       output_file: output/test4_1.out
174:       requires: !single

176:    test:
177:       suffix: 2
178:       args: -st_matmode {{copy shell}}
179:       output_file: output/test4_2.out

181: TEST*/