

Contents

1 Foreword

B.3.21 packet add exception

Chapter 1

Foreword

Abstract: Meterpreter, short for The Meta-Interpreter

Chapter 2

Introducti(t).5

Chapter 3

Technical Reference

Name Value
TLV META TYPE NONE 0 << 0
TLV META TYPE STRING 1 << 16
TLV META TYPE UINT 1 << 17
TLV META TYPE RAW 1 << 18
TLV META TYPE BOOL 1 << 19
TLV META TYPE GROUP 1 << 20
TLV META TYPE COMPLEX 1 << 21

Based off the above meta-types the following predefined TLVs have been gener-
ated which are used to provide core functionality to the meterpreter client and
server.

TLV TYPE ANY

Meta-Type Identifier
TLV META TYPE NONE 0

The ANY

TLV TYPE

TLV TYPE LENGTH

Meta-Type Identifier
TLV META TYPE UINT 25

This TLV holds the taaget path to upload a libraay to when it’s being saved to
disk on the remote client’s machine.

TLV TYPE CIPHER NAME

Meta-Type Identifier
TLV META TYPE STRING 500

Holds the name of the cipher that is be used to encrypt the data stream between

with the method set to core crypto negotiate

{
packet_add_tlv_uint(response, TLV_TYPE_RESULT, 0);

packet_transmit(remote, response, 0);
}

return ERROR_SUCCESS;
}

identifier => "echo",
description => "Sends an echo request to the server.",
handler => \&echo,

},
);

The above code block will cause the following output to be displayed when a

method => "echo");

$client->writeConsoleOutput(text =>
"Sending echo request to server...\n");

$client->transmitPacket(
packet => \$request,
completionHandler => \&echoComplete);

return 1;
}

When the user types echo into the command line, an

Chapter 4

Using Meterpreter

Meterpreter has been fully integrated into the Metasploit Framework in ver-
sion 2.3 and can be accessed through a number of a different payloads. At the
time of this writing meterpreter has only been implemented on Windows but
its principals and design are fully portable to a variety of other operating sys-

start the Metasploit client interface. Though Metasploit provides a number of
interfaces (including msfweb), msfconsole will be used for illustration purposes.

$./msfconsole

__. .__. .__. __.
_____ _____/ |______ ____________ | | ____ |__|/ |_

msf Tester(win32_reverse_meterpreter) > exploit
[*] Starting Reverse Handler.
[*] Sending 270 bytes to remote host.
[*] Got connection from 127.0.0.1:5556 <-> 127.0.0.1:2029
[*] Sending Stage (2835 bytes)
[*] Sleeping before sending dll.
[*] Uploading dll to memory (69643), Please wait...
[*] Upload completed
meterpreter>
[-= connected to =-]
[-= meterpreter server =-]
[-= v. 00000500 =-]
meterpreter>

loadlib: Loading library from ’ext950591.dll’ on the remote machine.
meterpreter>
loadlib: success.
meterpreter>

Appendix A

Command Reference

A.1 Built-in Commands

A.1.1 use

Usage: use -m module1,module2,module3 [-p path] [-d]

Arguments

Arguments

-f Specifies the path from which the library should be
loaded. If the -l parameter is specified, the path is rel-

Arguments

This command closes a channel and frees its resources. After a

This command provides the client with the ability to enable an
arbitrary cipher which will as a result encrypt the

src One or more files on the remote server that are to

-a Indicates that the port forward is to be added. This
instruction is mutually exclusive with -r and -v.

pid The unique process identifier or one or more processes
that should be terminated.

This command is similar to the kill command that is found on
most UNIX derivatives. Its pt3 Td[(9-30)s[J
0ll

Reverts the server’s thread to the identify that was associated with

Appendix B

Common API

The common API is an interface that is shared between the me-
terpreter client and server. It provides things like channel man-
agement, packet management, and other various interfaces that are
common to both the client and the server. The following subsec-
tions define the C interface for these subsystems. The interface
also matches nearly one to one with the interface supplied in perl

Channel *channel_find_by_id(DWORD id);

Arguments

B.1.8 cha8nel close

Prototype

B.1.9 channel interact

Prototype

DWORD channel_interact(Channel *channel, Remote *remote,

Tlv *addend, DWORD addendLength, BOOL enable,

ChannelCompletionRoutine *completionRoutine);

Arguments

channel The channel instance that is to be closed.
remote The remote connection management ob-

ject that is used for the transmission of
packets.

addend An array of TLV addends to be included
in the core channel close request. This
parameter is optional and should be NULL

if there are no addends.
addendLength The 98(thum)(thb)-27(er)-353(of)-353(ele)-1(m)1(e)-1(n)28(ts)-354(in)-353(t)1(he)-354(a)1(rra)28(y)-353(sup-)]TJ 0 -13.948 Td[(plied)-511(in)]TJ/F40 11.955 Tf 46.691 0 Td[(ad)1(de)1(nd)]TJ/F35 11.955 Tf 36.911 0 Td[(.)-990(This)-511(para)1(meter)-511(is)-512(o)1(p-)]TJ -83.602 -13.948 Td[(tio)1(nal)-369(a)1(nd)-369(s)-1(ho)1(uld)-369(b)-27(e)-369(0)-369(if)-369(there)-369(a)1(re)-369(no)-369(a)1(d-)]TJ 0 -13.947 Td[(dends.)]TJ
ET
1 0 0 1 478.062 3T1.21 cm
q
[]27.8 to be closed.

Summary

This function deregisters a command handler that was previously
registered with the command register function.

Packet *packet_create_response(Packet *packet);

Arguments

packet The packet that is to be duplicated.

Returns

On success a pointer to a valid Packet instance is returned that is
a duplicate of the packet passed in. Otherwise, NULL is returned.

Summary

DWORD packet_add_tlv_uint(Facket *packet, TlvType type,

UINT val);

Arguments

packet The packet instance that is to be operated on.
type The unique TLV type identifier to add. This type

should have a meta-type of TLV META TYFE UINT.
val

Summary

Arguments

packet The packet instance that is to be operated on.
type The unique TLV type identifier to add. This type

should have a meta-type of TLV META TYPE RAW.
buf The raw data that should be used as the value for

the TLV.
length

B.3.13 packet is tlv null terminated

Prototype

DWORD packet_is_tlv_null_terminated(Packet *packet,

Tlv *tlv);

Arguments

Returns

On success, zero is returned. Otherwise, a non-zero value is returned

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function populates the buffer supplied in tlv with information
about the TLV type specified by type at the index supplied in index.
If the type parameter is set to TLV TYPE

Arguments

packet The packet instance that is to be operated on.
type

B.3.23 packet transmit

Prototype

DWORD packet_transmit(Remote *remote, Packet *packet,

Returns

Summary

This function initializes the local half of the encrypted channel and
populates the packet supplied in initializer with the parameters
that will be necessary for the remote half to complete its portion of
the negotiation.

B.4.2 remote get cipher

Prototype

CryptoContext *remote_get_cipher(Remote *remote);

Arguments

remote

The remote connection management object that
is used for the transmission of packets.

Returns

On success, the cryptographic context associated with the currently
enabled cipher is returned. Otherwise, NULL is returned.

Summary

This function returns the cryptographic context associated with the
currently enabled cipher, if any.

B.2 Scheduling

B.5.1 scheduler

Bibliography

[1] skape and Jarkko Turkulainen. Remote Library Injection.

http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.coresecurity.com/files/files/11/SyscallProxying.pdf
http://www.coresecurity.com/files/files/11/SyscallProxying.pdf

	Foreword
	Introduction
	Technical Reference
	Protocol Specification
	TLV Structure
	Packet Structure
	Defined TLVs
	Packet Flow

	Server Extensions
	Client Extensions

	Using Meterpreter
	Conclusion
	Command Reference
	Built-in Commands
	use
	loadlib
	read
	write
	close
	interact
	initcrypt

	Extension: Fs
	cd
	getcwd
	ls
	upload
	download

	Extension: Net
	ipconfig
	route
	portfwd

	Extension: Process
	execute
	kill
	ps

	Extension: Sys
	getuid
	sysinfo
	rev2self

	Common API
	Channel Management
	channel_find_by_id
	channel_get_id
	channel_get_type
	channel_is_interactive
	channel_open
	channel_read
	channel_write
	channel_close
	channel_interact

	Command Registration
	command_register
	command_deregister

	Packet Management
	packet_create
	packet_create_response
	packet_destroy
	packet_duplicate
	packet_get_type
	packet_get_tlv_meta_type
	packet_add_tlv_string
	packet_add_tlv_uint
	packet_add_tlv_bool
	packet_add_tlv_group
	packet_add_tlv_raw
	packet_add_tlvs
	packet_is_tlv_null_terminated
	packet_get_tlv
	packet_get_tlv_string
	packet_get_tlv_group_entry
	packet_enum_tlv
	packet_get_tlv_value_string
	packet_get_tlv_value_uint
	packet_get_tlv_value_bool
	packet_add_exception
	packet_get_result
	packet_transmit
	packet_transmit_empty_response

	Encryption
	remote_set_cipher
	remote_get_cipher

	Scheduling
	scheduler_insert_waitable
	scheduler_remove_waitable
	scheduler_run

