Rheolef
7.1
an efficient C++ finite element environment
taylor_exact.h
The Taylor benchmark – the exact solution of the Stokes problem
#include "
taylor.h
"
typedef
g
u_exact
;
struct
p_exact
{
Float
operator()
(
const
point
& x)
const
{
return
-
Re
*(cos(2*
pi
*x[0]) + cos(2*
pi
*x[1]))/4
- (!
have_kinetic_energy
? 0 :
Re
*(
norm2
(
u
(x))/2 - 0.25));
}
p_exact
(
Float
Re1=0,
bool
have_kinetic_energy1=
false
)
:
u
(),
pi
(acos(
Float
(-1.0))),
Re
(Re1),
have_kinetic_energy
(have_kinetic_energy1) {}
u_exact
u
;
const
Float
pi
,
Re
;
bool
have_kinetic_energy
;
};
p_exact::pi
const Float pi
Definition:
taylor_exact.h:34
taylor.h
The Taylor benchmark – right-hand-side and boundary condition.
p_exact
Definition:
taylor_exact.h:27
p_exact::have_kinetic_energy
bool have_kinetic_energy
Definition:
taylor_exact.h:34
p_exact::operator()
Float operator()(const point &x) const
Definition:
taylor_exact.h:28
rheolef::norm2
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
Definition:
vec.h:379
u_exact
g u_exact
Definition:
taylor_exact.h:26
Float
see the Float page for the full documentation
u_exact
Definition:
interpolate_RTk_polynom.icc:125
point
see the point page for the full documentation
p_exact::p_exact
p_exact(Float Re1=0, bool have_kinetic_energy1=false)
Definition:
taylor_exact.h:32
g
Definition:
cavity_dg.h:25
p_exact::Re
const Float Re
Definition:
taylor_exact.h:34
p_exact::u
u_exact u
Definition:
taylor_exact.h:34