an efficient C++ finite element environment
|
|
Go to the documentation of this file.
30 int main(
int argc,
char**argv) {
34 string approx = (argc > 2) ? argv[2] :
"P1";
35 Float S = (argc > 3) ? atof(argv[3]) : 0.6;
36 Float n = (argc > 4) ? atof(argv[4]) : 1;
37 Float Cf = (argc > 5) ? atof(argv[5]) : 1;
38 Float r = (argc > 6) ? atof(argv[6]) : 1;
40 size_t max_iter = 100000;
41 space Xh (omega, approx);
45 space Wh (omega[
"boundary"], Xh.get_approx());
46 field lambda_h = Cf*uh[
"boundary"];
48 lh, lambda_h, uh, tol, max_iter, r);
49 dout << setprecision(numeric_limits<Float>::digits10)
The Poisson problem with Robin boundary condition – solver function.
see the catchmark page for the full documentation
int yield_slip_augmented_lagrangian(Float S, Float n, Float Cf, geo boundary, field lh, field &lambda_h, field &uh, Float tol, size_t max_iter, Float r)
see the field page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
see the space page for the full documentation
rheolef - reference manual
see the environment page for the full documentation
field lh(Float epsilon, Float t, const test &v)
This file is part of Rheolef.
see the test page for the full documentation
see the Float page for the full documentation
int main(int argc, char **argv)
field poisson_robin(Float Cf, const geo &boundary, const field &lh)
The yield slip problem by the augmented Lagrangian method – solver function.
see the geo page for the full documentation