an efficient C++ finite element environment
|
|
The Burgers equation by the discontinous Galerkin method
int main(
int argc,
char**argv) {
space Xh (omega, argv[2]);
size_t nmax = (argc > 3) ? atoi(argv[3]) : numeric_limits<size_t>::max();
Float tf = (argc > 4) ? atof(argv[4]) : 2.5;
size_t p = (argc > 5) ? atoi(argv[5]) :
ssp::pmax;
lopt.
M = (argc > 6) ? atoi(argv[6]) :
u_init().
M();
if (nmax == numeric_limits<size_t>::max()) {
nmax = (size_t)floor(1+tf/(cfl*omega.hmin()));
}
vector<field> uh(
p+1,
field(Xh,0));
<< even(0,uh[0]);
for (
size_t n = 1;
n <= nmax; ++
n) {
for (
size_t i = 1; i <=
p; ++i) {
uh[i] = 0;
for (size_t j = 0; j < i; ++j) {
}
}
dout << even(
n*delta_t,uh[0]);
}
}
The strong stability preserving Runge-Kutta scheme – coefficients.
The Burgers equation – the Godonov flux.
Float alpha[][pmax+1][pmax+1]
details::field_expr_v2_nonlinear_node_nary< typename details::function_traits< Function >::functor_type,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits< Exprs >::type... > ::type compose(const Function &f, const Exprs &... exprs)
see the compose page for the full documentation
see the catchmark page for the full documentation
rheolef::std enable_if ::type dot const Expr1 expr1, const Expr2 expr2 dot(const Expr1 &expr1, const Expr2 &expr2)
dot(x,y): see the expression page for the full documentation
see the field page for the full documentation
details::field_expr_v2_nonlinear_terminal_function< details::normal_pseudo_function< Float > > normal()
normal: see the expression page for the full documentation
field_basic< Float > field
see the field page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
see the limiter page for the full documentation
see the space page for the full documentation
The Burgers problem: the Harten exact solution.
rheolef - reference manual
int main(int argc, char **argv)
see the integrate_option page for the full documentation
Float beta[][pmax+1][pmax+1]
field_basic< T, M > interpolate(const space_basic< T, M > &V2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
see the environment page for the full documentation
field lh(Float epsilon, Float t, const test &v)
field_basic< T, M > limiter(const field_basic< T, M > &uh, const T &bar_g_S, const limiter_option &opt)
see the limiter page for the full documentation
This file is part of Rheolef.
see the test page for the full documentation
see the Float page for the full documentation
point_basic< Float > point
see the branch page for the full documentation
The Burgers equation – the f function.
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad_h(const Expr &expr)
grad_h(uh): see the expression page for the full documentation
see the test page for the full documentation
odiststream dout(cout)
see the diststream page for the full documentation
see the geo page for the full documentation