Easy Data Wrangling


[Up] [Top]

Documentation for package ‘datawizard’ version 0.3.0

Help Pages

A C D E F I K N O P R S T U V W

-- A --

adjust Adjust data for the effect of other variable(s)

-- C --

center Centering (Grand-Mean Centering)
center.data.frame Centering (Grand-Mean Centering)
center.numeric Centering (Grand-Mean Centering)
centre Centering (Grand-Mean Centering)
change_scale Rescale Variables to a New Range
compact_character Remove empty strings from character
compact_list Remove empty elements from lists
convert_data_to_numeric Convert data to numeric
convert_data_to_numeric.data.frame Convert data to numeric
convert_to_na Convert non-missing values in a variable into missing values.
convert_to_na.data.frame Convert non-missing values in a variable into missing values.
convert_to_na.numeric Convert non-missing values in a variable into missing values.

-- D --

data_addprefix Convenient dataframe manipulation functionalities
data_addsuffix Convenient dataframe manipulation functionalities
data_adjust Adjust data for the effect of other variable(s)
data_cut Recode (or "cut") data into groups of values.
data_cut.data.frame Recode (or "cut") data into groups of values.
data_cut.numeric Recode (or "cut") data into groups of values.
data_extract Extract a single column or element from an object
data_findcols Convenient dataframe manipulation functionalities
data_join Merge (join) two data frames, or a list of data frames
data_match Find row indices of a data frame matching a specific condition
data_merge Merge (join) two data frames, or a list of data frames
data_merge.data.frame Merge (join) two data frames, or a list of data frames
data_merge.list Merge (join) two data frames, or a list of data frames
data_partition Partition data into a test and a training set
data_relocate Relocate (reorder) columns of a data frame
data_remove Convenient dataframe manipulation functionalities
data_rename Convenient dataframe manipulation functionalities
data_rename_rows Convenient dataframe manipulation functionalities
data_reorder Convenient dataframe manipulation functionalities
data_rescale Rescale Variables to a New Range
data_rescale.data.frame Rescale Variables to a New Range
data_rescale.grouped_df Rescale Variables to a New Range
data_rescale.numeric Rescale Variables to a New Range
data_restoretype Restore the type of columns according to a reference data frame
data_reverse Reverse-Score Variables
data_reverse.data.frame Reverse-Score Variables
data_reverse.grouped_df Reverse-Score Variables
data_reverse.numeric Reverse-Score Variables
data_rotate Rotate a data frame
data_to_long Reshape (pivot) data from wide to long
data_to_numeric Convert data to numeric
data_to_wide Reshape (pivot) data from wide to long
data_transpose Rotate a data frame
degroup Compute group-meaned and de-meaned variables
demean Compute group-meaned and de-meaned variables
describe_distribution Describe a distribution
describe_distribution.data.frame Describe a distribution
describe_distribution.factor Describe a distribution
describe_distribution.numeric Describe a distribution
detrend Compute group-meaned and de-meaned variables

-- E --

empty_columns Return or remove variables or observations that are completely missing
empty_rows Return or remove variables or observations that are completely missing
extract Extract a single column or element from an object

-- F --

format_text Convenient text formatting functionalities

-- I --

is_empty_object Check if object is empty

-- K --

kurtosis Compute Skewness and (Excess) Kurtosis

-- N --

nhanes_sample Sample dataset from the National Health and Nutrition Examination Survey
normalize Normalize numeric variable to 0-1 range
normalize.data.frame Normalize numeric variable to 0-1 range
normalize.grouped_df Normalize numeric variable to 0-1 range
normalize.numeric Normalize numeric variable to 0-1 range

-- O --

object_has_names Check names and rownames
object_has_rownames Check names and rownames

-- P --

print.parameters_kurtosis Compute Skewness and (Excess) Kurtosis
print.parameters_skewness Compute Skewness and (Excess) Kurtosis

-- R --

ranktransform (Signed) rank transformation
ranktransform.data.frame (Signed) rank transformation
ranktransform.grouped_df (Signed) rank transformation
ranktransform.numeric (Signed) rank transformation
remove_empty Return or remove variables or observations that are completely missing
remove_empty_columns Return or remove variables or observations that are completely missing
remove_empty_rows Return or remove variables or observations that are completely missing
replace_nan_inf Convert infinite or 'NaN' values into 'NA'
rescale_weights Rescale design weights for multilevel analysis
reshape_ci Reshape CI between wide/long formats
reshape_longer Reshape (pivot) data from wide to long
reshape_wider Reshape (pivot) data from wide to long
reverse_scale Reverse-Score Variables

-- S --

skewness Compute Skewness and (Excess) Kurtosis
smoothness Quantify the smoothness of a vector
standardise Standardization (Z-scoring)
standardize Standardization (Z-scoring)
standardize.data.frame Standardization (Z-scoring)
standardize.factor Standardization (Z-scoring)
standardize.numeric Standardization (Z-scoring)
summary.parameters_kurtosis Compute Skewness and (Excess) Kurtosis
summary.parameters_skewness Compute Skewness and (Excess) Kurtosis

-- T --

text_concatenate Convenient text formatting functionalities
text_fullstop Convenient text formatting functionalities
text_lastchar Convenient text formatting functionalities
text_paste Convenient text formatting functionalities
text_remove Convenient text formatting functionalities
text_wrap Convenient text formatting functionalities
to_numeric Convert to Numeric (if possible)

-- U --

unstandardise Standardization (Z-scoring)
unstandardize Standardization (Z-scoring)
unstandardize.data.frame Standardization (Z-scoring)
unstandardize.numeric Standardization (Z-scoring)

-- V --

visualisation_recipe Prepare objects for visualisation

-- W --

winsorize Winsorize data
winsorize.numeric Winsorize data