Rheolef
7.1
an efficient C++ finite element environment
dirichlet.icc
The Poisson problem with homogeneous Dirichlet boundary condition – solver function
void
dirichlet
(
const
field
&
lh
,
field
& uh) {
const
space
& Xh =
lh
.get_space();
trial
u
(Xh);
test
v (Xh);
form
a
=
integrate
(
dot
(
grad
(
u
),
grad
(v)));
problem
p
(
a
);
p
.solve (
lh
, uh);
}
form
see the form page for the full documentation
field
see the field page for the full documentation
rheolef::integrate
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition:
integrate.h:202
space
see the space page for the full documentation
rheolef::grad
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
Definition:
field_expr_terminal.h:911
p
Definition:
sphere.icc:25
a
Definition:
diffusion_isotropic.h:25
rheolef::details::dot
rheolef::details::is_vec dot
lh
field lh(Float epsilon, Float t, const test &v)
Definition:
burgers_diffusion_operators.icc:25
test
see the test page for the full documentation
problem
see the problem page for the full documentation
u
Definition:
leveque.h:25
u
Float u(const point &x)
Definition:
transmission_error.cc:26
trial
see the test page for the full documentation
dirichlet
void dirichlet(const field &lh, field &uh)
Definition:
dirichlet.icc:25