Rheolef  7.1
an efficient C++ finite element environment
laplace_band.cc

The Poisson problem on a surface by the banded level set method

#include "rheolef.h"
using namespace std;
using namespace rheolef;
#include "torus.icc"
int main (int argc, char**argv) {
environment rheolef(argc, argv);
geo lambda (argv[1]);
size_t d = lambda.dimension();
space Xh (lambda, "P1");
field phi_h = interpolate(Xh, phi);
band gamma_h (phi_h);
field phi_h_band = phi_h [gamma_h.band()];
space Bh (gamma_h.band(), "P1");
Bh.block ("isolated");
Bh.unblock ("zero");
trial u (Bh); test v (Bh);
form a = integrate (gamma_h, dot(grad_s(u),grad_s(v)));
field c = integrate (gamma_h, v);
field lh = integrate (gamma_h, f(d)*v);
vector<field> b (gamma_h.n_connected_component());
vector<Float> z (gamma_h.n_connected_component(), 0);
for (size_t i = 0; i < b.size(); i++) {
const domain& cci = gamma_h.band() ["cc"+itos(i)];
field phi_h_cci (Bh, 0);
phi_h_cci [cci] = phi_h_band [cci];
b[i] = phi_h_cci;
}
form A = {{ a, trans(b), c },
{ b, 0, 0 },
{ trans(c), 0, 0 }};
field Fh = { lh, z, 0 };
field Uh (Fh.get_space(), 0);
A.set_symmetry(true);
problem pa (A);
pa.solve (Fh, Uh);
dout << catchmark("phi") << phi_h
<< catchmark("u") << Uh[0];
}
form
see the form page for the full documentation
rheolef::catchmark
see the catchmark page for the full documentation
Definition: catchmark.h:67
field
see the field page for the full documentation
phi
Definition: phi.h:25
rheolef::integrate
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:202
main
int main(int argc, char **argv)
Definition: laplace_band.cc:29
band
see the band page for the full documentation
mkgeo_ball.f
f
Definition: mkgeo_ball.sh:221
space
see the space page for the full documentation
mkgeo_ball.c
c
Definition: mkgeo_ball.sh:153
rheolef.h
rheolef - reference manual
a
Definition: diffusion_isotropic.h:25
rheolef::interpolate
field_basic< T, M > interpolate(const space_basic< T, M > &V2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
Definition: interpolate.cc:233
rheolef::environment
see the environment page for the full documentation
Definition: environment.h:115
rheolef::grad_s
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad_s(const Expr &expr)
grad_s(uh): see the expression page for the full documentation
Definition: field_expr_terminal.h:929
rheolef::details::dot
rheolef::details::is_vec dot
lh
field lh(Float epsilon, Float t, const test &v)
Definition: burgers_diffusion_operators.icc:25
rheolef
This file is part of Rheolef.
Definition: compiler_eigen.h:37
test
see the test page for the full documentation
problem
see the problem page for the full documentation
u
Definition: leveque.h:25
mkgeo_ball.d
d
Definition: mkgeo_ball.sh:154
u
Float u(const point &x)
Definition: transmission_error.cc:26
mkgeo_ball.b
b
Definition: mkgeo_ball.sh:152
mkgeo_ball.a
a
Definition: mkgeo_ball.sh:151
trial
see the test page for the full documentation
rheolef::itos
std::string itos(std::string::size_type i)
itos: see the rheostream page for the full documentation
torus.icc
The torus benchmark – level set, right-hand-side and exact solution.
rheolef::trans
csr< T, sequential > trans(const csr< T, sequential > &a)
trans(a): see the form page for the full documentation
Definition: csr.h:455
geo
see the geo page for the full documentation
lambda
Definition: yield_slip_circle.h:34