an efficient C++ finite element environment
|
|
Go to the documentation of this file.
38 s(0,0) = c0*(1+cos(2*
t));
39 s(1,1) = c0*(1-cos(2*
t));
48 s(0,0) = c1*(1+cos(2*
t)) - 2*c0*sin(2*
t);
49 s(1,1) = c1*(1-cos(2*
t)) + 2*c0*sin(2*
t);
51 s(1,0) = c1*sin(2*
t) + 2*c0*cos(2*
t);
58 x0[0]*sin(
t) +
x0[1]*cos(
t));
60 x0[0]*cos(
t) -
x0[1]*sin(
t));
Float df_dt(const point &x) const
see the tensor page for the full documentation
tensor operator()(const point &x) const
sigma_exact(Float nu1, Float t1=0)
Float f(const point &x) const
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
tensor_basic< T > exp(const tensor_basic< T > &a, size_t d)
rheolef::details::is_vec dot
tensor operator()(const point &x) const
see the Float page for the full documentation
see the point page for the full documentation
tensor time_derivative(const point &x) const