Rheolef  7.1
an efficient C++ finite element environment
cosinusrad_laplace.h

The cosinus radius function – right-hand side and boundary condition

struct f {
Float operator() (const point& x) const {
Float r = sqrt(sqr(x[0])+sqr(x[1])+sqr(x[2]));
Float sin_over_ar = (r == 0) ? 1 : sin(a*r)/(a*r);
return sqr(a)*((d-1)*sin_over_ar + cos(a*r)); }
f(size_t d1) : d(d1), a(acos(Float(-1.0))) {}
size_t d; Float a;
};
struct g {
Float operator() (const point& x) const {
return cos(a*sqrt(sqr(x[0])+sqr(x[1])+sqr(x[2]))); }
g(size_t=0) : a(acos(Float(-1.0))) {}
};
g::g
g()
Definition: taylor.h:29
f::d
size_t d
Definition: cosinusprod_dirichlet.h:30
a
Definition: diffusion_isotropic.h:25
f::operator()
point operator()(const point &x) const
Definition: cavity_dg.h:30
g::a
Float a
Definition: cosinusrad_laplace.h:37
phi::r
Float r
Definition: phi.h:54
Float
see the Float page for the full documentation
f::f
f()
Definition: taylor.h:34
point
see the point page for the full documentation
g::operator()
point operator()(const point &x) const
Definition: cavity_dg.h:26
g
Definition: cavity_dg.h:25
f::a
Float a
Definition: cosinusrad_laplace.h:31
f
Definition: cavity_dg.h:29