an efficient C++ finite element environment
|
|
Go to the documentation of this file.
31 int main(
int argc,
char**argv) {
34 space Xh (omega, argv[2],
"vector");
35 space Qh (omega, argv[2]);
36 Float Re = (argc > 3) ? atof(argv[3]) : 1;
37 size_t max_iter = (argc > 4) ? atoi(argv[4]) : 1;
41 field uh (Xh, 0), ph (Qh, 0);
43 stokes.set_metric (mp);
44 stokes.solve (
lh, kh, uh, ph);
48 derr <<
"#k r as" << endl;
49 for (
size_t k = 0; k < max_iter; ++k) {
51 stokes.set_metric (mp);
52 stokes.solve (
lh, kh, uh, ph);
55 field rh = a1*uh +
b.trans_mult(ph) -
lh;
56 derr << k <<
" " << rh.max_abs() <<
" " << th(uh,uh) << endl;
see the catchmark page for the full documentation
int main(int argc, char **argv)
The Taylor benchmark – right-hand-side and boundary condition.
see the field page for the full documentation
problem_mixed_basic< Float > problem_mixed
see the problem_mixed page for the full documentation
see the problem_mixed page for the full documentation
see the space page for the full documentation
rheolef - reference manual
The Stokes problem with Dirichlet boundary condition by the discontinuous Galerkin method – solver fu...
form inertia(W w, U u, V v, integrate_option iopt=integrate_option())
see the environment page for the full documentation
field lh(Float epsilon, Float t, const test &v)
void stokes_dirichlet_dg(const space &Xh, const space &Qh, form &a, form &b, form &c, form &mp, field &lh, field &kh, integrate_option iopt=integrate_option())
This file is part of Rheolef.
see the test page for the full documentation
The inertia term of the Navier-Stokes equation with the discontinuous Galerkin method – Cockburn,...
odiststream derr(cerr)
see the diststream page for the full documentation
see the Float page for the full documentation
field inertia_fix_rhs(test v, integrate_option iopt=integrate_option())
see the test page for the full documentation
odiststream dout(cout)
see the diststream page for the full documentation
see the geo page for the full documentation