Rheolef  7.1
an efficient C++ finite element environment
dirichlet.icc
Go to the documentation of this file.
1 void dirichlet (const field& lh, field& uh) {
26  const space& Xh = lh.get_space();
27  trial u (Xh); test v (Xh);
28  form a = integrate (dot(grad(u),grad(v)));
29  problem p (a);
30  p.solve (lh, uh);
31 }
form
see the form page for the full documentation
field
see the field page for the full documentation
rheolef::integrate
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:202
space
see the space page for the full documentation
rheolef::grad
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
Definition: field_expr_terminal.h:911
p
Definition: sphere.icc:25
a
Definition: diffusion_isotropic.h:25
rheolef::details::dot
rheolef::details::is_vec dot
lh
field lh(Float epsilon, Float t, const test &v)
Definition: burgers_diffusion_operators.icc:25
test
see the test page for the full documentation
problem
see the problem page for the full documentation
u
Definition: leveque.h:25
u
Float u(const point &x)
Definition: transmission_error.cc:26
trial
see the test page for the full documentation
dirichlet
void dirichlet(const field &lh, field &uh)
Definition: dirichlet.icc:25