Rheolef
7.1
an efficient C++ finite element environment
cosinusprod_laplace.h
The cosinus product function – right-hand-side and boundary condition for the Laplace problem
struct
f
{
Float
operator()
(
const
point
& x)
const
{
return
d
*
pi
*
pi
*cos(
pi
*x[0])*cos(
pi
*x[1])*cos(
pi
*x[2]); }
f
(
size_t
d1) :
d
(d1),
pi
(acos(
Float
(-1))) {}
size_t
d
;
const
Float
pi
;
};
struct
g
{
Float
operator()
(
const
point
& x)
const
{
return
cos(
pi
*x[0])*cos(
pi
*x[1])*cos(
pi
*x[2]); }
g
(
size_t
d1) :
pi
(acos(
Float
(-1))) {}
const
Float
pi
;
};
g::g
g()
Definition:
taylor.h:29
f::d
size_t d
Definition:
cosinusprod_dirichlet.h:30
g::pi
const Float pi
Definition:
cosinusprod_laplace.h:35
f::operator()
point operator()(const point &x) const
Definition:
cavity_dg.h:30
Float
see the Float page for the full documentation
f::f
f()
Definition:
taylor.h:34
point
see the point page for the full documentation
f::pi
const Float pi
Definition:
cosinusprod_dirichlet.h:30
g::operator()
point operator()(const point &x) const
Definition:
cavity_dg.h:26
g
Definition:
cavity_dg.h:25
f
Definition:
cavity_dg.h:29