General Unconstrained Minimization¶
While much of Ceres Solver is devoted to solving non-linear least
squares problems, internally it contains a solver that can solve
general unconstrained optimization problems using just their objective
function value and gradients. The GradientProblem
and
GradientProblemSolver
objects give the user access to this solver.
So without much further ado, let us look at how one goes about using them.
Rosenbrock’s Function¶
We consider the minimization of the famous Rosenbrock’s function [1].
We begin by defining an instance of the FirstOrderFunction
interface. This is the object that is responsible for computing the
objective function value and the gradient (if required). This is the
analog of the CostFunction
when defining non-linear least
squares problems in Ceres.
class Rosenbrock : public ceres::FirstOrderFunction {
public:
virtual bool Evaluate(const double* parameters,
double* cost,
double* gradient) const {
const double x = parameters[0];
const double y = parameters[1];
cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
if (gradient != NULL) {
gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;
gradient[1] = 200.0 * (y - x * x);
}
return true;
}
virtual int NumParameters() const { return 2; }
};
Minimizing it then is a straightforward matter of constructing a
GradientProblem
object and calling Solve()
on it.
double parameters[2] = {-1.2, 1.0};
ceres::GradientProblem problem(new Rosenbrock());
ceres::GradientProblemSolver::Options options;
options.minimizer_progress_to_stdout = true;
ceres::GradientProblemSolver::Summary summary;
ceres::Solve(options, problem, parameters, &summary);
std::cout << summary.FullReport() << "\n";
Executing this code results, solve the problem using limited memory BFGS algorithm.
0: f: 2.420000e+01 d: 0.00e+00 g: 2.16e+02 h: 0.00e+00 s: 0.00e+00 e: 0 it: 2.00e-05 tt: 2.00e-05
1: f: 4.280493e+00 d: 1.99e+01 g: 1.52e+01 h: 2.01e-01 s: 8.62e-04 e: 2 it: 7.32e-05 tt: 2.19e-04
2: f: 3.571154e+00 d: 7.09e-01 g: 1.35e+01 h: 3.78e-01 s: 1.34e-01 e: 3 it: 2.50e-05 tt: 2.68e-04
3: f: 3.440869e+00 d: 1.30e-01 g: 1.73e+01 h: 1.36e-01 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 2.92e-04
4: f: 3.213597e+00 d: 2.27e-01 g: 1.55e+01 h: 1.06e-01 s: 4.59e-01 e: 1 it: 2.86e-06 tt: 3.14e-04
5: f: 2.839723e+00 d: 3.74e-01 g: 1.05e+01 h: 1.34e-01 s: 5.24e-01 e: 1 it: 2.86e-06 tt: 3.36e-04
6: f: 2.448490e+00 d: 3.91e-01 g: 1.29e+01 h: 3.04e-01 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 3.58e-04
7: f: 1.943019e+00 d: 5.05e-01 g: 4.00e+00 h: 8.81e-02 s: 7.43e-01 e: 1 it: 4.05e-06 tt: 3.79e-04
8: f: 1.731469e+00 d: 2.12e-01 g: 7.36e+00 h: 1.71e-01 s: 4.60e-01 e: 2 it: 9.06e-06 tt: 4.06e-04
9: f: 1.503267e+00 d: 2.28e-01 g: 6.47e+00 h: 8.66e-02 s: 1.00e+00 e: 1 it: 3.81e-06 tt: 4.33e-04
10: f: 1.228331e+00 d: 2.75e-01 g: 2.00e+00 h: 7.70e-02 s: 7.90e-01 e: 1 it: 3.81e-06 tt: 4.54e-04
11: f: 1.016523e+00 d: 2.12e-01 g: 5.15e+00 h: 1.39e-01 s: 3.76e-01 e: 2 it: 1.00e-05 tt: 4.82e-04
12: f: 9.145773e-01 d: 1.02e-01 g: 6.74e+00 h: 7.98e-02 s: 1.00e+00 e: 1 it: 3.10e-06 tt: 5.03e-04
13: f: 7.508302e-01 d: 1.64e-01 g: 3.88e+00 h: 5.76e-02 s: 4.93e-01 e: 1 it: 2.86e-06 tt: 5.25e-04
14: f: 5.832378e-01 d: 1.68e-01 g: 5.56e+00 h: 1.42e-01 s: 1.00e+00 e: 1 it: 3.81e-06 tt: 5.47e-04
15: f: 3.969581e-01 d: 1.86e-01 g: 1.64e+00 h: 1.17e-01 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 5.68e-04
16: f: 3.171557e-01 d: 7.98e-02 g: 3.84e+00 h: 1.18e-01 s: 3.97e-01 e: 2 it: 9.06e-06 tt: 5.94e-04
17: f: 2.641257e-01 d: 5.30e-02 g: 3.27e+00 h: 6.14e-02 s: 1.00e+00 e: 1 it: 3.10e-06 tt: 6.16e-04
18: f: 1.909730e-01 d: 7.32e-02 g: 5.29e-01 h: 8.55e-02 s: 6.82e-01 e: 1 it: 4.05e-06 tt: 6.42e-04
19: f: 1.472012e-01 d: 4.38e-02 g: 3.11e+00 h: 1.20e-01 s: 3.47e-01 e: 2 it: 1.00e-05 tt: 6.69e-04
20: f: 1.093558e-01 d: 3.78e-02 g: 2.97e+00 h: 8.43e-02 s: 1.00e+00 e: 1 it: 3.81e-06 tt: 6.91e-04
21: f: 6.710346e-02 d: 4.23e-02 g: 1.42e+00 h: 9.64e-02 s: 8.85e-01 e: 1 it: 3.81e-06 tt: 7.12e-04
22: f: 3.993377e-02 d: 2.72e-02 g: 2.30e+00 h: 1.29e-01 s: 4.63e-01 e: 2 it: 9.06e-06 tt: 7.39e-04
23: f: 2.911794e-02 d: 1.08e-02 g: 2.55e+00 h: 6.55e-02 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 7.62e-04
24: f: 1.457683e-02 d: 1.45e-02 g: 2.77e-01 h: 6.37e-02 s: 6.14e-01 e: 1 it: 3.81e-06 tt: 7.84e-04
25: f: 8.577515e-03 d: 6.00e-03 g: 2.86e+00 h: 1.40e-01 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 8.05e-04
26: f: 3.486574e-03 d: 5.09e-03 g: 1.76e-01 h: 1.23e-02 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 8.27e-04
27: f: 1.257570e-03 d: 2.23e-03 g: 1.39e-01 h: 5.08e-02 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 8.48e-04
28: f: 2.783568e-04 d: 9.79e-04 g: 6.20e-01 h: 6.47e-02 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 8.69e-04
29: f: 2.533399e-05 d: 2.53e-04 g: 1.68e-02 h: 1.98e-03 s: 1.00e+00 e: 1 it: 3.81e-06 tt: 8.91e-04
30: f: 7.591572e-07 d: 2.46e-05 g: 5.40e-03 h: 9.27e-03 s: 1.00e+00 e: 1 it: 3.81e-06 tt: 9.12e-04
31: f: 1.902460e-09 d: 7.57e-07 g: 1.62e-03 h: 1.89e-03 s: 1.00e+00 e: 1 it: 2.86e-06 tt: 9.33e-04
32: f: 1.003030e-12 d: 1.90e-09 g: 3.50e-05 h: 3.52e-05 s: 1.00e+00 e: 1 it: 3.10e-06 tt: 9.54e-04
33: f: 4.835994e-17 d: 1.00e-12 g: 1.05e-07 h: 1.13e-06 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 9.81e-04
34: f: 1.885250e-22 d: 4.84e-17 g: 2.69e-10 h: 1.45e-08 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 1.00e-03
Solver Summary (v 1.12.0-lapack-suitesparse-cxsparse-no_openmp)
Parameters 2
Line search direction LBFGS (20)
Line search type CUBIC WOLFE
Cost:
Initial 2.420000e+01
Final 1.885250e-22
Change 2.420000e+01
Minimizer iterations 35
Time (in seconds):
Cost evaluation 0.000
Gradient evaluation 0.000
Total 0.003
Termination: CONVERGENCE (Gradient tolerance reached. Gradient max norm: 9.032775e-13 <= 1.000000e-10)
Footnotes
[1] | examples/rosenbrock.cc |