Rheolef
7.1
an efficient C++ finite element environment
p_laplacian2.icc
The p-Laplacian problem by the Newton method – class body
field
p_laplacian::derivative_trans_mult
(
const
field
& mrh)
const
{
field
rh (
Xh
, 0);
pm
.solve (mrh, rh);
field
mgh =
a1
*rh;
mgh.set_b() = 0;
return
mgh;
}
Float
p_laplacian::space_norm
(
const
field
& uh)
const
{
return
sqrt (
m
(uh,uh));
}
Float
p_laplacian::dual_space_norm
(
const
field
& mrh)
const
{
field
rh (
Xh
, 0);
pm
.solve (mrh, rh);
return
sqrt (
dual
(mrh, rh));
}
rheolef::details::dual
rheolef::details::is_field_expr_quadrature_arg dual
field
see the field page for the full documentation
p_laplacian::a1
form a1
Definition:
p_laplacian.h:42
p_laplacian::pm
problem pm
Definition:
p_laplacian.h:41
p_laplacian::m
form m
Definition:
p_laplacian.h:40
p_laplacian::derivative_trans_mult
field derivative_trans_mult(const field &mrh) const
Definition:
p_laplacian2.icc:25
p_laplacian::dual_space_norm
Float dual_space_norm(const field &mrh) const
Definition:
p_laplacian2.icc:35
Float
see the Float page for the full documentation
p_laplacian::Xh
space Xh
Definition:
p_laplacian.h:38
p_laplacian::space_norm
Float space_norm(const field &uh) const
Definition:
p_laplacian2.icc:32