Rheolef  7.1
an efficient C++ finite element environment
dirichlet_hdg_post.cc

The Poisson problem by the hybrid discontinuous Galerkin method – post-treatment

#include "rheolef.h"
using namespace rheolef;
using namespace std;
int main(int argc, char**argv) {
environment rheolef (argc, argv);
field uh, lambda_h, sigma_h;
din >> catchmark("n") >> n
>> catchmark("beta") >> beta
>> catchmark("u") >> uh
>> catchmark("lambda") >> lambda_h
>> catchmark("sigma") >> sigma_h;
field bar_uh = dirichlet_hdg_average (uh, lambda_h);
const geo& omega = uh.get_geo();
size_t d = omega.dimension();
size_t k = uh.get_space().degree();
space Xhs (omega, "P"+itos(k+1)+"d"),
Zhs (omega, "P0"),
Yhs = Xhs*Zhs;
trial x(Yhs); test y(Yhs);
auto us = x[0], zeta = x[1];
auto vs = y[0], xi = y[1];
iopt.invert = true;
form inv_ahs = integrate(dot(grad_h(us),grad_h(vs)) + zeta*vs + xi*us, iopt);
field lhs = integrate (f(d)*vs + xi*bar_uh
+ on_local_sides(dot(sigma_h,normal())*vs));
field xhs = inv_ahs*lhs;
dout << catchmark("n") << n << endl
<< catchmark("beta") << beta << endl
<< catchmark("u") << xhs[0]
<< catchmark("lambda") << lambda_h
<< catchmark("sigma") << sigma_h
<< catchmark("zeta") << xhs[1];
}
dirichlet_hdg_average.icc
The Poisson problem by the hybrid discontinuous Galerkin method – local averaging function.
main
int main(int argc, char **argv)
Definition: dirichlet_hdg_post.cc:30
form
see the form page for the full documentation
rheolef::catchmark
see the catchmark page for the full documentation
Definition: catchmark.h:67
rheolef::dot
rheolef::std enable_if ::type dot const Expr1 expr1, const Expr2 expr2 dot(const Expr1 &expr1, const Expr2 &expr2)
dot(x,y): see the expression page for the full documentation
Definition: vec_expr_v2.h:415
field
see the field page for the full documentation
rheolef::normal
details::field_expr_v2_nonlinear_terminal_function< details::normal_pseudo_function< Float > > normal()
normal: see the expression page for the full documentation
Definition: field_expr_terminal.h:439
rheolef::integrate
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:202
mkgeo_ball.f
f
Definition: mkgeo_ball.sh:221
space
see the space page for the full documentation
sinusprod_dirichlet.h
The sinus product function – right-hand-side and boundary condition for the Poisson problem.
rheolef.h
rheolef - reference manual
rheolef::integrate_option
see the integrate_option page for the full documentation
Definition: integrate_option.h:125
rheolef::on_local_sides
std::enable_if< details::is_field_expr_v2_variational_arg< Expr >::value,details::field_expr_quadrature_on_sides< Expr > >::type on_local_sides(const Expr &expr)
on_local_sides(expr): see the expression page for the full documentation
Definition: field_expr_quadrature.h:321
rheolef::din
idiststream din
see the diststream page for the full documentation
Definition: diststream.h:427
rheolef::environment
see the environment page for the full documentation
Definition: environment.h:115
rheolef
This file is part of Rheolef.
Definition: compiler_eigen.h:37
rheolef::integrate_option::invert
bool invert
Definition: integrate_option.h:168
test
see the test page for the full documentation
Float
see the Float page for the full documentation
mkgeo_ball.d
d
Definition: mkgeo_ball.sh:154
mkgeo_ball.n
n
Definition: mkgeo_ball.sh:150
rheolef::grad_h
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad_h(const Expr &expr)
grad_h(uh): see the expression page for the full documentation
Definition: field_expr_terminal.h:949
trial
see the test page for the full documentation
dirichlet_hdg_average
field dirichlet_hdg_average(field uh, field lambda_h)
Definition: dirichlet_hdg_average.icc:25
rheolef::dout
odiststream dout(cout)
see the diststream page for the full documentation
Definition: diststream.h:430
rheolef::itos
std::string itos(std::string::size_type i)
itos: see the rheostream page for the full documentation
rheolef::std
Definition: vec_expr_v2.h:391
geo
see the geo page for the full documentation
rk::beta
Float beta[][pmax+1]
Definition: runge_kutta_semiimplicit.icc:60