an efficient C++ finite element environment
|
|
The Stokes problem with Dirichlet boundary condition by the discontinuous Galerkin method – solver function
integrate_option iopt = integrate_option())
{
size_t k = Xh.degree();
size_t d = Xh.get_geo().dimension();
}
see the field page for the full documentation
details::field_expr_v2_nonlinear_terminal_function< details::normal_pseudo_function< Float > > normal()
normal: see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
details::field_expr_v2_nonlinear_terminal_function< details::h_local_pseudo_function< Float > > h_local()
h_local: see the expression page for the full documentation
see the space page for the full documentation
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type Dh(const Expr &expr)
Dh(uh): see the expression page for the full documentation.
T ddot(const tensor_basic< T > &a, const tensor_basic< T > &b)
ddot(x,y): see the expression page for the full documentation
rheolef::details::is_vec dot
field lh(Float epsilon, Float t, const test &v)
void stokes_dirichlet_dg(const space &Xh, const space &Qh, form &a, form &b, form &c, form &mp, field &lh, field &kh, integrate_option iopt=integrate_option())
see the test page for the full documentation
see the Float page for the full documentation
details::field_expr_v2_nonlinear_terminal_function< details::penalty_pseudo_function< Float > > penalty()
penalty(): see the expression page for the full documentation
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad_h(const Expr &expr)
grad_h(uh): see the expression page for the full documentation
see the test page for the full documentation