an efficient C++ finite element environment
|
|
Go to the documentation of this file.
31 int main(
int argc,
char**argv) {
34 space Xh (omega, argv[2],
"vector");
35 space Qh (omega, argv[2]);
36 Float Re = (argc > 3) ? atof(argv[3]) : 1;
37 size_t max_iter = (argc > 4) ? atoi(argv[4]) : 1;
41 field uh (Xh, 0), ph (Qh, 0);
43 stokes.set_metric (mp);
44 stokes.solve (
lh, kh, uh, ph);
48 derr <<
"#k r as" << endl;
49 for (
size_t k = 0; k < max_iter; ++k) {
51 stokes.set_metric (mp);
52 stokes.solve (
lh, kh, uh, ph);
55 field rh = a1*uh +
b.trans_mult(ph) -
lh;
56 derr << k <<
" " << rh.max_abs() <<
" " << th(uh,uh) << endl;
int main(int argc, char **argv)
see the catchmark page for the full documentation
The Taylor benchmark – right-hand-side and boundary condition.
see the field page for the full documentation
problem_mixed_basic< Float > problem_mixed
see the problem_mixed page for the full documentation
see the problem_mixed page for the full documentation
see the space page for the full documentation
rheolef - reference manual
The Stokes problem with Dirichlet boundary condition by the discontinuous Galerkin method – solver fu...
form inertia(W w, U u, V v, integrate_option iopt=integrate_option())
see the environment page for the full documentation
field lh(Float epsilon, Float t, const test &v)
The inertia term of the Navier-Stokes equation with the discontinuous Galerkin method – di Pietro & E...
void stokes_dirichlet_dg(const space &Xh, const space &Qh, form &a, form &b, form &c, form &mp, field &lh, field &kh, integrate_option iopt=integrate_option())
This file is part of Rheolef.
see the test page for the full documentation
odiststream derr(cerr)
see the diststream page for the full documentation
see the Float page for the full documentation
field inertia_fix_rhs(test v, integrate_option iopt=integrate_option())
see the test page for the full documentation
odiststream dout(cout)
see the diststream page for the full documentation
see the geo page for the full documentation