an efficient C++ finite element environment
|
|
The cosinus product function – error analysis for the Poisson problem
int main(
int argc,
char**argv) {
Float error_linf_expected = (argc > 1) ? atof(argv[1]) : 1e+38;
space Xh = uh.get_space();
size_t d = Xh.get_geo().dimension();
dout <<
"error_l2 " << sqrt(
m(
eh,
eh)) << endl
<<
"error_linf " <<
eh.max_abs() << endl
<<
"error_h1 " << sqrt(
a(
eh,
eh)) << endl;
return (
eh.max_abs() <= error_linf_expected) ? 0 : 1;
}
rheolef::std enable_if ::type dot const Expr1 expr1, const Expr2 expr2 dot(const Expr1 &expr1, const Expr2 &expr2)
dot(x,y): see the expression page for the full documentation
see the field page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
The sinus radius function.
see the space page for the full documentation
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
rheolef - reference manual
field_basic< T, M > interpolate(const space_basic< T, M > &V2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
idiststream din
see the diststream page for the full documentation
see the environment page for the full documentation
This file is part of Rheolef.
see the test page for the full documentation
see the Float page for the full documentation
int main(int argc, char **argv)
see the test page for the full documentation
odiststream dout(cout)
see the diststream page for the full documentation