1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2019, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: PEP routines related to options that can be set via the command-line
12: or procedurally
13: */
15: #include <slepc/private/pepimpl.h> /*I "slepcpep.h" I*/
16: #include <petscdraw.h>
18: /*@C
19: PEPMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
20: indicated by the user.
22: Collective on PEP 24: Input Parameters:
25: + pep - the polynomial eigensolver context
26: . name - the monitor option name
27: . help - message indicating what monitoring is done
28: . manual - manual page for the monitor
29: . monitor - the monitor function, whose context is a PetscViewerAndFormat
30: - trackall - whether this monitor tracks all eigenvalues or not
32: Level: developer
34: .seealso: PEPMonitorSet(), PEPSetTrackAll(), PEPConvMonitorSetFromOptions()
35: @*/
36: PetscErrorCode PEPMonitorSetFromOptions(PEP pep,const char name[],const char help[],const char manual[],PetscErrorCode (*monitor)(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,PetscViewerAndFormat*),PetscBool trackall) 37: {
38: PetscErrorCode ierr;
39: PetscBool flg;
40: PetscViewer viewer;
41: PetscViewerFormat format;
42: PetscViewerAndFormat *vf;
45: PetscOptionsGetViewer(PetscObjectComm((PetscObject)pep),((PetscObject)pep)->options,((PetscObject)pep)->prefix,name,&viewer,&format,&flg);
46: if (flg) {
47: PetscViewerAndFormatCreate(viewer,format,&vf);
48: PetscObjectDereference((PetscObject)viewer);
49: PEPMonitorSet(pep,(PetscErrorCode (*)(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
50: if (trackall) {
51: PEPSetTrackAll(pep,PETSC_TRUE);
52: }
53: }
54: return(0);
55: }
57: /*@C
58: PEPConvMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
59: indicated by the user (for monitors that only show iteration numbers of convergence).
61: Collective on PEP 63: Input Parameters:
64: + pep - the polynomial eigensolver context
65: . name - the monitor option name
66: . help - message indicating what monitoring is done
67: . manual - manual page for the monitor
68: - monitor - the monitor function, whose context is a SlepcConvMonitor
70: Level: developer
72: .seealso: PEPMonitorSet(), PEPMonitorSetFromOptions()
73: @*/
74: PetscErrorCode PEPConvMonitorSetFromOptions(PEP pep,const char name[],const char help[],const char manual[],PetscErrorCode (*monitor)(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,SlepcConvMonitor)) 75: {
76: PetscErrorCode ierr;
77: PetscBool flg;
78: PetscViewer viewer;
79: PetscViewerFormat format;
80: SlepcConvMonitor ctx;
83: PetscOptionsGetViewer(PetscObjectComm((PetscObject)pep),((PetscObject)pep)->options,((PetscObject)pep)->prefix,name,&viewer,&format,&flg);
84: if (flg) {
85: SlepcConvMonitorCreate(viewer,format,&ctx);
86: PetscObjectDereference((PetscObject)viewer);
87: PEPMonitorSet(pep,(PetscErrorCode (*)(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*))monitor,ctx,(PetscErrorCode (*)(void**))SlepcConvMonitorDestroy);
88: }
89: return(0);
90: }
92: /*@
93: PEPSetFromOptions - Sets PEP options from the options database.
94: This routine must be called before PEPSetUp() if the user is to be
95: allowed to set the solver type.
97: Collective on PEP 99: Input Parameters:
100: . pep - the polynomial eigensolver context
102: Notes:
103: To see all options, run your program with the -help option.
105: Level: beginner
106: @*/
107: PetscErrorCode PEPSetFromOptions(PEP pep)108: {
109: PetscErrorCode ierr;
110: char type[256];
111: PetscBool set,flg,flg1,flg2,flg3,flg4,flg5;
112: PetscReal r,t,array[2]={0,0};
113: PetscScalar s;
114: PetscInt i,j,k;
115: PetscDrawLG lg;
116: PEPScale scale;
117: PEPRefine refine;
118: PEPRefineScheme scheme;
122: PEPRegisterAll();
123: PetscObjectOptionsBegin((PetscObject)pep);
124: PetscOptionsFList("-pep_type","Polynomial eigensolver method","PEPSetType",PEPList,(char*)(((PetscObject)pep)->type_name?((PetscObject)pep)->type_name:PEPTOAR),type,256,&flg);
125: if (flg) {
126: PEPSetType(pep,type);
127: } else if (!((PetscObject)pep)->type_name) {
128: PEPSetType(pep,PEPTOAR);
129: }
131: PetscOptionsBoolGroupBegin("-pep_general","General polynomial eigenvalue problem","PEPSetProblemType",&flg);
132: if (flg) { PEPSetProblemType(pep,PEP_GENERAL); }
133: PetscOptionsBoolGroup("-pep_hermitian","Hermitian polynomial eigenvalue problem","PEPSetProblemType",&flg);
134: if (flg) { PEPSetProblemType(pep,PEP_HERMITIAN); }
135: PetscOptionsBoolGroup("-pep_hyperbolic","Hyperbolic polynomial eigenvalue problem","PEPSetProblemType",&flg);
136: if (flg) { PEPSetProblemType(pep,PEP_HYPERBOLIC); }
137: PetscOptionsBoolGroupEnd("-pep_gyroscopic","Gyroscopic polynomial eigenvalue problem","PEPSetProblemType",&flg);
138: if (flg) { PEPSetProblemType(pep,PEP_GYROSCOPIC); }
140: scale = pep->scale;
141: PetscOptionsEnum("-pep_scale","Scaling strategy","PEPSetScale",PEPScaleTypes,(PetscEnum)scale,(PetscEnum*)&scale,&flg1);
142: r = pep->sfactor;
143: PetscOptionsReal("-pep_scale_factor","Scale factor","PEPSetScale",pep->sfactor,&r,&flg2);
144: if (!flg2 && r==1.0) r = PETSC_DEFAULT;
145: j = pep->sits;
146: PetscOptionsInt("-pep_scale_its","Number of iterations in diagonal scaling","PEPSetScale",pep->sits,&j,&flg3);
147: t = pep->slambda;
148: PetscOptionsReal("-pep_scale_lambda","Estimate of eigenvalue (modulus) for diagonal scaling","PEPSetScale",pep->slambda,&t,&flg4);
149: if (flg1 || flg2 || flg3 || flg4) { PEPSetScale(pep,scale,r,NULL,NULL,j,t); }
151: PetscOptionsEnum("-pep_extract","Extraction method","PEPSetExtract",PEPExtractTypes,(PetscEnum)pep->extract,(PetscEnum*)&pep->extract,NULL);
153: refine = pep->refine;
154: PetscOptionsEnum("-pep_refine","Iterative refinement method","PEPSetRefine",PEPRefineTypes,(PetscEnum)refine,(PetscEnum*)&refine,&flg1);
155: i = pep->npart;
156: PetscOptionsInt("-pep_refine_partitions","Number of partitions of the communicator for iterative refinement","PEPSetRefine",pep->npart,&i,&flg2);
157: r = pep->rtol;
158: PetscOptionsReal("-pep_refine_tol","Tolerance for iterative refinement","PEPSetRefine",pep->rtol==PETSC_DEFAULT?SLEPC_DEFAULT_TOL/1000:pep->rtol,&r,&flg3);
159: j = pep->rits;
160: PetscOptionsInt("-pep_refine_its","Maximum number of iterations for iterative refinement","PEPSetRefine",pep->rits,&j,&flg4);
161: scheme = pep->scheme;
162: PetscOptionsEnum("-pep_refine_scheme","Scheme used for linear systems within iterative refinement","PEPSetRefine",PEPRefineSchemes,(PetscEnum)scheme,(PetscEnum*)&scheme,&flg5);
163: if (flg1 || flg2 || flg3 || flg4 || flg5) { PEPSetRefine(pep,refine,i,r,j,scheme); }
165: i = pep->max_it? pep->max_it: PETSC_DEFAULT;
166: PetscOptionsInt("-pep_max_it","Maximum number of iterations","PEPSetTolerances",pep->max_it,&i,&flg1);
167: r = pep->tol;
168: PetscOptionsReal("-pep_tol","Tolerance","PEPSetTolerances",pep->tol==PETSC_DEFAULT?SLEPC_DEFAULT_TOL:pep->tol,&r,&flg2);
169: if (flg1 || flg2) { PEPSetTolerances(pep,r,i); }
171: PetscOptionsBoolGroupBegin("-pep_conv_rel","Relative error convergence test","PEPSetConvergenceTest",&flg);
172: if (flg) { PEPSetConvergenceTest(pep,PEP_CONV_REL); }
173: PetscOptionsBoolGroup("-pep_conv_norm","Convergence test relative to the matrix norms","PEPSetConvergenceTest",&flg);
174: if (flg) { PEPSetConvergenceTest(pep,PEP_CONV_NORM); }
175: PetscOptionsBoolGroup("-pep_conv_abs","Absolute error convergence test","PEPSetConvergenceTest",&flg);
176: if (flg) { PEPSetConvergenceTest(pep,PEP_CONV_ABS); }
177: PetscOptionsBoolGroupEnd("-pep_conv_user","User-defined convergence test","PEPSetConvergenceTest",&flg);
178: if (flg) { PEPSetConvergenceTest(pep,PEP_CONV_USER); }
180: PetscOptionsBoolGroupBegin("-pep_stop_basic","Stop iteration if all eigenvalues converged or max_it reached","PEPSetStoppingTest",&flg);
181: if (flg) { PEPSetStoppingTest(pep,PEP_STOP_BASIC); }
182: PetscOptionsBoolGroupEnd("-pep_stop_user","User-defined stopping test","PEPSetStoppingTest",&flg);
183: if (flg) { PEPSetStoppingTest(pep,PEP_STOP_USER); }
185: i = pep->nev;
186: PetscOptionsInt("-pep_nev","Number of eigenvalues to compute","PEPSetDimensions",pep->nev,&i,&flg1);
187: j = pep->ncv? pep->ncv: PETSC_DEFAULT;
188: PetscOptionsInt("-pep_ncv","Number of basis vectors","PEPSetDimensions",pep->ncv,&j,&flg2);
189: k = pep->mpd? pep->mpd: PETSC_DEFAULT;
190: PetscOptionsInt("-pep_mpd","Maximum dimension of projected problem","PEPSetDimensions",pep->mpd,&k,&flg3);
191: if (flg1 || flg2 || flg3) { PEPSetDimensions(pep,i,j,k); }
193: PetscOptionsEnum("-pep_basis","Polynomial basis","PEPSetBasis",PEPBasisTypes,(PetscEnum)pep->basis,(PetscEnum*)&pep->basis,NULL);
195: PetscOptionsBoolGroupBegin("-pep_largest_magnitude","Compute largest eigenvalues in magnitude","PEPSetWhichEigenpairs",&flg);
196: if (flg) { PEPSetWhichEigenpairs(pep,PEP_LARGEST_MAGNITUDE); }
197: PetscOptionsBoolGroup("-pep_smallest_magnitude","Compute smallest eigenvalues in magnitude","PEPSetWhichEigenpairs",&flg);
198: if (flg) { PEPSetWhichEigenpairs(pep,PEP_SMALLEST_MAGNITUDE); }
199: PetscOptionsBoolGroup("-pep_largest_real","Compute eigenvalues with largest real parts","PEPSetWhichEigenpairs",&flg);
200: if (flg) { PEPSetWhichEigenpairs(pep,PEP_LARGEST_REAL); }
201: PetscOptionsBoolGroup("-pep_smallest_real","Compute eigenvalues with smallest real parts","PEPSetWhichEigenpairs",&flg);
202: if (flg) { PEPSetWhichEigenpairs(pep,PEP_SMALLEST_REAL); }
203: PetscOptionsBoolGroup("-pep_largest_imaginary","Compute eigenvalues with largest imaginary parts","PEPSetWhichEigenpairs",&flg);
204: if (flg) { PEPSetWhichEigenpairs(pep,PEP_LARGEST_IMAGINARY); }
205: PetscOptionsBoolGroup("-pep_smallest_imaginary","Compute eigenvalues with smallest imaginary parts","PEPSetWhichEigenpairs",&flg);
206: if (flg) { PEPSetWhichEigenpairs(pep,PEP_SMALLEST_IMAGINARY); }
207: PetscOptionsBoolGroup("-pep_target_magnitude","Compute eigenvalues closest to target","PEPSetWhichEigenpairs",&flg);
208: if (flg) { PEPSetWhichEigenpairs(pep,PEP_TARGET_MAGNITUDE); }
209: PetscOptionsBoolGroup("-pep_target_real","Compute eigenvalues with real parts closest to target","PEPSetWhichEigenpairs",&flg);
210: if (flg) { PEPSetWhichEigenpairs(pep,PEP_TARGET_REAL); }
211: PetscOptionsBoolGroupEnd("-pep_target_imaginary","Compute eigenvalues with imaginary parts closest to target","PEPSetWhichEigenpairs",&flg);
212: if (flg) { PEPSetWhichEigenpairs(pep,PEP_TARGET_IMAGINARY); }
214: PetscOptionsScalar("-pep_target","Value of the target","PEPSetTarget",pep->target,&s,&flg);
215: if (flg) {
216: if (pep->which!=PEP_TARGET_REAL && pep->which!=PEP_TARGET_IMAGINARY) {
217: PEPSetWhichEigenpairs(pep,PEP_TARGET_MAGNITUDE);
218: }
219: PEPSetTarget(pep,s);
220: }
222: k = 2;
223: PetscOptionsRealArray("-pep_interval","Computational interval (two real values separated with a comma without spaces)","PEPSetInterval",array,&k,&flg);
224: if (flg) {
225: if (k<2) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_SIZ,"Must pass two values in -pep_interval (comma-separated without spaces)");
226: PEPSetWhichEigenpairs(pep,PEP_ALL);
227: PEPSetInterval(pep,array[0],array[1]);
228: }
230: /* -----------------------------------------------------------------------*/
231: /*
232: Cancels all monitors hardwired into code before call to PEPSetFromOptions()
233: */
234: PetscOptionsBool("-pep_monitor_cancel","Remove any hardwired monitor routines","PEPMonitorCancel",PETSC_FALSE,&flg,&set);
235: if (set && flg) {
236: PEPMonitorCancel(pep);
237: }
238: /*
239: Text monitors
240: */
241: PEPMonitorSetFromOptions(pep,"-pep_monitor","Monitor first unconverged approximate eigenvalue and error estimate","PEPMonitorFirst",PEPMonitorFirst,PETSC_FALSE);
242: PEPConvMonitorSetFromOptions(pep,"-pep_monitor_conv","Monitor approximate eigenvalues and error estimates as they converge","PEPMonitorConverged",PEPMonitorConverged);
243: PEPMonitorSetFromOptions(pep,"-pep_monitor_all","Monitor approximate eigenvalues and error estimates","PEPMonitorAll",PEPMonitorAll,PETSC_TRUE);
244: /*
245: Line graph monitors
246: */
247: PetscOptionsBool("-pep_monitor_lg","Monitor first unconverged approximate error estimate graphically","PEPMonitorSet",PETSC_FALSE,&flg,&set);
248: if (set && flg) {
249: PEPMonitorLGCreate(PetscObjectComm((PetscObject)pep),NULL,"Error estimates",PETSC_DECIDE,PETSC_DECIDE,300,300,&lg);
250: PEPMonitorSet(pep,PEPMonitorLG,lg,(PetscErrorCode (*)(void**))PetscDrawLGDestroy);
251: }
252: PetscOptionsBool("-pep_monitor_lg_all","Monitor error estimates graphically","PEPMonitorSet",PETSC_FALSE,&flg,&set);
253: if (set && flg) {
254: PEPMonitorLGCreate(PetscObjectComm((PetscObject)pep),NULL,"Error estimates",PETSC_DECIDE,PETSC_DECIDE,300,300,&lg);
255: PEPMonitorSet(pep,PEPMonitorLGAll,lg,(PetscErrorCode (*)(void**))PetscDrawLGDestroy);
256: PEPSetTrackAll(pep,PETSC_TRUE);
257: }
259: /* -----------------------------------------------------------------------*/
260: PetscOptionsName("-pep_view","Print detailed information on solver used","PEPView",NULL);
261: PetscOptionsName("-pep_view_vectors","View computed eigenvectors","PEPVectorsView",NULL);
262: PetscOptionsName("-pep_view_values","View computed eigenvalues","PEPValuesView",NULL);
263: PetscOptionsName("-pep_converged_reason","Print reason for convergence, and number of iterations","PEPReasonView",NULL);
264: PetscOptionsName("-pep_error_absolute","Print absolute errors of each eigenpair","PEPErrorView",NULL);
265: PetscOptionsName("-pep_error_relative","Print relative errors of each eigenpair","PEPErrorView",NULL);
266: PetscOptionsName("-pep_error_backward","Print backward errors of each eigenpair","PEPErrorView",NULL);
268: if (pep->ops->setfromoptions) {
269: (*pep->ops->setfromoptions)(PetscOptionsObject,pep);
270: }
271: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)pep);
272: PetscOptionsEnd();
274: if (!pep->V) { PEPGetBV(pep,&pep->V); }
275: BVSetFromOptions(pep->V);
276: if (!pep->rg) { PEPGetRG(pep,&pep->rg); }
277: RGSetFromOptions(pep->rg);
278: if (!pep->ds) { PEPGetDS(pep,&pep->ds); }
279: DSSetFromOptions(pep->ds);
280: if (!pep->st) { PEPGetST(pep,&pep->st); }
281: PEPSetDefaultST(pep);
282: STSetFromOptions(pep->st);
283: if (!pep->refineksp) { PEPRefineGetKSP(pep,&pep->refineksp); }
284: KSPSetFromOptions(pep->refineksp);
285: return(0);
286: }
288: /*@C
289: PEPGetTolerances - Gets the tolerance and maximum iteration count used
290: by the PEP convergence tests.
292: Not Collective
294: Input Parameter:
295: . pep - the polynomial eigensolver context
297: Output Parameters:
298: + tol - the convergence tolerance
299: - maxits - maximum number of iterations
301: Notes:
302: The user can specify NULL for any parameter that is not needed.
304: Level: intermediate
306: .seealso: PEPSetTolerances()
307: @*/
308: PetscErrorCode PEPGetTolerances(PEP pep,PetscReal *tol,PetscInt *maxits)309: {
312: if (tol) *tol = pep->tol;
313: if (maxits) *maxits = pep->max_it;
314: return(0);
315: }
317: /*@
318: PEPSetTolerances - Sets the tolerance and maximum iteration count used
319: by the PEP convergence tests.
321: Logically Collective on PEP323: Input Parameters:
324: + pep - the polynomial eigensolver context
325: . tol - the convergence tolerance
326: - maxits - maximum number of iterations to use
328: Options Database Keys:
329: + -pep_tol <tol> - Sets the convergence tolerance
330: - -pep_max_it <maxits> - Sets the maximum number of iterations allowed
332: Notes:
333: Use PETSC_DEFAULT for either argument to assign a reasonably good value.
335: Level: intermediate
337: .seealso: PEPGetTolerances()
338: @*/
339: PetscErrorCode PEPSetTolerances(PEP pep,PetscReal tol,PetscInt maxits)340: {
345: if (tol == PETSC_DEFAULT) {
346: pep->tol = PETSC_DEFAULT;
347: pep->state = PEP_STATE_INITIAL;
348: } else {
349: if (tol <= 0.0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
350: pep->tol = tol;
351: }
352: if (maxits == PETSC_DEFAULT || maxits == PETSC_DECIDE) {
353: pep->max_it = 0;
354: pep->state = PEP_STATE_INITIAL;
355: } else {
356: if (maxits <= 0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of maxits. Must be > 0");
357: pep->max_it = maxits;
358: }
359: return(0);
360: }
362: /*@C
363: PEPGetDimensions - Gets the number of eigenvalues to compute
364: and the dimension of the subspace.
366: Not Collective
368: Input Parameter:
369: . pep - the polynomial eigensolver context
371: Output Parameters:
372: + nev - number of eigenvalues to compute
373: . ncv - the maximum dimension of the subspace to be used by the solver
374: - mpd - the maximum dimension allowed for the projected problem
376: Notes:
377: The user can specify NULL for any parameter that is not needed.
379: Level: intermediate
381: .seealso: PEPSetDimensions()
382: @*/
383: PetscErrorCode PEPGetDimensions(PEP pep,PetscInt *nev,PetscInt *ncv,PetscInt *mpd)384: {
387: if (nev) *nev = pep->nev;
388: if (ncv) *ncv = pep->ncv;
389: if (mpd) *mpd = pep->mpd;
390: return(0);
391: }
393: /*@
394: PEPSetDimensions - Sets the number of eigenvalues to compute
395: and the dimension of the subspace.
397: Logically Collective on PEP399: Input Parameters:
400: + pep - the polynomial eigensolver context
401: . nev - number of eigenvalues to compute
402: . ncv - the maximum dimension of the subspace to be used by the solver
403: - mpd - the maximum dimension allowed for the projected problem
405: Options Database Keys:
406: + -pep_nev <nev> - Sets the number of eigenvalues
407: . -pep_ncv <ncv> - Sets the dimension of the subspace
408: - -pep_mpd <mpd> - Sets the maximum projected dimension
410: Notes:
411: Use PETSC_DEFAULT for ncv and mpd to assign a reasonably good value, which is
412: dependent on the solution method.
414: The parameters ncv and mpd are intimately related, so that the user is advised
415: to set one of them at most. Normal usage is that
416: (a) in cases where nev is small, the user sets ncv (a reasonable default is 2*nev); and
417: (b) in cases where nev is large, the user sets mpd.
419: The value of ncv should always be between nev and (nev+mpd), typically
420: ncv=nev+mpd. If nev is not too large, mpd=nev is a reasonable choice, otherwise
421: a smaller value should be used.
423: When computing all eigenvalues in an interval, see PEPSetInterval(), these
424: parameters lose relevance, and tuning must be done with PEPSTOARSetDimensions().
426: Level: intermediate
428: .seealso: PEPGetDimensions(), PEPSetInterval(), PEPSTOARSetDimensions()
429: @*/
430: PetscErrorCode PEPSetDimensions(PEP pep,PetscInt nev,PetscInt ncv,PetscInt mpd)431: {
437: if (nev<1) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of nev. Must be > 0");
438: pep->nev = nev;
439: if (ncv == PETSC_DECIDE || ncv == PETSC_DEFAULT) {
440: pep->ncv = 0;
441: } else {
442: if (ncv<1) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of ncv. Must be > 0");
443: pep->ncv = ncv;
444: }
445: if (mpd == PETSC_DECIDE || mpd == PETSC_DEFAULT) {
446: pep->mpd = 0;
447: } else {
448: if (mpd<1) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of mpd. Must be > 0");
449: pep->mpd = mpd;
450: }
451: pep->state = PEP_STATE_INITIAL;
452: return(0);
453: }
455: /*@
456: PEPSetWhichEigenpairs - Specifies which portion of the spectrum is
457: to be sought.
459: Logically Collective on PEP461: Input Parameters:
462: + pep - eigensolver context obtained from PEPCreate()
463: - which - the portion of the spectrum to be sought
465: Possible values:
466: The parameter 'which' can have one of these values
468: + PEP_LARGEST_MAGNITUDE - largest eigenvalues in magnitude (default)
469: . PEP_SMALLEST_MAGNITUDE - smallest eigenvalues in magnitude
470: . PEP_LARGEST_REAL - largest real parts
471: . PEP_SMALLEST_REAL - smallest real parts
472: . PEP_LARGEST_IMAGINARY - largest imaginary parts
473: . PEP_SMALLEST_IMAGINARY - smallest imaginary parts
474: . PEP_TARGET_MAGNITUDE - eigenvalues closest to the target (in magnitude)
475: . PEP_TARGET_REAL - eigenvalues with real part closest to target
476: . PEP_TARGET_IMAGINARY - eigenvalues with imaginary part closest to target
477: . PEP_ALL - all eigenvalues contained in a given interval
478: - PEP_WHICH_USER - user defined ordering set with PEPSetEigenvalueComparison()
480: Options Database Keys:
481: + -pep_largest_magnitude - Sets largest eigenvalues in magnitude
482: . -pep_smallest_magnitude - Sets smallest eigenvalues in magnitude
483: . -pep_largest_real - Sets largest real parts
484: . -pep_smallest_real - Sets smallest real parts
485: . -pep_largest_imaginary - Sets largest imaginary parts
486: . -pep_smallest_imaginary - Sets smallest imaginary parts
487: . -pep_target_magnitude - Sets eigenvalues closest to target
488: . -pep_target_real - Sets real parts closest to target
489: . -pep_target_imaginary - Sets imaginary parts closest to target
490: - -pep_all - Sets all eigenvalues in an interval
492: Notes:
493: Not all eigensolvers implemented in PEP account for all the possible values
494: stated above. If SLEPc is compiled for real numbers PEP_LARGEST_IMAGINARY495: and PEP_SMALLEST_IMAGINARY use the absolute value of the imaginary part
496: for eigenvalue selection.
498: The target is a scalar value provided with PEPSetTarget().
500: The criterion PEP_TARGET_IMAGINARY is available only in case PETSc and
501: SLEPc have been built with complex scalars.
503: PEP_ALL is intended for use in combination with an interval (see
504: PEPSetInterval()), when all eigenvalues within the interval are requested.
505: In that case, the number of eigenvalues is unknown, so the nev parameter
506: has a different sense, see PEPSetDimensions().
508: Level: intermediate
510: .seealso: PEPGetWhichEigenpairs(), PEPSetTarget(), PEPSetInterval(),
511: PEPSetDimensions(), PEPSetEigenvalueComparison(), PEPWhich512: @*/
513: PetscErrorCode PEPSetWhichEigenpairs(PEP pep,PEPWhich which)514: {
518: switch (which) {
519: case PEP_LARGEST_MAGNITUDE:
520: case PEP_SMALLEST_MAGNITUDE:
521: case PEP_LARGEST_REAL:
522: case PEP_SMALLEST_REAL:
523: case PEP_LARGEST_IMAGINARY:
524: case PEP_SMALLEST_IMAGINARY:
525: case PEP_TARGET_MAGNITUDE:
526: case PEP_TARGET_REAL:
527: #if defined(PETSC_USE_COMPLEX)
528: case PEP_TARGET_IMAGINARY:
529: #endif
530: case PEP_ALL:
531: case PEP_WHICH_USER:
532: if (pep->which != which) {
533: pep->state = PEP_STATE_INITIAL;
534: pep->which = which;
535: }
536: break;
537: default:538: SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'which' value");
539: }
540: return(0);
541: }
543: /*@
544: PEPGetWhichEigenpairs - Returns which portion of the spectrum is to be
545: sought.
547: Not Collective
549: Input Parameter:
550: . pep - eigensolver context obtained from PEPCreate()
552: Output Parameter:
553: . which - the portion of the spectrum to be sought
555: Notes:
556: See PEPSetWhichEigenpairs() for possible values of 'which'.
558: Level: intermediate
560: .seealso: PEPSetWhichEigenpairs(), PEPWhich561: @*/
562: PetscErrorCode PEPGetWhichEigenpairs(PEP pep,PEPWhich *which)563: {
567: *which = pep->which;
568: return(0);
569: }
571: /*@C
572: PEPSetEigenvalueComparison - Specifies the eigenvalue comparison function
573: when PEPSetWhichEigenpairs() is set to PEP_WHICH_USER.
575: Logically Collective on PEP577: Input Parameters:
578: + pep - eigensolver context obtained from PEPCreate()
579: . func - a pointer to the comparison function
580: - ctx - a context pointer (the last parameter to the comparison function)
582: Calling Sequence of func:
583: $ func(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *res,void *ctx)
585: + ar - real part of the 1st eigenvalue
586: . ai - imaginary part of the 1st eigenvalue
587: . br - real part of the 2nd eigenvalue
588: . bi - imaginary part of the 2nd eigenvalue
589: . res - result of comparison
590: - ctx - optional context, as set by PEPSetEigenvalueComparison()
592: Note:
593: The returning parameter 'res' can be
594: + negative - if the 1st eigenvalue is preferred to the 2st one
595: . zero - if both eigenvalues are equally preferred
596: - positive - if the 2st eigenvalue is preferred to the 1st one
598: Level: advanced
600: .seealso: PEPSetWhichEigenpairs(), PEPWhich601: @*/
602: PetscErrorCode PEPSetEigenvalueComparison(PEP pep,PetscErrorCode (*func)(PetscScalar,PetscScalar,PetscScalar,PetscScalar,PetscInt*,void*),void* ctx)603: {
606: pep->sc->comparison = func;
607: pep->sc->comparisonctx = ctx;
608: pep->which = PEP_WHICH_USER;
609: return(0);
610: }
612: /*@
613: PEPSetProblemType - Specifies the type of the polynomial eigenvalue problem.
615: Logically Collective on PEP617: Input Parameters:
618: + pep - the polynomial eigensolver context
619: - type - a known type of polynomial eigenvalue problem
621: Options Database Keys:
622: + -pep_general - general problem with no particular structure
623: . -pep_hermitian - problem whose coefficient matrices are Hermitian
624: . -pep_hyperbolic - Hermitian problem that satisfies the definition of hyperbolic
625: - -pep_gyroscopic - problem with Hamiltonian structure
627: Notes:
628: Allowed values for the problem type are: general (PEP_GENERAL), Hermitian
629: (PEP_HERMITIAN), hyperbolic (PEP_HYPERBOLIC), and gyroscopic (PEP_GYROSCOPIC).
631: This function is used to instruct SLEPc to exploit certain structure in
632: the polynomial eigenproblem. By default, no particular structure is assumed.
634: If the problem matrices are Hermitian (symmetric in the real case) or
635: Hermitian/skew-Hermitian then the solver can exploit this fact to perform
636: less operations or provide better stability. Hyperbolic problems are a
637: particular case of Hermitian problems, some solvers may treat them simply as
638: Hermitian.
640: Level: intermediate
642: .seealso: PEPSetOperators(), PEPSetType(), PEPGetProblemType(), PEPProblemType643: @*/
644: PetscErrorCode PEPSetProblemType(PEP pep,PEPProblemType type)645: {
649: if (type!=PEP_GENERAL && type!=PEP_HERMITIAN && type!=PEP_HYPERBOLIC && type!=PEP_GYROSCOPIC) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_WRONG,"Unknown eigenvalue problem type");
650: if (type != pep->problem_type) {
651: pep->problem_type = type;
652: pep->state = PEP_STATE_INITIAL;
653: }
654: return(0);
655: }
657: /*@
658: PEPGetProblemType - Gets the problem type from the PEP object.
660: Not Collective
662: Input Parameter:
663: . pep - the polynomial eigensolver context
665: Output Parameter:
666: . type - the problem type
668: Level: intermediate
670: .seealso: PEPSetProblemType(), PEPProblemType671: @*/
672: PetscErrorCode PEPGetProblemType(PEP pep,PEPProblemType *type)673: {
677: *type = pep->problem_type;
678: return(0);
679: }
681: /*@
682: PEPSetBasis - Specifies the type of polynomial basis used to describe the
683: polynomial eigenvalue problem.
685: Logically Collective on PEP687: Input Parameters:
688: + pep - the polynomial eigensolver context
689: - basis - the type of polynomial basis
691: Options Database Key:
692: . -pep_basis <basis> - Select the basis type
694: Notes:
695: By default, the coefficient matrices passed via PEPSetOperators() are
696: expressed in the monomial basis, i.e.
697: P(lambda) = A_0 + lambda*A_1 + lambda^2*A_2 + ... + lambda^d*A_d.
698: Other polynomial bases may have better numerical behaviour, but the user
699: must then pass the coefficient matrices accordingly.
701: Level: intermediate
703: .seealso: PEPSetOperators(), PEPGetBasis(), PEPBasis704: @*/
705: PetscErrorCode PEPSetBasis(PEP pep,PEPBasis basis)706: {
710: pep->basis = basis;
711: return(0);
712: }
714: /*@
715: PEPGetBasis - Gets the type of polynomial basis from the PEP object.
717: Not Collective
719: Input Parameter:
720: . pep - the polynomial eigensolver context
722: Output Parameter:
723: . basis - the polynomial basis
725: Level: intermediate
727: .seealso: PEPSetBasis(), PEPBasis728: @*/
729: PetscErrorCode PEPGetBasis(PEP pep,PEPBasis *basis)730: {
734: *basis = pep->basis;
735: return(0);
736: }
738: /*@
739: PEPSetTrackAll - Specifies if the solver must compute the residual of all
740: approximate eigenpairs or not.
742: Logically Collective on PEP744: Input Parameters:
745: + pep - the eigensolver context
746: - trackall - whether compute all residuals or not
748: Notes:
749: If the user sets trackall=PETSC_TRUE then the solver explicitly computes
750: the residual for each eigenpair approximation. Computing the residual is
751: usually an expensive operation and solvers commonly compute the associated
752: residual to the first unconverged eigenpair.
753: The options '-pep_monitor_all' and '-pep_monitor_lg_all' automatically
754: activate this option.
756: Level: developer
758: .seealso: PEPGetTrackAll()
759: @*/
760: PetscErrorCode PEPSetTrackAll(PEP pep,PetscBool trackall)761: {
765: pep->trackall = trackall;
766: return(0);
767: }
769: /*@
770: PEPGetTrackAll - Returns the flag indicating whether all residual norms must
771: be computed or not.
773: Not Collective
775: Input Parameter:
776: . pep - the eigensolver context
778: Output Parameter:
779: . trackall - the returned flag
781: Level: developer
783: .seealso: PEPSetTrackAll()
784: @*/
785: PetscErrorCode PEPGetTrackAll(PEP pep,PetscBool *trackall)786: {
790: *trackall = pep->trackall;
791: return(0);
792: }
794: /*@C
795: PEPSetConvergenceTestFunction - Sets a function to compute the error estimate
796: used in the convergence test.
798: Logically Collective on PEP800: Input Parameters:
801: + pep - eigensolver context obtained from PEPCreate()
802: . func - a pointer to the convergence test function
803: . ctx - context for private data for the convergence routine (may be null)
804: - destroy - a routine for destroying the context (may be null)
806: Calling Sequence of func:
807: $ func(PEP pep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
809: + pep - eigensolver context obtained from PEPCreate()
810: . eigr - real part of the eigenvalue
811: . eigi - imaginary part of the eigenvalue
812: . res - residual norm associated to the eigenpair
813: . errest - (output) computed error estimate
814: - ctx - optional context, as set by PEPSetConvergenceTestFunction()
816: Note:
817: If the error estimate returned by the convergence test function is less than
818: the tolerance, then the eigenvalue is accepted as converged.
820: Level: advanced
822: .seealso: PEPSetConvergenceTest(), PEPSetTolerances()
823: @*/
824: PetscErrorCode PEPSetConvergenceTestFunction(PEP pep,PetscErrorCode (*func)(PEP,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*),void* ctx,PetscErrorCode (*destroy)(void*))825: {
830: if (pep->convergeddestroy) {
831: (*pep->convergeddestroy)(pep->convergedctx);
832: }
833: pep->convergeduser = func;
834: pep->convergeddestroy = destroy;
835: pep->convergedctx = ctx;
836: if (func == PEPConvergedRelative) pep->conv = PEP_CONV_REL;
837: else if (func == PEPConvergedNorm) pep->conv = PEP_CONV_NORM;
838: else if (func == PEPConvergedAbsolute) pep->conv = PEP_CONV_ABS;
839: else {
840: pep->conv = PEP_CONV_USER;
841: pep->converged = pep->convergeduser;
842: }
843: return(0);
844: }
846: /*@
847: PEPSetConvergenceTest - Specifies how to compute the error estimate
848: used in the convergence test.
850: Logically Collective on PEP852: Input Parameters:
853: + pep - eigensolver context obtained from PEPCreate()
854: - conv - the type of convergence test
856: Options Database Keys:
857: + -pep_conv_abs - Sets the absolute convergence test
858: . -pep_conv_rel - Sets the convergence test relative to the eigenvalue
859: . -pep_conv_norm - Sets the convergence test relative to the matrix norms
860: - -pep_conv_user - Selects the user-defined convergence test
862: Note:
863: The parameter 'conv' can have one of these values
864: + PEP_CONV_ABS - absolute error ||r||
865: . PEP_CONV_REL - error relative to the eigenvalue l, ||r||/|l|
866: . PEP_CONV_NORM - error relative matrix norms, ||r||/sum_i(l^i*||A_i||)
867: - PEP_CONV_USER - function set by PEPSetConvergenceTestFunction()
869: Level: intermediate
871: .seealso: PEPGetConvergenceTest(), PEPSetConvergenceTestFunction(), PEPSetStoppingTest(), PEPConv872: @*/
873: PetscErrorCode PEPSetConvergenceTest(PEP pep,PEPConv conv)874: {
878: switch (conv) {
879: case PEP_CONV_ABS: pep->converged = PEPConvergedAbsolute; break;
880: case PEP_CONV_REL: pep->converged = PEPConvergedRelative; break;
881: case PEP_CONV_NORM: pep->converged = PEPConvergedNorm; break;
882: case PEP_CONV_USER:
883: if (!pep->convergeduser) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ORDER,"Must call PEPSetConvergenceTestFunction() first");
884: pep->converged = pep->convergeduser;
885: break;
886: default:887: SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'conv' value");
888: }
889: pep->conv = conv;
890: return(0);
891: }
893: /*@
894: PEPGetConvergenceTest - Gets the method used to compute the error estimate
895: used in the convergence test.
897: Not Collective
899: Input Parameters:
900: . pep - eigensolver context obtained from PEPCreate()
902: Output Parameters:
903: . conv - the type of convergence test
905: Level: intermediate
907: .seealso: PEPSetConvergenceTest(), PEPConv908: @*/
909: PetscErrorCode PEPGetConvergenceTest(PEP pep,PEPConv *conv)910: {
914: *conv = pep->conv;
915: return(0);
916: }
918: /*@C
919: PEPSetStoppingTestFunction - Sets a function to decide when to stop the outer
920: iteration of the eigensolver.
922: Logically Collective on PEP924: Input Parameters:
925: + pep - eigensolver context obtained from PEPCreate()
926: . func - pointer to the stopping test function
927: . ctx - context for private data for the stopping routine (may be null)
928: - destroy - a routine for destroying the context (may be null)
930: Calling Sequence of func:
931: $ func(PEP pep,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nev,PEPConvergedReason *reason,void *ctx)
933: + pep - eigensolver context obtained from PEPCreate()
934: . its - current number of iterations
935: . max_it - maximum number of iterations
936: . nconv - number of currently converged eigenpairs
937: . nev - number of requested eigenpairs
938: . reason - (output) result of the stopping test
939: - ctx - optional context, as set by PEPSetStoppingTestFunction()
941: Note:
942: Normal usage is to first call the default routine PEPStoppingBasic() and then
943: set reason to PEP_CONVERGED_USER if some user-defined conditions have been
944: met. To let the eigensolver continue iterating, the result must be left as
945: PEP_CONVERGED_ITERATING.
947: Level: advanced
949: .seealso: PEPSetStoppingTest(), PEPStoppingBasic()
950: @*/
951: PetscErrorCode PEPSetStoppingTestFunction(PEP pep,PetscErrorCode (*func)(PEP,PetscInt,PetscInt,PetscInt,PetscInt,PEPConvergedReason*,void*),void* ctx,PetscErrorCode (*destroy)(void*))952: {
957: if (pep->stoppingdestroy) {
958: (*pep->stoppingdestroy)(pep->stoppingctx);
959: }
960: pep->stoppinguser = func;
961: pep->stoppingdestroy = destroy;
962: pep->stoppingctx = ctx;
963: if (func == PEPStoppingBasic) pep->stop = PEP_STOP_BASIC;
964: else {
965: pep->stop = PEP_STOP_USER;
966: pep->stopping = pep->stoppinguser;
967: }
968: return(0);
969: }
971: /*@
972: PEPSetStoppingTest - Specifies how to decide the termination of the outer
973: loop of the eigensolver.
975: Logically Collective on PEP977: Input Parameters:
978: + pep - eigensolver context obtained from PEPCreate()
979: - stop - the type of stopping test
981: Options Database Keys:
982: + -pep_stop_basic - Sets the default stopping test
983: - -pep_stop_user - Selects the user-defined stopping test
985: Note:
986: The parameter 'stop' can have one of these values
987: + PEP_STOP_BASIC - default stopping test
988: - PEP_STOP_USER - function set by PEPSetStoppingTestFunction()
990: Level: advanced
992: .seealso: PEPGetStoppingTest(), PEPSetStoppingTestFunction(), PEPSetConvergenceTest(), PEPStop993: @*/
994: PetscErrorCode PEPSetStoppingTest(PEP pep,PEPStop stop)995: {
999: switch (stop) {
1000: case PEP_STOP_BASIC: pep->stopping = PEPStoppingBasic; break;
1001: case PEP_STOP_USER:
1002: if (!pep->stoppinguser) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ORDER,"Must call PEPSetStoppingTestFunction() first");
1003: pep->stopping = pep->stoppinguser;
1004: break;
1005: default:1006: SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'stop' value");
1007: }
1008: pep->stop = stop;
1009: return(0);
1010: }
1012: /*@
1013: PEPGetStoppingTest - Gets the method used to decide the termination of the outer
1014: loop of the eigensolver.
1016: Not Collective
1018: Input Parameters:
1019: . pep - eigensolver context obtained from PEPCreate()
1021: Output Parameters:
1022: . stop - the type of stopping test
1024: Level: advanced
1026: .seealso: PEPSetStoppingTest(), PEPStop1027: @*/
1028: PetscErrorCode PEPGetStoppingTest(PEP pep,PEPStop *stop)1029: {
1033: *stop = pep->stop;
1034: return(0);
1035: }
1037: /*@
1038: PEPSetScale - Specifies the scaling strategy to be used.
1040: Logically Collective on PEP1042: Input Parameters:
1043: + pep - the eigensolver context
1044: . scale - scaling strategy
1045: . alpha - the scaling factor used in the scalar strategy
1046: . Dl - the left diagonal matrix of the diagonal scaling algorithm
1047: . Dr - the right diagonal matrix of the diagonal scaling algorithm
1048: . its - number of iterations of the diagonal scaling algorithm
1049: - lambda - approximation to wanted eigenvalues (modulus)
1051: Options Database Keys:
1052: + -pep_scale <type> - scaling type, one of <none,scalar,diagonal,both>
1053: . -pep_scale_factor <alpha> - the scaling factor
1054: . -pep_scale_its <its> - number of iterations
1055: - -pep_scale_lambda <lambda> - approximation to eigenvalues
1057: Notes:
1058: There are two non-exclusive scaling strategies: scalar and diagonal.
1060: In the scalar strategy, scaling is applied to the eigenvalue, that is,
1061: mu = lambda/alpha is the new eigenvalue and all matrices are scaled
1062: accordingly. After solving the scaled problem, the original lambda is
1063: recovered. Parameter 'alpha' must be positive. Use PETSC_DEFAULT to let
1064: the solver compute a reasonable scaling factor.
1066: In the diagonal strategy, the solver works implicitly with matrix Dl*A*Dr,
1067: where Dl and Dr are appropriate diagonal matrices. This improves the accuracy
1068: of the computed results in some cases. The user may provide the Dr and Dl
1069: matrices represented as Vec objects storing diagonal elements. If not
1070: provided, these matrices are computed internally. This option requires
1071: that the polynomial coefficient matrices are of MATAIJ type.
1072: The parameter 'its' is the number of iterations performed by the method.
1073: Parameter 'lambda' must be positive. Use PETSC_DEFAULT or set lambda = 1.0 if
1074: no information about eigenvalues is available.
1076: Level: intermediate
1078: .seealso: PEPGetScale()
1079: @*/
1080: PetscErrorCode PEPSetScale(PEP pep,PEPScale scale,PetscReal alpha,Vec Dl,Vec Dr,PetscInt its,PetscReal lambda)1081: {
1087: pep->scale = scale;
1088: if (scale==PEP_SCALE_SCALAR || scale==PEP_SCALE_BOTH) {
1090: if (alpha == PETSC_DEFAULT || alpha == PETSC_DECIDE) {
1091: pep->sfactor = 0.0;
1092: pep->sfactor_set = PETSC_FALSE;
1093: } else {
1094: if (alpha<=0.0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of alpha. Must be > 0");
1095: pep->sfactor = alpha;
1096: pep->sfactor_set = PETSC_TRUE;
1097: }
1098: }
1099: if (scale==PEP_SCALE_DIAGONAL || scale==PEP_SCALE_BOTH) {
1100: if (Dl) {
1103: PetscObjectReference((PetscObject)Dl);
1104: VecDestroy(&pep->Dl);
1105: pep->Dl = Dl;
1106: }
1107: if (Dr) {
1110: PetscObjectReference((PetscObject)Dr);
1111: VecDestroy(&pep->Dr);
1112: pep->Dr = Dr;
1113: }
1116: if (its==PETSC_DECIDE || its==PETSC_DEFAULT) pep->sits = 5;
1117: else pep->sits = its;
1118: if (lambda==PETSC_DECIDE || lambda==PETSC_DEFAULT) pep->slambda = 1.0;
1119: else if (lambda<=0.0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of lambda. Must be > 0");
1120: else pep->slambda = lambda;
1121: }
1122: pep->state = PEP_STATE_INITIAL;
1123: return(0);
1124: }
1126: /*@C
1127: PEPGetScale - Gets the scaling strategy used by the PEP object, and the
1128: associated parameters.
1130: Not Collectiv, but vectors are shared by all processors that share the PEP1132: Input Parameter:
1133: . pep - the eigensolver context
1135: Output Parameters:
1136: + scale - scaling strategy
1137: . alpha - the scaling factor used in the scalar strategy
1138: . Dl - the left diagonal matrix of the diagonal scaling algorithm
1139: . Dr - the right diagonal matrix of the diagonal scaling algorithm
1140: . its - number of iterations of the diagonal scaling algorithm
1141: - lambda - approximation to wanted eigenvalues (modulus)
1143: Level: intermediate
1145: Note:
1146: The user can specify NULL for any parameter that is not needed.
1148: If Dl or Dr were not set by the user, then the ones computed internally are
1149: returned (or a null pointer if called before PEPSetUp).
1151: .seealso: PEPSetScale(), PEPSetUp()
1152: @*/
1153: PetscErrorCode PEPGetScale(PEP pep,PEPScale *scale,PetscReal *alpha,Vec *Dl,Vec *Dr,PetscInt *its,PetscReal *lambda)1154: {
1157: if (scale) *scale = pep->scale;
1158: if (alpha) *alpha = pep->sfactor;
1159: if (Dl) *Dl = pep->Dl;
1160: if (Dr) *Dr = pep->Dr;
1161: if (its) *its = pep->sits;
1162: if (lambda) *lambda = pep->slambda;
1163: return(0);
1164: }
1166: /*@
1167: PEPSetExtract - Specifies the extraction strategy to be used.
1169: Logically Collective on PEP1171: Input Parameters:
1172: + pep - the eigensolver context
1173: - extract - extraction strategy
1175: Options Database Keys:
1176: . -pep_extract <type> - extraction type, one of <none,norm,residual,structured>
1178: Level: intermediate
1180: .seealso: PEPGetExtract()
1181: @*/
1182: PetscErrorCode PEPSetExtract(PEP pep,PEPExtract extract)1183: {
1187: pep->extract = extract;
1188: return(0);
1189: }
1191: /*@
1192: PEPGetExtract - Gets the extraction strategy used by the PEP object.
1194: Not Collective
1196: Input Parameter:
1197: . pep - the eigensolver context
1199: Output Parameter:
1200: . extract - extraction strategy
1202: Level: intermediate
1204: .seealso: PEPSetExtract()
1205: @*/
1206: PetscErrorCode PEPGetExtract(PEP pep,PEPExtract *extract)1207: {
1210: if (extract) *extract = pep->extract;
1211: return(0);
1212: }
1214: /*@
1215: PEPSetRefine - Specifies the refinement type (and options) to be used
1216: after the solve.
1218: Logically Collective on PEP1220: Input Parameters:
1221: + pep - the polynomial eigensolver context
1222: . refine - refinement type
1223: . npart - number of partitions of the communicator
1224: . tol - the convergence tolerance
1225: . its - maximum number of refinement iterations
1226: - scheme - which scheme to be used for solving the involved linear systems
1228: Options Database Keys:
1229: + -pep_refine <type> - refinement type, one of <none,simple,multiple>
1230: . -pep_refine_partitions <n> - the number of partitions
1231: . -pep_refine_tol <tol> - the tolerance
1232: . -pep_refine_its <its> - number of iterations
1233: - -pep_refine_scheme - to set the scheme for the linear solves
1235: Notes:
1236: By default, iterative refinement is disabled, since it may be very
1237: costly. There are two possible refinement strategies: simple and multiple.
1238: The simple approach performs iterative refinement on each of the
1239: converged eigenpairs individually, whereas the multiple strategy works
1240: with the invariant pair as a whole, refining all eigenpairs simultaneously.
1241: The latter may be required for the case of multiple eigenvalues.
1243: In some cases, especially when using direct solvers within the
1244: iterative refinement method, it may be helpful for improved scalability
1245: to split the communicator in several partitions. The npart parameter
1246: indicates how many partitions to use (defaults to 1).
1248: The tol and its parameters specify the stopping criterion. In the simple
1249: method, refinement continues until the residual of each eigenpair is
1250: below the tolerance (tol defaults to the PEP tol, but may be set to a
1251: different value). In contrast, the multiple method simply performs its
1252: refinement iterations (just one by default).
1254: The scheme argument is used to change the way in which linear systems are
1255: solved. Possible choices are: explicit, mixed block elimination (MBE),
1256: and Schur complement.
1258: Level: intermediate
1260: .seealso: PEPGetRefine()
1261: @*/
1262: PetscErrorCode PEPSetRefine(PEP pep,PEPRefine refine,PetscInt npart,PetscReal tol,PetscInt its,PEPRefineScheme scheme)1263: {
1265: PetscMPIInt size;
1274: pep->refine = refine;
1275: if (refine) { /* process parameters only if not REFINE_NONE */
1276: if (npart!=pep->npart) {
1277: PetscSubcommDestroy(&pep->refinesubc);
1278: KSPDestroy(&pep->refineksp);
1279: }
1280: if (npart == PETSC_DEFAULT || npart == PETSC_DECIDE) {
1281: pep->npart = 1;
1282: } else {
1283: MPI_Comm_size(PetscObjectComm((PetscObject)pep),&size);
1284: if (npart<1 || npart>size) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of npart");
1285: pep->npart = npart;
1286: }
1287: if (tol == PETSC_DEFAULT || tol == PETSC_DECIDE) {
1288: pep->rtol = PETSC_DEFAULT;
1289: } else {
1290: if (tol<=0.0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
1291: pep->rtol = tol;
1292: }
1293: if (its==PETSC_DECIDE || its==PETSC_DEFAULT) {
1294: pep->rits = PETSC_DEFAULT;
1295: } else {
1296: if (its<0) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of its. Must be >= 0");
1297: pep->rits = its;
1298: }
1299: pep->scheme = scheme;
1300: }
1301: pep->state = PEP_STATE_INITIAL;
1302: return(0);
1303: }
1305: /*@C
1306: PEPGetRefine - Gets the refinement strategy used by the PEP object, and the
1307: associated parameters.
1309: Not Collective
1311: Input Parameter:
1312: . pep - the polynomial eigensolver context
1314: Output Parameters:
1315: + refine - refinement type
1316: . npart - number of partitions of the communicator
1317: . tol - the convergence tolerance
1318: . its - maximum number of refinement iterations
1319: - scheme - the scheme used for solving linear systems
1321: Level: intermediate
1323: Note:
1324: The user can specify NULL for any parameter that is not needed.
1326: .seealso: PEPSetRefine()
1327: @*/
1328: PetscErrorCode PEPGetRefine(PEP pep,PEPRefine *refine,PetscInt *npart,PetscReal *tol,PetscInt *its,PEPRefineScheme *scheme)1329: {
1332: if (refine) *refine = pep->refine;
1333: if (npart) *npart = pep->npart;
1334: if (tol) *tol = pep->rtol;
1335: if (its) *its = pep->rits;
1336: if (scheme) *scheme = pep->scheme;
1337: return(0);
1338: }
1340: /*@C
1341: PEPSetOptionsPrefix - Sets the prefix used for searching for all
1342: PEP options in the database.
1344: Logically Collective on PEP1346: Input Parameters:
1347: + pep - the polynomial eigensolver context
1348: - prefix - the prefix string to prepend to all PEP option requests
1350: Notes:
1351: A hyphen (-) must NOT be given at the beginning of the prefix name.
1352: The first character of all runtime options is AUTOMATICALLY the
1353: hyphen.
1355: For example, to distinguish between the runtime options for two
1356: different PEP contexts, one could call
1357: .vb
1358: PEPSetOptionsPrefix(pep1,"qeig1_")
1359: PEPSetOptionsPrefix(pep2,"qeig2_")
1360: .ve
1362: Level: advanced
1364: .seealso: PEPAppendOptionsPrefix(), PEPGetOptionsPrefix()
1365: @*/
1366: PetscErrorCode PEPSetOptionsPrefix(PEP pep,const char *prefix)1367: {
1372: if (!pep->st) { PEPGetST(pep,&pep->st); }
1373: STSetOptionsPrefix(pep->st,prefix);
1374: if (!pep->V) { PEPGetBV(pep,&pep->V); }
1375: BVSetOptionsPrefix(pep->V,prefix);
1376: if (!pep->ds) { PEPGetDS(pep,&pep->ds); }
1377: DSSetOptionsPrefix(pep->ds,prefix);
1378: if (!pep->rg) { PEPGetRG(pep,&pep->rg); }
1379: RGSetOptionsPrefix(pep->rg,prefix);
1380: PetscObjectSetOptionsPrefix((PetscObject)pep,prefix);
1381: return(0);
1382: }
1384: /*@C
1385: PEPAppendOptionsPrefix - Appends to the prefix used for searching for all
1386: PEP options in the database.
1388: Logically Collective on PEP1390: Input Parameters:
1391: + pep - the polynomial eigensolver context
1392: - prefix - the prefix string to prepend to all PEP option requests
1394: Notes:
1395: A hyphen (-) must NOT be given at the beginning of the prefix name.
1396: The first character of all runtime options is AUTOMATICALLY the hyphen.
1398: Level: advanced
1400: .seealso: PEPSetOptionsPrefix(), PEPGetOptionsPrefix()
1401: @*/
1402: PetscErrorCode PEPAppendOptionsPrefix(PEP pep,const char *prefix)1403: {
1408: if (!pep->st) { PEPGetST(pep,&pep->st); }
1409: STAppendOptionsPrefix(pep->st,prefix);
1410: if (!pep->V) { PEPGetBV(pep,&pep->V); }
1411: BVAppendOptionsPrefix(pep->V,prefix);
1412: if (!pep->ds) { PEPGetDS(pep,&pep->ds); }
1413: DSAppendOptionsPrefix(pep->ds,prefix);
1414: if (!pep->rg) { PEPGetRG(pep,&pep->rg); }
1415: RGAppendOptionsPrefix(pep->rg,prefix);
1416: PetscObjectAppendOptionsPrefix((PetscObject)pep,prefix);
1417: return(0);
1418: }
1420: /*@C
1421: PEPGetOptionsPrefix - Gets the prefix used for searching for all
1422: PEP options in the database.
1424: Not Collective
1426: Input Parameters:
1427: . pep - the polynomial eigensolver context
1429: Output Parameters:
1430: . prefix - pointer to the prefix string used is returned
1432: Note:
1433: On the Fortran side, the user should pass in a string 'prefix' of
1434: sufficient length to hold the prefix.
1436: Level: advanced
1438: .seealso: PEPSetOptionsPrefix(), PEPAppendOptionsPrefix()
1439: @*/
1440: PetscErrorCode PEPGetOptionsPrefix(PEP pep,const char *prefix[])1441: {
1447: PetscObjectGetOptionsPrefix((PetscObject)pep,prefix);
1448: return(0);
1449: }